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Abstract: This paper presents a scheme for designing a robust decentralized PI controller
for an industrial utility boiler system. First, a new method for designing robust decentralized
PI controllers for uncertain LTI MIMO systems is presented. Sufficient conditions for closed-
loop stability and diagonal dominance of a multivariable system are given. For each isolated
subsystem a first order approximation is obtained. Then, achieving robust stability and closed-
loop diagonal dominance is formulated as local robust performance problems. It is shown by
selecting time constants of the closed-loop isolated subsystems appropriately, these local robust
performance problems are solved and the interactions between closed-loop stabilized subsystems
are attenuated. The internal model control (IMC) method is used to design local PI controllers.
The suggested design strategy is applicable to unstable systems as well. Thereafter, the nonlinear
model of an industrial utility boiler is linearized about its operating points and the nonlinearity
is modeled as uncertainty for a nominal LTI MIMO system. Using the new proposed method,
a decentralized PI controller for the uncertain LTI nominal model is designed. The designed
controller is applied to the real system. The simulation results show the effectiveness of the
proposed methodology.

1. INTRODUCTION

PI controllers have shown to be robust and extremely
beneficial in control of many important applications. Ex-
tensive research has been done over tuning PID controllers
(Astrom et al. (1995)). A powerful and simple strategy
for tuning PID controllers is the internal model control
(IMC) method. This method directly shapes the closed-
loop transfer functions; such as the sensitivity and com-
plimentary sensitivity functions. The classical techniques
of frequency domain design for single-input single-output
systems can been generalized and applied to multivariable
feedback systems by Nyquist like methods (Rosenbrock
(1974)). If a good degree of diagonal dominance can be
obtained, then decentralized control with Nyquist like
methods can be very effective. Control of the interacting
multivariable systems can be realized either by centralized
MIMO controllers or by a set of SISO local controllers.
The decentralized control is more desirable from the view
point of implementation, requiring fewer parameters to
tune and loop failure tolerance of the resulting control
system. Therefore, in process control applications, more
often than not, decentralized control is used.

The Syncrude Canada, Ltd. (SCL) integrated energy fa-
cility located in Mildred Lake, Alberta utilizes a complex
header system for steam distribution. The normal plant
operation requires tracking the steam demand while main-
taining the steam pressure and the steam temperature

⋆ This research is supported by the Natural Sciences and Engineer-
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of the 6.306-MPa header at their respective set points,
despite variations of the steam load. Due to the physical
characteristics, utility boilers are used to regulate the
steam pressure (Tan et al. (2005)).

In this paper, a robust decentralize PI controller for the
utility boiler systems in SCL is designed and applied to
the real system. First, a method for robust decentralized
PI design is proposed. Sufficient conditions for closed-loop
stability and diagonal dominance under a decentralized
control are achieved. If the isolated subsystems are of
high order, first order models are first obtained. Then,
the approximation error can be modeled as multiplicative
uncertainty for each isolated subsystem. It will be shown
that achieving diagonal dominance and robust stability
can be guaranteed by solving certain local robust perfor-
mance problems to be defined. By appropriately selecting
the time constants of the closed-loop isolated subsystems,
these local problems can be solved. Then the nonlinear
model of the industrial utility boiler in SCL is linearized
about its operating points and the nonlinearity is modeled
as uncertainty for a nominal LTI system. Thereafter, based
on the decentralized robust PI controller design method
that we propose, a decentralized PI controller for the
system is designed. The resulting controller is applied to
the real system using SYNSIM to show the effectiveness
of the proposed method. SYNSIM is a simulation package
developed by Syncrude Canada with the purpose of sim-
ulating certain upset conditions and as a general tool for
stability analysis.
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The rest of this paper is organized as follows: In section 2
the problem of finding suitable local dynamical controllers
for subsystems of a linear large-scale system is presented.
In section 3 sufficient conditions for closed-loop stability
and diagonal dominance are given. These conditions are
stated in sensitivity functions of closed-loop isolated sub-
systems. In section 4 the new method for decentralized
PI controller design is given. Section 5 gives the method
for robust decentralized PI controller design. In section 6
the nonlinear model of the drum boiler system in SCL is
linearized about its operating points and the nonlinearity
is modeled as uncertainty. By solving the appropriately
defined local robust problems, a decentralized PI controller
for the system is designed. Then, the designed controller
is applied to the real system and the simulation results are
given. Finally, concluding results are given in section 7.

2. PROBLEM FORMULATION

Consider an uncertain LTI system G̃(s) with output mul-
tiplicative uncertainty as follows

G̃(s) = (I + △(s) ¯̄W 3(s))G(s), |△(jω)| ≤ 1 ∀ω, (1)

where G(s) is the nominal plant, △(s) is any stable
transfer function which at each frequency is less than or

equal to one in magnitude and ¯̄W 3(s) is the weighting
matrix which contains the frequency information for the
uncertainties. Suppose the nominal system G(s) has the
following state-space equations

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(2)

where x ∈ Rn, u ∈ Rm, y ∈ Rm, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n and D ∈ Rm×m. Assume G(s) is composed of
N linear time-invariant subsystems Gi(s), described by

ẋi(t) = Aiixi + Biiui +

N
∑

j=1j �=i

Aijxj +

N
∑

j=1j �=i

Bijuj ,

yi(t) = Ciixi + Diiui +

N
∑

j=1j �=i

Cijxj +

N
∑

j=1j �=i

Dijuj ,

(3)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rmi , Aii ∈ Rni×ni , Bii ∈
Rni×mi , Cii ∈ Rmi×ni ,

∑N

i=1 ni = n and
∑N

i=1 mi = m.

The terms
∑N

j=1j �=i
Aijxj ,

∑N

j=1j �=i
Bijuj ,

∑N

j=1j �=i
Cijxj ,

and
∑N

j=1j �=i
Dijuj are due to interactions of the other

subsystems. The objective is to design a local PI controller
given by

Ki(s) = Kci(
1 + TIis

TIis
), i = 1, ..., N, (4)

for each isolated subsystem Gii(s), described by

ẋi(t) = Aiixi(t) + Biiui(t),
yi(t) = Ciixi(t) + Diiui(t),

(5)

such that the closed-loop subsystem is stabilized and at the
same time effects of interactions of the other subsystems
and uncertainties are minimized. By this, the decentralized
controller

K(s) = diag{Ki(s)}, (6)

stabilizes the overall uncertain system given in (1) if some
sufficient conditions are satisfied.

3. CLOSED-LOOP STABILITY AND DIAGONAL
DOMINANCE

In this section, sufficient conditions for closed-loop sta-
bility and diagonal dominance of the nominal system are
obtained. To this end and in order to prove our theorems,
the transformation proposed in (Labibi et al. (2006)) is
used to transform the system given in (2) to an equivalent
descriptor system representation. It should be noted that
this representation is only for proving the related theorems
and the control design will be done for conventional iso-
lated subsystems. Since designing a dynamic controller for
a system can be converted into designing a static controller
for an augmented system, without loss of generality in this
section we assume the designed controller is a static one.

Consider the system given by equations (2). In order to
obtain an equivalent descriptor representation form, all
of the inputs and outputs of the system are defined as
state variables. Then the augmented system Ḡ(s) has the
following equations

Ē ˙̄x(t) = Āx̄(t) + B̄u(t),
y(t) = C̄x̄(t) + D̄u(t),

(7)

where
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andD̄ = 0m×m.

The transfer matrix of the closed-loop descriptor system
in (7), Ḡcl(s) is given by
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Ḡcl(s) = C̄(sE − Ā + B̄KC̄)−1B̄K + D̄ = (8)

(I + C(sI − A)−1BK + DK)−1(C(sI − A)−1B + D)K;

which is equal to T (s), the transfer matrix of system (2)
under the decentralized controller. Therefore control of
system (7) results in controlling of system (2). Defining

Ād = diag{Āii}, (9)

where

Āii =

[−I Cii Dii

0 Aii Bii

0 0 −I

]

, (10)

it is easy to show that the transfer matrices of the closed-
loop systems (E, Ād, B̄, C̄, D̄) and (Ad, Bd, Cd, Dd) under
the decentralized controller K = diag{Ki} are the same
i.e.

Td(s) = C̄P̄ B̄K = (I + Cd(sI − Ad)
−1BdK + DdK)−1

(Cd(sI − Ad)
−1Bd + Dd)K, (11)

where

P̄ = (sE − Ād + B̄KC̄)−1. (12)

Defining

H̄ = Ā − Ād, (13)

the system (E, Ād, B̄, C̄) is a block-diagonal system and
the matrix H̄ can be considered as uncertainty in the
matrix Ā.

3.1 Sufficient Conditions for Stability

The next theorem provides conditions for closed-loop
stability.

Theorem 1 Suppose the decentralized controller K sta-
bilizes the diagonal system (Ad, Bd, Cd, Dd). Then the
closed-loop original system under the decentralized con-
troller is stable if

‖P̄ H̄‖∞ < 1, (14)

where P̄ and H̄ are given in equations (12) and (13),
respectively and ‖.‖∞ is the maximum singular value of
(.).

Proof : The transfer matrix of the closed-loop system can
be written as

T (s) = C̄(I − P̄ H̄)−1P̄ B̄K. (15)

Since P̄ is stabilized by stabilizing the block-diagonal
system (Ad, Bd, Cd, Dd), then the closed-loop system is
stable if the transfer matrix (I − P̄ H̄)−1 is stable. The
transfer matrix P̄ is stable and if the Nyquist plot of
det(I − P̄ H̄) does not encircle the origin, it means if the
condition given in (14) is satisfied the closed-loop system
is stable.

The matrix

P̄ = diag{P̄i} (16)

with

P̄i = (sEi − Āii + B̄iKiC̄ii)
−1, (17)

Ēi =

[

0 0 0
0 I 0
0 0 0

]

, B̄ii =

[

0
0
I

]

andC̄ii = [ I 0 0 ] , (18)

is a block-diagonal matrix. Then the following stability
conditions

‖P̄i‖∞ < µ−1(H̄), i = 1, ..., N, (19)

where µ(.) is the maximum structured singular value of
(.), give sufficient conditions for closed-loop stability at
the subsystem level.

3.2 Sufficient Conditions for Diagonal Dominance

Theorem 2 The closed-loop nominal system given in (2)
under the decentralized controller K is diagonal dominate,
if

‖Si‖∞ <
αi

|w̄1i|
, i = 1, ..., N, (20)

where αi is a positive scalar less than one and small
enough, w̄1i(s) is the weighting function that satisfies the
following equation

|w̄1i(s)| >
√

N |(Cii(sI − Aii)
−1HABi

+ HCDi
|, (21)

Si is the sensitivity function of the i-th closed-loop isolated
subsystem,

HABi
= [ AB1 AB2 ] ,HCDi

= [ CD1 CD2 ] , (22)

AB1 = [ Ai1 Bi1 . . . Aii−1 Bii−1 0 ] ,

AB2 = [ 0 Aii+1 Bii+1 . . . AiN BiN ] ,

CD1 = [ Ci1 Di1 . . . Cii−1 Dii−1 0 ] ,

CD2 = [ 0 Cii+1 Dii+1 . . . CiN DiN ] .

Proof : The closed-loop descriptor system under decen-
tralized control has the following form

(C̄ − C̄P̄ H̄)X̄ = C̄P̄ B̄KR. (23)

If

‖C̄P̄ H̄‖∞ < ασmin(C̄), (24)

where σmin(.) is the minimum singular value of (.) and α
is a positive scalar less than one, then (Stewart (1973))

C̄ − C̄P̄ H̄ ∼= C̄, (25)

and T (s), the transfer matrix of the closed-loop system is
given by the following equation

T (s) ∼= C̃P̄ B̄K = Td(s), (26)

which is a block-diagonal transfer matrix. Based on the
definition of C̄ given in (7)

σmin(C̄) = 1, (27)

which means that by minimizing ‖C̄P̄ H̄‖∞ such that
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‖C̄P̄ H̄‖∞ < α, (28)

the closed-loop system is diagonal dominant. We know

‖C̄P̄ H̄‖∞ ≤
√

N‖C̄iiP̄iH̄i‖∞, i = 1, ..., N, (29)

(Skogestad et al.(2005)) with

H̄i = [ Hi1 Hi2 ] , Hi1 =

[

0 Ci1 Di1 . . . 0 Cii−1 Dii−1 0 0
0 Ai1 Bi1 . . . 0 Aii−1 Bii−1 0 0
0 0 0 . . . 0 0 0 0 0

]

,

Hi2 =

[

0 0 Cii+1 Dii+1 . . . 0 CiN DiN

0 0 Aii+1 Bii+1 . . . 0 AiN BiN

0 0 0 0 . . . 0 0 0

]

.

Denoting

Si = (I + Cii(sI − Aii)
−1BiKi + DiiKi)

−1, (30)

as the sensitivity function of the i-th closed-loop isolated
subsystem, it can be shown that

C̄iiP̄iH̄i = Si(Cii(sI − Aii)
−1HABi

+ HCDi
). (31)

Therefore by defining w̄1i as given in equation (21) by sat-
isfying equations (20), the closed-loop system is diagonal
dominant with the degree α = max{αi}. It follows that by
designing local controllers such that

‖w̄1iSi‖∞ < αi, i = 1, ..., N, (32)

with αi small enough, the closed-loop system is block-
diagonal dominant. In fact the transfer matrix of the closed
loop system is given as

T (s) = C̄P̄T B̄K = C̄P̄ H̄(I − P̄ H̄)−1P̄ B̄K + C̄P̄ B̄K

= C̄P̄ H̄P̄T B̄K + C̄P̄ B̄K, (33)

with

P̄T = (sE − Ā + B̄KC̄)−1. (34)

Let C̄+ denotes the pseudoinverse of C̄ because for the
system given in (7) ‖C̄+‖∞ = 1

σmin(C̄)
= 1, then by

designing a decentralized controller such that ‖C̄P̄ H̄‖∞ <
α, we have

‖C̄P̄ H̄P̄T B̄K‖∞ ≤ ‖C̄P̄ H̄‖∞‖C̄+C̄P̄T B̄K‖∞
≤ ασmin(C̄)‖C̄+‖∞‖C̄P̄T B̄K‖∞‖ = αT (s). (35)

On the other hand from equation (33) we have

C̄P̄ B̄K = T (s) − C̄P̄ H̄P̄T B̄K, (36)

then

‖C̄P̄ B̄K‖∞ ≥ ‖T (s)|∞ − ‖C̄P̄ H̄P̄T B̄K|∞
≥ (1 − α)‖T (s)‖∞. (37)

Considering equations (33), (35) and (37) we observe by
selecting α small enough α < 0.5, the norm of the block-
diagonal transfer matrix C̄P̄ B̄K is larger than the norm
of the transfer matrix C̄P̄ H̄P̄T B̄K . It means the block-
diagonal transfer matrix C̄P̄ B̄K highlights the transfer
matrix of the overall system and it is a kind of closed-
loop block-diagonal dominance. Then the stability and

performance of the system which is diagonal dominant can
be inferred directly from the stability and performance
of the block-diagonal transfer matrix Td(s) = C̄P̄ B̄K
(Rosenbrock (1974)).

4. DECENTRALIZED PI CONTROLLER DESIGN

In this section a new method for decentralized PI controller
design is given. Before doing so, however we revisit the
SISO PI design problem.

4.1 SISO PI Design using Internal Model Control Method

In designing a PI controller for a SISO system approx-
imation of high order processes by first order models
is a common practice. Once an approximated model is
obtained a PI controller based on IMC method can be
designed. Even though many industrial processes meet the
assumptions sufficiently to be modeled with a first order
model, there do exist many plants which can not be well
approximated by the first order systems. In order to avoid
instability due to approximation, in this paper the error
of approximation is considered as multiplicative uncer-
tainty for isolated subsystems. Then designing a local PI
controller can be converted into solving an appropriately
defined local robust performance problem. The strategy is
described in the following subsection.

4.2 Decentralized PI Controller Design

In this subsection a new tuning criterion for MIMO PI con-
trollers is proposed. The next theorem gives the method-
ology.

Theorem 3 Consider the i-th isolated subsystem which
is approximated with a first order model and the approx-
imation error is considered as multiplicative uncertainty
weight w̄3i(s). Then the closed-loop MIMO system can be
stabilized if τci

for the i-th isolated closed-loop subsystem
is selected such that

‖| 1

αi

w̄1i(s)
τci

s

τci
s + 1

| + |w̄3i(s)
1

τci
s + 1

|‖∞ < 1. (38)

Proof: By designing a local PI controller for the i-th
isolated subsystem by an IMC based method, the i-th
closed-loop subsystem has the following sensitivity and
complementary sensitivity functions respectively (Skoges-
tad et al. (2005))

Si =
τci

s

τci
s + 1

, Ti =
1

τci
s + 1

. (39)

In order to attenuate the interactions between subsystems
by local controllers, the sensitivity functions of each iso-
lated subsystem should satisfy condition (20). This condi-
tion can be considered as a nominal performance problem.
If the isolated subsystem can not be approximated suf-
ficiently well by a low order model, the modeling error
may be considered as multiplicative uncertainty given by
weighting function w̄3i(s). The i-th approximated closed-
loop isolated subsystem is stable if and only if (Skogestad
et al. (2005))
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‖Ti(s)w̄3i(s)‖∞ < 1. (40)

The i-th sensitivity and complementary sensitivity func-
tions should satisfy the conditions given in (20) and (40)
respectively to have diagonal dominance (nominal perfor-
mance) for the overall system and robust stability for the
subsystems. This is a robust performance problem for the
isolated subsystems. Then by considering definitions given
in (39) the closed-loop system is diagonal dominant if the
local robust performance problems given in (38) are solved.

According to the theorem, by selecting appropriate values
for τci

’s and αi to solve local problems (38) the closed-loop
diagonal dominance is guaranteed.

5. ROBUST DECENTRALIZED PID CONTROL

Consider the uncertain system given in (1). The uncer-
tainty is modeled as diagonal multiplicative output un-
certainty (In this section without loss of generality we
consider multiplicative output uncertainty. It is clear the
same result can be obtained for multiplicative input uncer-
tainty as well.). The closed-loop uncertain system is robust
stable if and only if for multiplicative output uncertainty
(Skogestad et al. (2005))

‖ ¯̄W 3T‖∞ < 1 (41)

where ¯̄W 3(s) = diag{ ¯̄w3i(s)} is a diagonal matrix rep-
resenting multiplicative uncertainty of the system. If the
closed-loop system is diagonal dominant with a good de-
gree of diagonal dominance, then with a good approxima-
tion T (s) ∼= Td(s) and the performance of the closed-loop
system can be inferred from the block-diagonal part of
the transfer matrix. We can show by solving the robust
stability problem

‖ ¯̄W 3Td‖∞ < 1, (42)

or equivalently by solving local robust stability problems

‖ ¯̄w3iTi‖∞ < 1, (43)

the condition given in (41) can be satisfied.

Now, suppose the objective is to design a robust decentral-
ized PI controller for an uncertain plant with multiplica-
tive uncertainty to solve the robust stability problem given
in equation (41). It was shown that for closed-loop di-
agonal dominance the local robust performance problems
given in (38) and for treating uncertainty in the system
the conditions given in (43) should be satisfied. Combin-
ing these conditions for designing a robust decentralized
PI controller for a MIMO system, the problem can be
converted into solving the following modified local robust
performance problems

‖|w1i(s)
τci

s

τci
s + 1

| + | w3i(s)

τci
s + 1

|‖∞ < 1, (44)

with

| w̄1i(s)

αi

| ≤ |w1i(s)|, (45)

and

max{|w̄3i(s)|, | ¯̄w3i(s)|} ≤ |w3i(s)|. (46)

Remark 1: In the conditions given in (21) at high frequen-
cies the left and right hand sides of the relation approach
to one and ‖HCDi

‖∞ respectively. Then in order to satisfy
these conditions ‖HCDi‖∞

should be less than or equal to
one. This is however not always the case. For solving this
problem, it is possible to use similarity transformations.
Since similarity transformations do not affect output feed-
back and the overall system is observable, it is possible
by using the observability matrix of the overall system
to find an appropriate transformation to transform the
original system into the output-decentralized form, where
the matrix C is block diagonal (Labibi et al. (2006)). Then
Cij = 0, i 
= j, and for strictly proper systems (D = 0)
at high frequencies the right hand side of relation (21)
approaches zero and this condition will always be satis-
fied. But for proper systems the proposed methodology is
applicable only when ‖D − diag{Dii}‖∞ is less than one.

6. UTILITY BOILER

The utility boilers in Syncrude Canada are water tube
drum boilers. Since the steam is used for generating
electricity, the demand for the steam is variable. Thus
the control objective of the system is to track the steam
demand while maintaining the steam pressure and the
steam temperature of the header at their respective set-
points. In SCL the utility boilers are used to control
the steam pressure and steam temperature. The main
objective of this paper is to design a PI controller so that
the utility boiler system keeps stability and reaches the
desired performance. In the system the principal input
variables are u1 feedwater flow rate (kg/s); u2 fuel flow rate
(kg/s); u3 attemperator spray flow rate (kg/s); and the
principal output variables are y1 drum level (m); y2 drum
pressure (kPa); y3 steam temperature 0C. For proper
function of the boiler system, steam pressure of the 6.306-
MPa header must be maintained despite variations in the
amount of steam demanded by users. The amount of water
in the steam drum must be maintained at the desired level
to prevent overheating of drum components or flooding
of steam lines. Indeed, the steam temperature must be
maintained at the desired level to prevent overheating
of the super heaters and to prevent wet steam entering
turbines (Tan et al.(2002) ).

6.1 The model

For the utility boilers in SCL a fairly accurate nonlinear
model is identified (Labibi et al. (2007)). The derived
model for the utility boiler is given as follows.

ẋ1(t) =
u1 − 0.03

√

x2
2 − (6306)2

155.1411
,

ẋ2(t) = (−1.8506 × 10−7x2 − 0.0024)
√

x2
2 − (6306)2

− 0.0404u1 + 3.025u2,

ẋ3(t) =−0.0211
√

x2
2 − (6306)2 + x4 − 0.0010967u1

+ 0.0475u2 + 3.1846u3,

ẋ4(t) = 0.0015
√

x2
2 − (6306)2 + x5
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+ 0.001u1 + 0.32u2 − 2.9461u3,

ẋ5(t) =−1.278 × 10−3
√

x2
2 − (6306)2 − 0.00025831x3

− 0.029747x4 − 0.8787621548x5

− 0.00082u1 − 0.2652778u2 + 2.491u3,

y1(t) = 0.010157116x1 + 1.8386 × 10−4
√

x2
2 − (6306)2

− 0.001u1 + 0.019814u2 − 6.1982,

y2(t) = x2,

y3(t) = x3,

qs(t) = 0.03
√

x2
2 − (6306)2.

The system works at three operating points, called low
load, normal load and high load. In addition, the following
limit constraints exist for the three control variables:

0≤ u1 ≤ 120, (47)

0≤ u2 ≤ 7, (48)

0≤ u3 ≤ 10, (49)

−0.017≤ u̇2 ≤ 0.017. (50)

The nonlinear model is linearized about its operating
points and the linear model at the normal load is consid-
ered as the nominal plant. The uncertainty in parameters
of the state space matrices can be modeled as multiplica-
tive uncertainty. By solving local robust problems given in
(38) the decentralized controller is designed as follows

K(s) =









212(1 +
1

62.2424s
) 0 0

0 0.01(1 +
1

34.67s
) 0

0 0 −0.015(1 +
1

4s
)









.

The designed controller is applied to the real non-
linear system. In order to compensate the constraints
given in (47-50) on control signals, as explained in (Tan
et al.(2005)), these constraints can be ignored at the design
stage. Then, the effects of the constraints are compensated
after the controller design using anti-windup bump-less
transfer (AWBT) techniques (Tan et al.(2005)). Applying
the designed controller with AWBT compensation to the
nonlinear system, figure 1 shows the responses of the
closed-loop system in switching from normal load to high
load. This figure shows good set point tracking of the
closed-loop system. Figure 2 shows the related control
signals and that the constraints given on control signals
are satisfied.

7. CONCLUSION

In this paper a method for robust decentralized PI con-
troller design for an industrial utility boiler is proposed.
Sufficient conditions for robust stability and diagonal dom-
inance of the overall closed-loop system are derived. These
conditions are based on sensitivity functions of closed-
loop subsystems and are formulated as local robust per-
formance problems. It is shown by appropriately selecting
the time constants of the closed-loop isolated subsystems,
these sufficient conditions are satisfied. Then for the iden-
tified model of the utility boilers in SCL a decentralized
PI controller is designed. Applying the designed controller

to the real industrial utility boiler shows the effectiveness
of the proposed method.
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Fig. 1. Switching from normal load to high load (output
signals)
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Fig. 2. Switching from normal load to high load (control
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