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Abstract: The aim of this paper is to present a modified explanation of the classic internal
model principle for certain class of finite-dimensional, time-invariant, deterministic fractional-
order systems commonly known as fractional systems of commensurate order. The necessary
and sufficient conditions for perfect command tracking and disturbance rejection are provided.
The difficulty of applying the classic internal model principle to fractional-order systems is
due to the difference between integer-order and fractional-order systems from the zero-pole
cancellation point of view. The notion of zero-pole cancellation is discussed for the systems under
consideration in a well posed mathematical framework. It is also shown that fractional elements
can be used for command tracking and disturbance rejection purposes which provides more
flexibility for controller design applications. Two illustrative examples confirm the applicability
of the proposed theorems.
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1. INTRODUCTION

The idea of internal model principle was first introduced in
the work of Francis and Wonham (1976) which dealt with
the regulator problem for linear, time-invariant, finite-
dimensional systems with deterministic disturbance and
reference signals. The main result of that work, for the
closed-loop system shown in Fig. 1, is that the controller
C(s) must incorporate in the feedback path a suitable
model of the dynamic structure of the disturbance and
reference signal in order to achieve perfect asymptotic
disturbance rejection and command tracking. That is why
an integrator must be provided in the forward path of a
given stable closed-loop system for tracking the step input
without steady-state error.

In recent years there has been an increasing attention
to fractional-order systems. These systems are of interest
for both modelling and controller-design purposes. In the
field of continuous-time modelling, fractional derivatives
have proved to be useful in linear viscoelasticity, acoustics,
rheology, polymeric chemistry, biophysics, etc (Oldham
and Spanier, 1974; Hilfer, 2000). In general, fractional-
order systems are useful to model various stable physi-
cal phenomena (commonly diffusive type systems) with
anomalous decay, say those that are not of an exponential
type. For example, Miller and Ross (1993) introduced a
real-world system with impulse response

h(t) =
√

2gπ

Γ(3/2)
t
1/2
+ , (1)

which corresponds to the transfer function

H(s) =
√

2gπ

s3/2
. (2)

As an example of using fractional derivatives for modelling,
Beyer and Kempfle (1995) studied the generalized damp-
ing equation

(D2 + aDq + b)x(t) = f(t), q ∈ (0, 2) (3)

and discussed the advantages of fractional modelling. The
transfer function of the above system is easily found to be

H(s) =
X(s)
F (s)

=
1

s2 + asq + b
. (4)

In the field of linear viscoelasticity, Glöckle et al. (1991)
used fractional calculus to generalize the Zener model.
They proposed the fractional (integral) equation of un-
known orders β and µ:
1

τβ
0

0D
−β
t σ(t) + σ(t)− σ0 =

Ge

τβ
0

0D
−µ
t ε(t) + G0[ε(t)− ε0],

(5)
where σ and ε are stress and strain, respectively, and τ0,
Gm, ηm, and Ge are real physical constants. Equation (5)
corresponds to the transfer function

H(s) =
σ̃(s)
ε̃(s)

=
G0 + Ge(sτ0)−µ

1 + (sτ0)−β
, (6)

where the initial values are chosen such that σ0 = G0ε0.
The transfer functions (2), (4), and (6) represent practical
systems with non-integer powers of the Laplace variable.
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Fig. 1. The standard closed-loop system

An interesting study of fractional differential systems ap-
peared in (Viano et al., 1994) using a stochastic frame-
work. The idea of fractional powers is also used for identi-
fication purposes in order to reach more accurate models.
Tsao et al. (1989) and Poinot and Trigeassou (2004),
clarify the identification method when the members of
model set are of fractional order. Two applications of such
identifications can be found in (Vinagre et al., 1998) and
(Chauchois et al., 2003). Fractional differential systems are
also used in control field. Podlubny (1999) and Valério and
Costa (2006) discussed methods of designing PIλDµ con-
trollers, Raynaud and ZergaInoh (2000) studied fractional-
order lead-lag compensators and Oustaloup et al. (1995,
1996) introduced the so-called CRONE controllers.

Systems of commensurate order of derivatives are the
systems that have been described by fractional differen-
tial equations of commensurate order. Such systems lend
themselves well to some algebraic tools (Miller and Ross,
1993; Beyer and Kempfle, 1995). For instance, H(s) as
defined in (2) is a transfer function for a system of com-
mensurate order. More examples of practical fractional
differential systems of commensurate order can be found in
(Beyer and Kempfle, 1995; Vinagre et al., 1998; Chauchois
et al., 2003). The inverse Laplace transform of such sys-
tems involve special functions (for definition and notations
see Miller and Ross, 1993).

It was shown in (Francis and Wonham, 1976) that the
purpose of the internal model is to supply closed-loop
transmission zeros which cancel the unstable poles of the
disturbance and reference signals. But unfortunately the
notion of zero-pole cancellation in fractional case (e.g.,
in dealing with transfer functions like (2), (4), or (6)) is
much more different from the integer case. Note that unlike
the integer case, if A(s) and B(s) are two fractional-order
polynomials (see Definition 1) with the same zeros, then
in general we cannot conclude that A(s)/B(s) is equal to
a constant value, i.e. a zero does not necessarily cancel
the same pole. For example, consider A(s) = s1/2 − 1 and
B(s) = s1/3−1. Both A and B have only one zero at s = 1
(see Proposition 3), but

A(s)
B(s)

=
s1/2 − 1
s1/3 − 1

=
(s1/6 − 1)(s1/3 + s1/6 + 1)

(s1/6 − 1)(s1/6 + 1)

=
s1/3 + s1/6 + 1

s1/6 + 1
6= constant.

This example shows the need for a modified explanation
of the existing internal model principle which is discussed
in this paper. The aim of this brief is not to propose
a controller synthesis algorithm but only to provide the

necessary and sufficient conditions needed for perfect com-
mand tracking and disturbance rejection in fractional case.

The rest of this paper is divided to four sections. Problem
preliminaries are presented in Section 2. Theorems 8 and
9 are the main results of this paper which provide the
necessary and sufficient conditions for perfect command
tracking and disturbance rejection for fractional systems
under consideration. These two theorems are studied in
Section 3. Two illustrative examples are presented in
Section 4 and finally, Section 5 contains the conclusion.

2. PRELIMINARIES

2.1 Problem Prerequisites

Before introducing the main problem, some definitions
and notations are provided. For simplicity, the “fractional
system of commensurate order” will be addressed by
“fractional system” in the rest of this paper.
Definition 1. The function

Q(s) = a1s
q1 + a2s

q2 + . . . + ansqn , (7)
is a fractional-order polynomial if and only if qi ∈ Q+ ∪
{0}, ai ∈ R, i = 1 . . . n, where Q+ and R stand for
the sets of positive rational numbers and real numbers,
respectively.
Definition 2. Consider the fractional-order polynomial

Q(s) = a1s
α1
β1 + a2s

α2
β2 + . . . + ans

αn
βn , (8)

where
ai ∈ R, αi ∈ N ∪ {0}, βi ∈ N,

and αi, βi are relatively prime for i = 1, . . . , n and N is
the set of natural numbers. (If for some i, αi = 0 then
by definition βi = 1.) Let λ be the least common multiple
(lcm) of β1, β2, . . . , βn denoted as λ = lcm{β1, β2, . . . , βn}.
Then

Q(s) = a1s
λ1
λ + a2s

λ2
λ + . . . + ans

λn
λ (9)

= a1(s
1
λ )λ1 + a2(s

1
λ )λ2 + . . . + an(s

1
λ )λn . (10)

Now the fractional degree (fdeg) of Q(s) is defined as
fdeg{Q(s)} = max{λ1, λ2, . . . , λn}.
The domain of definition for (10) is a Riemann surface
with finite number of Riemann sheets (λ sheets here)
where origin is a branch point (of order λ − 1) and the
branch-cut is assumed at R− (LePage, 1961). Note that
the fractional-order polynomial and the fractional degree
as defined above reduce to the conventional concepts of
polynomial and the degree of a polynomial when λ = 1.
The following proposition gives the roots number for a
fractional algebraic equation.
Proposition 3. Let Q(s) be a fractional-order polynomial
with fdeg{Q(s)} = n. Then the equation Q(s) = 0 has
exactly n roots on the Riemann surface.

Proof. Consider
Q(s) = a1(s

1
v )n +a2(s

1
v )n−1 + . . .+an(s

1
v )1 +an+1, (11)

for an appropriate v ∈ N. Assuming w := s
1
v , we have

Q̃(w) = a1w
n + a2w

n−1 + . . . + anw + an+1. (12)
The fundamental theorem of algebra gives n roots for
Q̃(w) = 0, say w1, w2, . . . , wn. Consequently, Q(s) = 0
has n roots at s1 = wv

1 , s2 = wv
2 , . . . , sn = wv

n.
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Note that the zeros of a fractional-order polynomial are
distributed on a Riemann surface the location of which can
be easily calculated using the above change of variable. If
the power of any term of (7) be an irrational number, then
the equation Q(s) = 0 will have infinite number of roots.
For example, consider the fractional-order equation

sπ + 1 = 0, (13)

the roots of which are sk = ej(2k+1) for every k ∈ Z. All
these roots are distinct because if for some k1, k2, n ∈ Z
we have

∠sk2 − ∠sk1 = (2k2 + 1)− (2k1 + 1) = 2nπ, (14)
(i.e., if sk2 is the same as sk1) then necessarily k2−k1 = nπ
which is in contradiction with our first assumption that
k1, k2 are integer numbers. Obviously, the roots of (13)
are distributed on a Riemann surface with infinite number
of Riemann sheets. In the rest of this paper, the symbol
C+ is used to denote the closed right-half plane (CRHP)
of the first Riemann sheet.

In the following we study the notion of zero-pole cancel-
lation for fractional systems with deeper analysis. It is a
common practice to consider the transfer function of a
fractional-order process as

G(s) =
b0s

m
v + b1s

m−1
v + . . . + bq−1s

1
v + bq

s
n
v + a1s

n−1
v + . . . + ap−1s

1
v + ap

, (15)

where the parameter v is the smallest integer that allows
interpreting G in this form. The above form is of great
significance especially for identification purposes. For ex-
ample, if one does an identification with the precision of
two digits then v is equal to 100. Note that assuming
rational numbers for the powers of the Laplace variable s is
not a loss of generality because in practice all numbers are
stored with a limited precision in computer and moreover,
one can find a rational number in the vicinity of any real
number. When one interprets a fractional-order transfer
function in the form of (15) the number of poles and zeros
may artificially be increased. For example, consider the
transfer function

G(s) =
s1/2 − 1
s1/3 − 1

,

which according to Proposition 3 has only one pole and
one zero. This transfer function can be represented in the
equivalent form

G(s) =
s3/6 − 1
s2/6 − 1

,

which is in the form of (15). This equivalent representation
has 2 poles and 3 zeros. So, the question is what happens
when one represents a fractional-order polynomial like

Q(s) = (s
1
v )n + a1(s

1
v )n−1 + . . . + ap, (16)

in the equivalent form

Q(s) = (s
1

kv )kn + a1(s
1

kv )k(n−1) + . . . + ap. (17)
According to Proposition 3, Q(s) in (16) has n zeros which
are distributed on v Riemann sheets while Q(s) in (17) has
kn zeros which are distributed on kv Riemann sheets. It
can be shown that in the latter case, the second, the third,
. . . , the k’th set of v successive Riemann sheets are copies
of the first v successive sheets. For example, the location of
poles and zeros on the first, (v +1)’th, . . . , (k− 1)v +1’th
sheets are the same.

Definition 4. The fractional-order polynomial

Q(s) = a1s
n
v + a2s

n−1
v + . . . + ans

1
v + an+1,

is minimal if fdeg{Q(s)} = n.

In the rest of this paper, it is assumed that all fractional-
order polynomials are minimal unless it is mentioned
explicitly. This ensures that there is no redundancy in the
number of Reimann sheets. In the same manner, when
it is referred to the poles (zeros) of a fractional-order
transfer function it is assumed that the fractional-order
polynomial in denominator (numerator) is in its minimal
form. Obviously, rewriting (16) in the form of (17) will
not change the basic properties of the system (such as
stability) because they are determined by the poles and
zeros on the first Reimann sheet. In order to proceed
with resolving the problem of zero-pole cancelation in
the fractional case, we need to introduce the following
definition.
Definition 5. Consider two fractional-order polynomials
F (s) and G(s). In general, we can interpret F (s) and G(s)
as F (s) = sαF1(s) and G(s) = sβG1(s) where α, β ∈ Q ∪
{0}, and F1(s), G1(s) are two fractional order polynomials
such that F1(0) 6= 0 and G1(0) 6= 0. We say F (s) contains
G(s) if the following two conditions are satisfied:

(1) The roots of the equation G1(s) = 0 be the subset of
the roots of the equation F1(s) = 0, i.e. G1(s0) = 0
for every s0 such that F1(s0) = 0.

(2) α > β − 1.

The following lemma attests that the ratio of two frac-
tional order polynomials with identical zeros is analytic at
those zeros.
Lemma 6. Consider the fractional-order polynomials A(s)
and B(s) which can be represented as

A(s) =
m∏

k=1

(s1/q1 − s
1/q1
k )

n∏

k=m+1

(s1/q1 − s
1/q1
k ),

and

B(s) =
m∏

k=1

(s1/q2 − s
1/q2
k ),

where s1, . . . , sn are non-zero constants such that <{si} ≥
0, i = 1, . . . , n 1 . Obviously, A(s) and B(s) have zeros
at {s1, . . . , sn} and {s1, . . . , sm}, respectively. Then the
function A/B is analytic at s1, . . . , sm.

Proof. Assuming v = lcm{q1, q2} we can write

A(s) =
m∏

k=1

(sp1/v − s
p1/v
k )

n∏

k=m+1

(sp1/v − s
p1/v
k ),

and

B(s) =
m∏

k=1

(sp2/v − s
p2/v
k ),

for appropriate chosen constants p1 and p2. It is now
sufficient to show that

sp1/v − s
p1/v
k

sp2/v − s
p2/v
k

,

1 No matter which branch of s
1/q1
k

or s
1/q2
k

is considered.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

366



Fig. 2. The connection corresponding to Theorem 8 where
L stands for the open-loop transfer function CG

is analytic at s = sk (i = 1, . . . ,m). By expanding the
fractional-order polynomials in numerator and denomina-
tor one finds

s
p1
v − s

p1
v

k

s
p2
v − s

p2
v

k

=
s

1
v − s

1
v

k

s
1
v − s

1
v

k

×

s
p1−1

v + s
p1−2

v s
1
v

k + . . . + s
1
v s

p1−2
v

k + s
p1−1

v

k

s
p2−1

v + s
p2−2

v s
1
v

k + . . . + s
1
v s

p2−2
v

k + s
p2−1

v

k

,

or

s
p1
v − s

p1
v

k

s
p2
v − s

p2
v

k

=
s

p1−1
v + s

p1−2
v s

1
v

k + . . . + s
1
v s

p1−2
v

k + s
p1−1

v

k

s
p2−1

v + s
p2−2

v s
1
v

k + . . . + s
1
v s

p2−2
v

k + s
p2−1

v

k

,

which is analytic at s1, . . . , sm.

Notice that in Lemma 6, the fractional order polynomials
A and B are defined on two Riemann surfaces with differ-
ent number of sheets but both have zeros at s1, . . . , sm. It
is also obvious that fdeg{A} = n > fdeg{B} = m.

2.2 Notion of Stability

In the fractional case, the notion of stability is different
from the integer case. Interesting result is that a stable
fractional system may have root(s) in the RHP of simple
complex plane. For instance, a system with characteristic
equation s2 + s

3
2 + s + 11s

1
2 + 10 = 0 has roots equal

to −3 ± j4, 4, 1 for which the last two are in the RHP
but this system is stable (Uraz, 1979). The following
theorem addresses the stability problem for fractional case
(Matignon, 1998, 1996).

Theorem 7. Letting w := s
1
v in (15), the fractional-order

transfer function G(s) = N(s)/D(s) is BIBO stable if and
only if the following condition is satisfied in w-plane:

| arg σ| > π

2v
, ∀σ ∈ C, D(σ) = 0. (18)

This condition is equivalent to the closed-loop system have
no pole in the CRHP of the first Riemann sheet, i.e. in C+.

3. INTERNAL MODEL PRINCIPLE FOR
FRACTIONAL-ORDER SYSTEMS

The following theorem provides the necessary and suffi-
cient conditions needed for tracking the command signal
without steady-state error for fractional case. In what fol-
lows, the disturbance is assumed to be zero for simplicity.
Theorem 8. Consider the closed-loop system of Fig. 2
which is assumed to be BIBO stable. All poles of R(s)
are in C+. Consider L = P/Q and R = N/D where (P, Q)
and (N, D) are relatively prime. Then e → 0 if and only if
Q contains D.

Proof. (⇒) With straight calculations on finds

E(s) =
1

1 + L(s)
R(s) =

Q(s)
Q(s) + P (s)

N(s)
D(s)

.

Considering Q(s) = sαQ1(s) and D(s) = sβD1(s) where
α, β ∈ Q+ ∪ {0}, and D1(0) and D2(0) both are non-zero
finite numbers, it follows that

E(s) =
sαQ1(s)

Q(s) + P (s)
N(s)

sβD1(s)
. (19)

According to Lemma 6, E(s) has no singularity in C+

because Q contains D and Q(s) + P (s) is stable. Since
β−α < 1 it is concluded from (Miller and Ross, 1993) that
e(t) is a bounded function of time. Applying the final-value
theorem one finds

lim
t→∞

e(t) = lim
s→0

s
Q1(s)

Q(s) + P (s)
N(s)
D1(s)

sα−β

= lim
s→0

Q1(s)
Q(s) + P (s)

N(s)
D1(s)

sα−β+1

= 0.

Note however that s = 0 is a branch point of E(s) and it
is a well-known result that a multi-valued function has no
limit at its branch point (LePage (1961)). See Appendix A
for the possibility of applying the final-value theorem in
this case.

(⇐) Suppose e → 0. It then follows that E(s) has no pole
in C+. Then it is concluded from (19) that Q1(s0) must
be equal to zero for every s0 in C+ such that D1(s0) = 0.
Now the final-value theorem results in

lim
s→0

s
sαQ1(s)

Q(s) + P (s)
N(s)

sβD1(s)
= 0,

which yields
1 + α− β > 0. (20)

Thus Q(s) must contain D(s). This completes the proof.

As a result of the above theorem, the closed-loop system
of Fig. 1 will track the command signal

r(t) = tnu(t), (21)
without steady-state error only if the term sα(α > n)
exists in the denominator of L(s).

The following theorem provides the necessary and suffi-
cient conditions needed for perfect disturbance rejection.
Theorem 9. Consider the closed-loop system of Fig. 1
which is assumed to be BIBO stable and moreover, r = 0.
All poles of D(s) = L{d(t)} are in C+. Let us assume
C = PC/QC , G = PG/QG, and D = N/D where
(PC , QC), (PG, QG), and (N, D) are relatively prime. Then
y → 0 if and only if PGQC contain D.

Proof. A proof similar to the one presented for Theorem
8 can be provided.

4. EXAMPLES

Two illustrative examples are presented in this sec-
tion. Simulations are performed by approximating the
fractional-order transfer function under consideration with
an integer-order one. Such an approximation can be well
done in MATLAB environment using the function invfreqs.
See also (Vinagre et al., 2000) for more details and other
possibilities.
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Fig. 3. The closed-loop system response to (a) step com-
mand, and (b) step disturbance corresponding to Ex-
ample 4.1

4.1 Example 1

This example shows the application of a fractional element
for command tracking and disturbance rejection when the
plant is of integer order. Consider the closed-loop system
of Fig. 1 with

G(s) =
3

s− 1
.

Let the controller be a fractional integrator with transfer
function

C(s) =
1

s1/2
.

This transfer function is obtained by trial and error in or-
der to reach closed-loop stability. In fact, the characteristic
equation of the closed-loop system is s3/2 − s1/2 + 3 = 0
which satisfies the BIBO stability condition given in (18).
Note that according to Theorem 8 a bit integration in a
stable loop suffices for tracking the step command without
steady-state error. It is also evident from Theorem 9 that
this system can perfectly reject the step disturbance.

Figure 3(a) shows the step response of the closed-loop
system when d = 0. As expected, error tends to zero.
The closed-loop system response to the step disturbance
(when r = 0) is shown in Fig. 3(b) which goes to zero
when t →∞.

4.2 Example 2

Consider the closed-loop system of Fig. 1 with

G(s) =
1

s1/2 + 1
,

and
C(s) =

1
s4/3

.

The characteristic equation of this system is
s11/6 + s8/6 + 1 = 0,

which satisfies the BIBO stability condition given in (18).
Let this system be subjected to a ramp input. Using the
notation of Theorem 8 one finds

Fig. 4. The closed-loop system response to (a) step, and
(b) ramp command corresponding to Example 4.2

Fig. 5. The closed-loop system response to (a) step, and
(b) ramp disturbance corresponding to Example 4.2

α =
4
3
, β = 2.

Since (20) is satisfied, it is concluded from Theorem 8
that this system will track the ramp (and consequently,
the step) command without steady-state error. It is also
concluded from Theorem 9 that the ramp disturbance
will be completely rejected. Figures 4(a) and 4(b) show
the responses of the closed-loop system to step and ramp
commands, respectively when d = 0. As expected, there
is no steady-state error. The system responses to step and
ramp disturbances (assuming r = 0) are illustrated in Figs.
5(a) and 5(b), respectively which tend to zero as expected.

5. CONCLUSION

The necessary and sufficient conditions for perfect com-
mand tracking and disturbance rejection are developed
for certain class of fractional-order systems. The notion
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of zero-pole cancellation is also studied in a well-posed
mathematical framework for the systems under consider-
ation and two theorems are presented. Two illustrative
examples are studied which confirm the effectiveness of
the proposed theorems.
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Appendix A. THE FINAL-VALUE THEOREM FOR
FRACTIONAL CASE

Here, we show that the final-value theorem is applicable
when there is a branch point at s = 0. Assume that
F (s) = L{f(t)} is a multi-valued function of s with a
branch point at s = 0. Then∫ ∞

0

f ′(t)e−stdt = sF (s)− f(0). (A.1)

Now, let s tend to zero in the direction of positive real
axis:

lim
s→0

∫ ∞

0

f ′(t)e−stdt = lim
s→0

[sF (s)− f(0)]. (A.2)

Since the Laplace integral is uniformly convergent we can
change the order of limit and integral:∫ ∞

0

lim
s→0

[f ′(t)e−st]dt = lim
s→0

[sF (s)]− f(0), (A.3)

which implies that∫ ∞

0

f ′(t)dt = f(∞)− f(0) = lim
s→0

[sF (s)]− f(0), (A.4)

or
f(∞) = lim

s→0
[sF (s)]. (A.5)
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