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Abstract: A new method is proposed for the assessment of the batch control system when the iterative
learning control is applied. Unlike the continuous process, the performance assessment of the batch
process requires particular attention to both disturbance changes and setpoint changes. Because of the
intrinsically dynamic operations and the nonlinear behavior of batch processes, the conventional approach
of the controller assessment cannot be directly applied. The bounds at each time point are derived and
computed for the controlled output variance to create simple monitoring charts. They can help tracking the
progress in each batch run to monitor the occurrence of the observable upsets. Simulation cases are used
to demonstrate the advantages of the proposed strategies.



1. INTRODUCTION

Interest in research and development of batch control based
on iterative learning control (ILC) has increased steadily
since the term, ILC, was first presented (Arimoto et al., 1984).
The control design in batch processes is quite different from
that in continuous ones. When the process is operated
continuously, there is a variety of methodologies in the
feedback control loop system to ensure closed-loop stability
and to achieve acceptable steady-state performance with
respect to setpoint and disturbance inputs. Because of the
intrinsically dynamic operations of batch processes, the
conventional approach of the controller assessment cannot be
directly applied. ILC of batch operation allows the extraction
of information from the past batches to refine the new batch
run and to improve the performance of tracking control for
product quality. ILC utilizes a feedback controller for
stabilizing the closed-loop system. It also uses a feedforward
controller for designing the transient response of the
operating profile. Numerous ILC schemes have been
developed in the past decades. They enhanced the control
performance over a fixed time interval iteratively (Chen et al.,
1997; Moore, 1993; Lucibello, 1992). The effect of ILC on a
continuous controlled system has been investigated to
improve the performance (Tan et al., 2006; Ratcliffe et al.,
2005). Comprehensive review of this topic is shown in the
references (Xu and Tan, 2003; Moore, 1993). The webpage
for iterative learning control research is linked
(http://www.ece.usu.edu/csois/ilc/ILC/index.html). However,
these control research papers focused mainly on design
strategies. They did not show how good the current controller
performance of the batch operation was in comparison with
benchmark control. If the deterioration of controller
performance cannot be identified in time, the malfunction
would cause inconsistent product quality and monetary loss.

The performance assessment of the control loop based on the
minimum variance was first presented by Harris (1989).

Several techniques using the minimum variance have been
proven useful in prioritizing the activities of process
engineers, including monitoring and assessing the controller
performance (Huang et al., 2000; Desborough & Harris 1993).
However, the controller performance of the batch operation is
influenced not only by the unmeasured disturbance but also
by the deterministic regulation which is defined by the
setpoint changes. Since the deterministic regulation is very
different from the stochastic one, their achievable
performance bounds should be separated (Isaksson et al.,
2003; Swanda and Seborg, 1999). Although there were many
research papers on assessing continuous control systems, to
our best knowledge, the assessment of the batch control
system has not been mentioned.

In this paper, two issues are addressed to assess the controller
performance of the batch operation. First, the minimum
variance performance bound is developed for batch operation
systems. The performance bound can subsequently be used
for the performance assessment of the batch system control
loop. The remaining paper is structured as follows: The
performance assessment of the control loop in the batch
operation system is defined in Section 2. In Section 3, the
performance assessment bounds of the batch control system
are derived. The effectiveness of the proposed method and its
potential applications are demonstrated through two
computer simulation problems, including a simple linear
system and a nonlinear batch reactor in Section 4. Finally,
concluding remarks are made.

2. ILC STRUCTURE OF BATCH

Suppose there is an operation of a batch run ( i ).The
feedback control structure for the batch system is shown in
Fig. 1. A discrete linear time-variant (LTV) process is used to
represent a batch operation system. Its form which is any
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linear time-invariant process governed by the transfer
function models is given by

1 1( , ) ( , ) ( , ) ( , ) ( )p wy i k G q k u i k G q k w k   (1)

where the controlled output  ,y i k at time point ( k ) can be
expressed as the sum of two terms, one for the deterministic
manipulated input (  ,u i k ) and the other for the white noise

disturbance ( w k ). The process ( 1( , )PG q k ) and the

disturbance ( 1( , )wG q k ) transfer functions vary with time.

In the block diagram of Fig. 1, when the set point (  ,spx i k )

and the disturbance ( w k ) changes occur, the output

(  ,y i k ) under closed-loop control can be obtained:

1 1 1

1 1 1 1

( , ) ( , ) ( , )
( , ) ( , ) ( , )

1 ( , ) ( , ) 1 ( , ) ( , )
spw P C

P C P C

G q k G q k G q k
y i k w i k x i k

G q k G q k G q k G q k

  

    
 

(2)

In Fig. 1, the dashed block represents lumping of all the
elements in the feedback process. The batch control system
aims not only at achieving disturbance rejection but also at
tracking the desired reference.
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Fig. 1. Block diagram of feedback control for the batch
system.

To complement this, the iterative improvement strategy in a
structure with two-degree of freedom is widely applied to
tracking errors by improving its control action estimates. In
Fig. 2, a block diagram interpretation of the ILC scheme is
shown. The dashed block in Fig. 1 denotes the feedback
process for the time-varying closed loop system at a
particular run in Fig. 2. The principle of ILC makes use of the
measurement (  ,y i k ) and the reference signal (  ,spx i k ) of
the previous batch run for control during the current batch
( 1i ) under the disturbance input ( w k ). The feedback

controller ( 1( , )cG q k ) undertakes correction based on non-
deterministic disturbances and modeling errors. The
feedforward controller ( 1( , )fG q k ) adjusts the reference
based on the modeling errors. Based on both controllers, the
new reference signal (  1,spx i k ) is designed.
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Fig. 2. The schematics of ILC with the feedback controller
( 1( , )cG q k ) and the feedforward controller ( 1( , )fG q k ).

The learning control objective is to determine the controllers,
1( , )cG q k and 1( , )fG q k , and generate an appropriate

control input time history to produce a detailed output history
through iterative trails. In minimum variance control, the
minimum variance bound of the ILC system for all batch runs
is defined as

1 1

1 1

2

( , ) ( , ) 1
( , ) ( , )

min min ( , )
c c

f f

T

G q k G q k k
G q k G q k

J E e i k
 

  

 
  

 


(3)

where ( , ) ( ) ( , )spe i k y k y i k  , T is the duration of each

batch run, and E  is the expectation operator. In the above

definition, the expected performance bound of 2( , )
k

e i k is

computed based on all batches. It is apparent that the variance
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of 2( , )
k

e i k depends on all the system controller functions,

1( , )cG q k and 1( , )fG q k . The calculation described by Eq.

(3) is also provided for examination.

3. PERFORMANCE ASSESSMENT MEASURES OF ILC

When ILC is applied to the process, the output error ( ( , )e i k )
at the time point ( k ) can be represented by

det 1 1

stochasticdeteriministic

( , ) ( ) ( , )

( , ) ( ) ( , ) ( , )

sp

sp sto

e i k y k y i k

G q k y k G q k w i k 

 

 
(4)

( , )e i k , the measurement of the output error variable at time
k for a particular batch i , is represented by a deterministic
dynamics ( det 1( , )G q k ) plus a stochastic disturbance

( 1( , )stoG q k ). The stochastic disturbance is often called the
unexplained measurement error. It is resulted from the
uncertain variations and disturbances among the lurking
variables. The deterministic dynamics, which is explainable,
is the function of ( )spy k , that keeps the mean constant

trajectory. Thus, the performance bound ( J ) in Eq. (3) can
be expressed by two parts: the stochastic effect ( DisturbanceJ )
from unmeasured disturbance in the feedback loop and the
deterministic effect ( SetpointJ ) from the desired setpoint

trajectory in the feedforward loop,

2

Setpoint Disturbance

( , )

( , ) ( , )
k

C f C f

J E e i k

J G G J G G

 
  

  
 

 (5)

To achieve the minimum bound, Eq. (5) will be

2 * *
Disturbance Setpoint

, ,
min min ( , )
C f C fG G G G

k

J E e i k J J
 

   
  
 (6)

where *
Disturbance Disturbance

,
min
C fG G

J J and

*
Setpoint Setpoint

,
min
C fG G

J J . *
SetpointJ can be identically zero

under perfect control. This means that the final output error is
zero over the whole batch duration if there is no disturbance.

Thus, the feedforward learning controller ( 1( , )fG q k ) can

be obtained

1 1
1

1 1

1 ( , ) ( , )
( , )

( , ) ( , )
P C

f
P C

G q k G q k
G q k

G q k G q k

 


 




(7)

DisturbanceJ can be regrouped into controller-invariant and
controller-dependent terms. Using the Diophantine identity,

1 1 1( , ) ( , ) ( , )d
wG q k Q q k q R q k     (8)

where Q is LTV polynomials of degree 1d  and R is a
proper LTV transfer function. After substituting the
feedforward controller (Eq. (7)) and the Diophantine identity
(Eq. (8)) into Eq. (5), the output error will come from the
disturbance only. To achieve *

DisturbanceJ , the controller
dependent term must be zero. The feedback controller
( 1( , )CG q k ) can be obtained

1
1

* 1 1

( , )
( , )

( , ) ( , )
C

P

R q k
G q k

G q k Q q k




 


(9)

where * 1( , )PG q k is the process model without any time
delay. Hence, the minimum variance (MV) of the
performance bound can be derived into

2 2

1 0

1 1
2 2 2 2

1 0 1 0

2 ( )

2 ( ) 2 ( )

T k

j w
k j

d k T d

j w j w
k j k d j

k T d

J

k k T d
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 

 
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



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



 

(10)

where ( )j k is the time-variant coefficients of the

polynominal 1( , )Q q k . Here the same variance of the
disturbance ( ( )w k ) with a normally distributed random

variable at any time and at any batch run is assumed. 2
w is

the variance of the unmeasured white noise. For the duration
of each batch run, the variances ( 2 ( )k ) at time k
represented by the MV benchmark controller can be obtained
by

2

2
02

2 1
2

0

2 ( )
( )

( )

2 ( )

k

j
je
d

w
j

j

k T d
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k T d
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
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where the signal-to-noise ratio ( 2 ( )k ) is used for simple
expression.

To detect if the current operations have deviations from the
minimum bounds, a statistical hypothesis testing approach
can be applied to the control output error at each time point.
Based on the traditional statistical process control methods,
the upper control limits (UCL), the center line (CL) and the
lower control limits (LCL) at each time point are given

( ) 3 ( )UCL k k (12)

( ) 0CL k  (13)

( ) 3 ( )LCL k k (14)
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Fig. 3. (a) The batch control chart with UCL and LCL; (b) the
distribution function at each time point whose shaded region
represents the region in control.

where 1, 2, ,k T  . Fig. 3(a) shows the control chart with
LCL and UCL is used to compare the performance of a
current control loop with that of the control loop with
benchmark controllers when the benchmark’s expected
output errors fall on CL. Fig. 3(b) shows a pictorial display of

what characteristics of the underlying distribution might be
during each time point. The shaded regions covered by the
upper and lower control limits at each operation time are also
plotted. Thus, there is no lack of the benchmark performance
when the output error falls between the control limits.
Whether the current operating data from a batch run is in
control with good performance can be determined.

4. ILLUSTRATIVE EXAMPLES

4.1 Example 1: Linear Time Invariant System

The process and the disturbance are modelled as

 
1 2

1 5
1 2

0.2 0.1

1 0.9 0.8
P

q q
G q q

q q

 
 

 




  (15)

 1
1

1

1 0.5
wG q

q





 (16)

where both models are linear time invariant. The unmeasured
noise ( w ) with zero mean and unit variance enters the
disturbance model. The reference profile used in this example
is shown in Fig 4. A feedback controller and a feedforward
one are used to control this system,

1

1

0.9062 0.6324

1
c

q
G

q


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
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

1

1
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1f

q
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






(17)
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Fig. 4. The controlled outputs for the initial designed
controllers in Example 1. The bold lines are the reference
profiles and the dotted lines represent the controlled outputs
for Batch 1, 5, 9 and 12.
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Under the initial designed controllers, the responses of the
output tracking to some batch runs are shown in Fig. 4. The
controlled output is converged after 12 batch runs. The
system under the unmeasured disturbance change seems to
have some deviation from the reference setpoint; however, it
is hard to evaluate the current performance from the batch
output response. On the basis of the given process and the
disturbance models, the minimum variance bounds for each
batch can be computed using Eqs. (11)-(14). The control
chart for the minimum variance performance bounds is used
to test the performance of the controlled output for the
batches using the controller design (Eq. (17)). Fig. 5 shows
the results of the controlled error when the controller
parameters are used. It is found that 55 out of the total 120
data points fall out of the performance bounds. This indicates
the controllers should be tuned.
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k

e/
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w

Fig. 5. The control chart with the minimum variance bounds
(marked in solid line) for evaluating the control outputs
(marked in asterisk).

4.2 Example 2: Nonlinear Batch Reactor

This example is intended to show how to evaluate iterative
learning batch controllers for a typical exothermic chemical
batch reactor. The differential equations and the parameter
values describing the reaction process are referred to Luyben
(1990). The reaction system involves two consecutive first-
order reactions:

A B C 

Two stages are run in the system. In the first (start-up) stage,
the steam in the jacket initially heats up the reactor content
until the exothermic heat of reaction is generated
significantly enough. In the second (maintenance) stage, the
cooling water in the jacket is used to remove the exothermic
heats of reaction. The reactor temperature is controlled by
two split-ranged control valves, a steam valve and a water
valve. Thus, feedback control is used to eliminate the
disturbance effect on the manipulated variables and keep the
heat requirement within the batch run. The feedforward
controller is used to modify the specified temperature profile

from one batch to another. The duration of each batch is 250
minutes. The sampling time of each batch is 1 minute. Fig. 6
also shows the plot of the response to the controlled
temperature for two operating batch runs. From the operating
process data, which control system does the job better?

To assess the performance of the controlled system, the
benchmark of the control system should be set up first. The
benchmark performance bounds are determined based on the
process and disturbance models. A total of 50 batch runs of
the data are collected. From the data, the dead time ( d ) of
the processes calculated by cross-correlation analysis is three.
According to the identification procedure, the process
( 1( , )pG q k ) and the disturbance models can be calculated.

Due to the space limitation, the detailed identification
procedure is referred to Yea and Chen (2007). Thus, the
estimated minimum variance bounds of the controlled output
errors for a batch run can be calculated from Eqs. (12)-(14)
To illustrate the control performance in Fig. 6, the control
charts for these two operation batch runs are shown in Fig. 7.
The charts indicate that the controller performance of the
second batch run outperforms that of the first one, but the two
controller designs cannot fall into the control bounds because
the MV bounds, which are the minimum performance bounds,
can be achieved for MV control only.
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Controller Design I
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Fig. 6. The controlled outputs for two designed controllers in
Example 2.

6. CONCLUSIONS

In practical operation plant, the process data can be
accessible from any time period at the touch of a button
because most modern chemical processes utilize computer
systems in which large amounts of data is stored cheaply and
efficiently. Many processes have been around for years and
engineers have acquired lots of experience, but many
operational problems still go undiagnosed for a prolong
period of time. Thus, developing a firm grasp of the data
mining technique to identify and performance assessment of
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the ILC system is strongly required to maintain good
performance of the operating batch unit when producing
products. On the basis of the operating data from the repeated
tracking task which is run at a finite time interval in the time
domain and an infinite repetition along the iteration domain,
the performance bounds of ILC benchmark for the LTV batch
operation system is developed in this paper. From the routine
operation data, the advantages of the proposed method are
demonstrated through simulated examples. The examples
also explain how to build the performance bounds and
accurately identify the control performance of the current
batch operation at each time point. However, because of the
aggressive control input of MV control, the lower
performance bound is impractical for the general control
application. Thus, the achievable minimum variance of
specified control will be developed in our future research.
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Fig. 7. The control chart with the minimum variance bounds
(marked in solid line) for evaluating the control outputs
(marked in asterisk) of (a) the controller design I and (b) the
controller design II in Example 2.
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