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Abstract: In this paper, the new approach for identification of synchronous generator using nonlinear 

feedback model and with piecewise linear map is investigated. In this method, synchronous generator 

model consists of a linear-dynamic block in forward path and a nonlinear-static block in feedback path. 

The identification method simultaneously approximates these blocks without requiring prior assumptions 

on the form of the static non-linearity. In this study, the field voltage is considered as the input and the 

active output power and the terminal voltage are considered as the outputs of the synchronous generator. 

The proposed method has been tested on a synchronous machine. Experimental results show good 

accuracy of the identified model. 

1. INTRODUCTION 

With the increased complexity of the modern interconnected 

power systems, analysis of the dynamic performance of such 

systems has become very important. For the analysis of the 

dynamic performance and stability of the system, a valid 

dynamic model is a basic requirement. For this reason, 

identification and modeling of different parts of the power 

systems, has attracted many researchers.  

Synchronous generators play a very important role in the 

stability of the power systems. A valid model for 

synchronous generators is essential for a valid analysis of 

stability and dynamic performance. Almost three quarters of 

a century after the first publications in this area (Kilgore, 

1931 and Wright, 1931), the subject is still a challenging and 

attractive research topic. 

The traditional methods of modeling of synchronous 

generators are well specified in IEEE standards (IEEE 

Standard 115-1995). These methods assume a known 

structure for the synchronous machine, using well-established 

theories like Park transformation. They address the problem 

of finding the parameters of the known structure. Usually the 

procedures involve difficult and time-consuming tests. These 

approaches include short-circuit tests, standstill frequency 

response (SSFR) and open circuit frequency response 

(OCFR) (Karrari et al., 2005). These tests can mainly be 

carried out when the machine is not in service. 

To overcome the shortcomings of the traditional methods, 

identification methods based on on-line measurements have 

gained attention during the recent years (Melgoza et al.,

2001a, b, Lai et al., 1996, Karrari et al., 2005, Shamsoollahi 

et al., 1996, and Sadabadi et al., 2007). These methods can be 

divided into two categories. In the first category (Melgoza et 

al., 2001a, b, and Lai et al., 1996), assuming a known 

structure for the synchronous machine (as the traditional 

methods), the physical parameters are estimated from on-line 

measurements. The second category (Karrari et al., 2005, 

Shamsoollahi et al., 1996, and Sadabadi et al., 2007) deals 

with black-box modeling of synchronous generators using 

input-output data. In the black-box modeling the structure of 

the model is not assumed to be known a priori. The only 

concern is to map the input data set to the output data set. 

System identification using linear model structures has been 

extensively developed and many good approaches are 

available (Ljung, 1999). In practice, however, all real systems 

such as synchronous machines possess some non-linearity, 

and this non-linearity can degrade the effectiveness of linear 

system identification methods. Accordingly, there has been 

significant effort during the past several decades to develop 

techniques for nonlinear system identification and many 

different approaches, like Nonlinear Least Squares, Volterra 

series, Weiner series, Wavelets, Neural networks, Fuzzy logic 

and Genetic algorithm have been developed for identification 

of nonlinear systems. A survey of techniques prior to the 

1980s is given in (Billings, 1980). A good recent review of 

the nonlinear identification approaches can be found in 

(Nelles, 2001). 

In this paper, the aim is to identify a nonlinear black-box 

model for a synchronous generator using nonlinear feedback 

model. Nonlinear feedback model consists of a linear-

dynamic block in forward path and a nonlinear-static block in 

feedback path (Pelt et al., 2001). One of the key components 

of our approach is the use of piecewise linear approximations 

for the static non-linear blocks. Such models for synchronous 

generators can be used for system analysis and controller 

design, especially designing power systems stabilizer (PSS) 

(Karrari et al., 2005). 
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Fig. 1. Nonlinear feedback model 

Fig. 2. Parameterization of the piecewise linear function 

The paper is organized as follows: In Section 2, the 

identification method is described. In this Section, first the 

nonlinear feedback model, then point-slope parameterization 

for piecewise linear functions and finally the identification 

method are introduced. Section 3 describes the model of the 

system. Experimental setup and data collection on a micro-

machine are discussed in Section 4. In Section 5, the 

application of the proposed method is carried out on the 

micro-machine and the experimental data is compared with 

the simulated nonlinear model of the synchronous generator. 

Section 6 concludes the paper. 

2. IDENTIFICATION METHOD 

2.1  Nonlinear Feedback Model 

Consider the single-input single-output nonlinear feedback 

model shown in Fig. 1., where )(ku is the input and )(ky is 

the output of model. This model consists of a linear time-

invariant (LTI) block and the static non-linearities 

���:0h .

The LTI block is represented by the n
th

 order strictly proper 

transfer function. 
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where 1�q is the backward shift operator. The output )(ky is 

given by 

 

)))(()(()()( 0
1 kyhkuqAky �= � (2) 

2.2  Parameterization of piecewise linear functions 

The 0h block can be approximate by a continuous piecewise 

linear function h . To represent these functions, the 

parameterization illustrated in Fig.2 is used. 

This parameterization is characterized by the function value 

)( rch=� and the slope parameters 121 ,...,, +pµµµ defined 

over a partitioning ),[...,,],[,],( 211 ��� pcccc of the 

domain of h (Pelt et al., 2001). Let pccc <


<< 21 be real 

numbers, let 
T

pccc ][ 1 


= be the partition of the domain of 

h, let ��+=�� �µ ,1,,1, pii K and let },...,1{ pr� be 

the primary index at which the value )( rch=� is specified. 

Then h is represented by 
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By defining the slope vector  

1
11 ]...[ +

+ ��=
pT

pµµµ (5) 

)(yh can be written as (Pelt et al., 2001) 

��µ += )()( yyh T (6) 

where 
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2.5  Nonlinear Feedback Model Identification 

Consider the nonlinear feedback model in (2). The output 

)(ky , using the piecewise linear approximation h of h0, is 

then given by  

 

)))(()(()()( 1 kyhkuqAky �= � (10) 

which has the time series representation  

)()1())((

))(()()1()(

1

11

nkyakyankyhb

kyhbnkubkubky

nn

n

�������

���++�=

L

LL

(11) 

Noting that 

r
T
p cyy �=+ )(1 1�

(12) 

Substituting (6) into (11) yields 
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Equation The (13) can further be written as follows: 
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where 
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where 

 

)1())]((...))1(([)( +����= pnTnkykyk ����
(18) 

nT
u nkukuk ����= )](...)1([)(� (19) 

Next consider input-output measurement )(ku and )(ky for 

Nk ,,0 K= , where nN � , form the least square cost 

function 
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The model output (15) is not linear in µ,b , and � . Although 

a nonlinear least squares techniques can be used to minimize 

)(�J , we proceed by bounding )(�J . First, let )1( +�� pn
A�

and rewrite (20) as (Pelt et al., 2001) 
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By invoking the triangle inequality, we obtain (Pelt et al.,

2001) 
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where 
F

. is the Forebenius norm, ).(max" is the largest 

singular value, ).(vec  and ).(1�vec  are the column stacking 

operation and its inverse.  
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We proceed by sequentially minimizing )
~

(�LSJ and 

),,,( AA baJ �µ . To do this, first determine �
~

that minimizes 

the linear least squares cost )
~

(�LSJ (Pelt et al., 2001). 

Writing 
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Then extract A�
~

and b̂ from �
~̂

and minimize 

)ˆ,ˆ,,( AA baJ �µ . Assuming that 1)( ���T exists, )
~

(�LSJ is 

minimized by 
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and thus the minimum value of )
~

(�LSJ is given by (Pelt et 

al., 2001) 
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The estimates of â and v̂ that minimize )ˆ,ˆ,,( AA baJ �µ are 

given by (Pelt et al., 2001) 
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for an arbitrary stability parameter# . Furthermore, �̂ is 

given (Pelt et al., 2001) 
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The piecewise linear least squares identification with a 

nonlinear feedback model is summarized as follows: 

1- Collect input-output measurements )(ku and 

,,,0;)( Nkky K= where nN � .

2- Form the regression matrix � and output vector Y in the 

equations (22) and (21). 

3- Obtain �
~̂

by solving the linear least squares problem 

given by (29). 

4- Extract A�
~

and b̂ from �
~̂

.

5- Set the parameter # .

6- Compute the parameter estimates â , v̂ , and �̂ using 

equations (31), (32), and (33). 

3. SYSTEM MODEL 

In most papers dealing with identification of a synchronous 

generator, a mathematical model of the system is given. The 

model is required either for estimation of its parameters or is 

used in simulation studies to obtain a typical input-output 

data. In this paper, the model presented for synchronous 

generator is obtained using a practical experiment on a micro-

machine. The micro-machine can represent dynamic response 

of much larger synchronous machines when the parameters 

and variables are considered in a normalized version (per unit 

system) (Kundur, 1994). 

Synchronous generator models are given in many papers and 

textbooks (Kundur, 1994). It is clear from the structures that 

a synchronous generator is a nonlinear system. If some 

practical nonlinearities, such as the magnetic saturation of the 

stator and rotor iron (which are usually ignored for 

simplicity) are considered, the system shows highly nonlinear 

properties. Therefore, a physical synchronous machine, a 

micro-machine in this case, represents a good challenge for 

any system identification technique. 

The inputs of a synchronous generator are the field voltage 

( fv ) and the mechanical torque. Since the mechanical torque 

is not easily measurable and controllable, usually the field 

voltage is chosen as the main input of the system for 

identification and control. Here the field voltage ( fv ) was 

chosen as the input of the system. The outputs of the system 

are electrical power (P) and terminal voltage ( tv ). 

4. EXPERIMENTAL SETUP AND DATA COLLECTION  

The system under consideration is a 3 kVA, 208 V, 3 phase 

micro-machine, driven by a DC motor. The main problem 

with a micro-machine can be the field time constant, which is 

much lower than that of larger machines. This problem has 

been overcome using a time constant regulator, which is used 

to increase the effective field time constant of the 

synchronous machine to match that of larger units. 

The experimental setup used for the experiment is shown in 

Fig. 3. The synchronous generator is driven by a DC motor. 

The exciting input signal is applied to the synchronous 

machine through a D/A converter. The field voltage, terminal 

voltage and the electrical power are measured and sampled 

by the data acquisition system. The machine is connected to a 

constant voltage bus by a doubly circuit transmission line 

modeled by lumped elements. Each circuit consists of six $
sections and simulates the performance of a 300 kV long 500 

kV transmission line.   
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Fig. 3. Experimental setup for the micro-machine 

 

The sampling time was selected to be 50 ms. This sampling 

time proved to be fast enough to capture the required 

dynamics.  

In this experiment, a pseudo random binary sequence (PRBS) 

input was applied on the field voltage. The operating 

condition was selected to be P=0.6 p.u., tv =1.2 p.u. In this 

experiment, the field voltage was changed from =fv 1.057 

p.u. to =fv 1.4148 p.u. 

The field voltage, terminal voltage and the electrical power 

measured from the experiments are shown in Fig. 4. 
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Fig. 4. Experimental data with a PRBS signal applied to the 

field voltage 

0 5 10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

Electrical Power                                                                time (sec)

 P
(p

.u
.)

Actual Output

Nonlinear Feedback Model Output

0 5 10 15 20 25 30 35 40 45 50
1.15

1.2

1.25

1.3

1.35

Terminal Voltage                                                               time (sec)

 V
T

(p
.u

.)

Actual Output

Nonlinear Feedback Model Output

Fig. 5. Identification results with nonlinear feedback model 

and the measured variables 
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Fig. 6. The error signals of Fig. 5 

5. SIMULATION RESULTS 

The proposed method is used to identify the nonlinear model 

of a synchronous generator described in the previous section.  
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In these simulations, a higher order linear model offers no 

improvement in fitting the nonlinear feedback model. 

Therefore, a linear model of order 2=n is considered. The 

parameters # , p, and r are non-unique. They were chosen to 

match the identified nonlinearities with the components of 

the simulated system. 

Results of the identification by the nonlinear feedback model 

with the measured variables of Fig. 4., are shown in Fig. 5. 

and Tables 1, 2. Since the system output and the model 

output are not distinguishable in Fig. 5., the error signals are 

shown in Fig. 6. As can be seen from the figures, the 

proposed method is successful in identifying the micro-

machine dynamics. 

6. CONCLUSIONS 

Nonlinear identification of synchronous generator using a 

nonlinear feedback model and with a piecewise linear map is 

described in this paper. In this method, the synchronous 

generator model consists of a linear-dynamic block in 

forward path and a nonlinear-static block in feedback path. 

The identification method simultaneously approximated the 

linear dynamic and static non-linear blocks, and did not 

require prior information about the form of the nonlinearity. 

The proposed method is classified as black-box modeling 

and, therefore, does not require a specific structure for the 

system. 

In this study, the terminal voltage and the active power are 

considered as the outputs of the system and the field voltage 

as the input of the system. Simulation results show that 

proposed method is a powerful method for the identification 

of synchronous generator. 

 

Table 1.  Nonlinear Feedback Model Coefficients (Input 

Signal: Field Voltage, Output Signal: Electrical Power) 

5.0,2,2,2 �==== #rpn

Coefficient of Linear Model: 

21

21
1
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0167.00134.0
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Coefficient of Nonlinear Model ( )(yh ): 
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Table 2.  Nonlinear Feedback Model Coefficients (Input 

Signal: Field Voltage, Output Signal: Terminal Voltage) 

5.1,2,5,2 �==== #rpn

Coefficient of Linear Model: 

21
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1

720.0391.01

015.00041.0
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Coefficient of Nonlinear Model ( )(yh ): 
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