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Abstract: This paper is mainly devoted to the algebraic criteria for consensus problems of discrete-time
networked systems with the fixed and switching topology. A special eigenvector ω of the Laplacian
matrix is first correlated with the connectivity of a digraph, and then the relations between a class of
Laplacian-type matrix and the stochastic matrix are established. Based on these tools, some necessary
and/or sufficient algebraic conditions are proposed, which can directly determine whether the consensus
problem can be solved or not. Furthermore, it is proved that only the agents corresponding to the positive
elements of ω contribute to the group decision value and decide the collective behavior of the system.
Particularly for the fixed topology case, it is shown that not only the role of each agent is exactly
proportional to the value of the corresponding element of ω but also the group decision value can be
calculated by such a vector and the initial states of all agents.

1. INTRODUCTION

In the last decade, due to the broad applications of networked
systems in the fields of mobile robots, unmanned air ve-
hicles(UAVs), autonomous underwater vehicles(AUVs), etc.,
where the coordination control of all agents is in the central po-
sition, the importance of the consensus problem in these fields
has been well recognized and many results obtained(see Jad-
babaie et al. (2003)∼Lv and Jia (2007), and references therein).
In these literatures, both the continuous-time and discrete-time
update schemes are extensively studied. For example, Jad-
babaie et al. (2003) study a simplified Vicsek’s model with
discrete dynamics and show the alignment of the heads of
all agents under the conditions that the interaction undirected
graphs are jointly connected. Olfati and Murray (2004) pro-
pose and solve average consensus problem with continuous-
time dynamics, where the balanced digraph plays a central role.
Further, Ren and Beard (2005) extend the results in Jadbabaie
et al. (2003) to digraphs and point out that the consensus can be
reached if the union of interaction digraphs contain a spanning
tree across each bounded time interval, in which both the con-
tinuous and discrete update schemes are discussed. Another im-
portant work on consensus problem is Moreau (2005) where the
author shows that for the discrete-time update scheme, the con-
ditions in Ren and Beard (2005) are also necessary. Recently,
Liu et al. (2007) extend the results about the average consensus
problem to the switching topology cases. Obviously, all the
above results depend on the structure property of interaction di-
graphs, for convenience, we uniformly call them as geometrical
criteria. Different from the above mentioned literatures, Xiao

? This work is supported by the NSFC (60374001,60727002,60774003), the
COSTIND (A2120061303), and the National 973 Program (2005CB321902).

et al. (2006) propose a sufficient and necessary condition for
discrete-time networked systems with fixed topology to reach
consensus by employing the eigenvalues of stochastic matrix.

Although the above literatures have provided the conditions
for the networked system to solve the consensus problem, the
details about the consensus procedure are not clear. Mean-
while, the relations between the general consensus problem and
the average consensus problem are not clearly revealed. The
answers to these questions will give a deep insight into the
consensus problem and provide more information to control
such a networked system. With this in mind, our main objec-
tive in this paper is to develop the algebraic criteria for the
consensus problem with discrete-time dynamics, which prelim-
inary answers the above questions and can be directly used
to determine whether the consensus problem can be solved or
not. To this end, we first construct a special nonnegative left
eigenvector ω of Laplacian matrix and then correlate it with the
connectivity of digraph. It is shown that the digraph is strongly
connected(weakly connected with spanning tree) if and only if
the vector ω is positive(nonnegative). Further, if a connected
digraph is balanced, then it must be strongly connected, mean-
while, all elements of ω are equal. Because of its properties,
we use vector ω to study the consensus problem. The proposed
results provide a set of necessary/sufficient algebraic conditions
for all agents to achieve consensus. It is worth noting that more
information about consensus procedure is revealed. On the one
hand, it is proved that only the agents corresponding to the
positive elements of ω decide the collective behavior of the
system and contribute to the group decision value, i.e., they are
leaders of the system. On the other hand, for the fixed topology
case, the vector ω not only can be used to calculate the group
decision value but also exactly measures the role of each agent.
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All these new facts indicate that if the elements of ω are not
equal, then different agent plays different role in consensus
procedure.

2. PRELIMINARIES AND BACKGROUND

In this section, we introduce some notations in graph theory and
matrix theory which are used throughout this paper.

Let I = {1,2, · · · ,n} be an index set and G = (V,E,A) be
a weighted digraph of order n with the set of nodes V =
{v1,v2, · · · ,vn}, set of edges E ⊆ V ×V , and a weighted ad-
jacency matrix A = [ai j] with nonnegative adjacency elements
ai j ≥ 0 and aii = 0 for all i, j ∈ I. As ai j > 0, it means that there
exists an edge from the node v j to the node vi (i.e., the node vi
receives the information sent by the node v j), and further, the
node v j is called the parent of the node vi and the node vi is the
child of the node v j. If a node has no parent, it is called a root.
The set of neighbors of the node vi is denoted by Ni and defined
as Ni = {v j : ai j > 0}. The in-degree and out-degree of the node
vi are defined as degin(vi) and degout(vi), respectively, just as
follows:

degin(vi) =
n

∑
j=1

a ji, degout(vi) =
n

∑
j=1

ai j. (1)

The degree matrix of G is a diagonal matrix denoted by 4 =
[4i j] where 4i j = 0 for all i 6= j and 4ii = degout(vi). The
Laplacian matrix of a weighted digraph G is defined as

L(G) =4−A. (2)

A walk in a directed graph(digraph) G is a sequence of edges
such that the terminal node of one edge is the initial node of
the next. A path is a walk that does not include any node twice,
except that its first node might be the same as its last. A digraph
G is said to be strongly connected if and only if for every pair of
distinct nodes vi and v j in V , there is a directed path from vi to
v j. A digraph G is called weakly connected if replacing all of
its directed edges with undirected edges produces a connected
(undirected) graph. A digraph G is called disconnected if it
is not even weak. In addition, a weighted digraph G is called
balanced if its out-degree equal to its in-degree, i.e., 1>L = 0
with 1 = [1, · · · ,1]> ∈ Rn×1. In addition, a subgraph S of a
digraph G is a digraph whose set of nodes and set of edges are
all subsets of G. A spanning subgraph of G is a digraph whose
nodes is the same as the digraph G. A directed tree of a digraph
G is such a subgraph in which every node, except the root, has
exactly one parent. A spanning tree of a spanning subgraph of
G.

A vector x = [x1, · · · ,xn]> is called positive if each element of x
is positive(i.e., xi > 0,∀i ∈ I). A vector x is called nonnegative
if each element of x is nonnegative(i.e., xi ≥ 0, ∀i ∈ I) and
there exists at least one nonzero element. As all elements
in x are zero, the vector x is called zero vector. Following
the same line, a matrix A ∈ Rm×n is called positive if all its
elements are positive and matrix A is called nonnegative if all
its elements are nonnegative. Furthermore, A stochastic matrix
is a square nonnegative matrix whose rows sums to 1. And a
doubly stochastic matrix is a square nonnegative matrix, each
of whose rows and columns sums to 1. Now, some lemmas are
introduced because they will be used below.
Lemma 1. Given a matrix S = [ai j]∈ Rn, where aii ≥ 0, ai j ≤ 0,
∀i 6= j, and ∑n

j=1 ai j = 0 for each j, then S has at least one zero

eigenvalue and all of the nonzero eigenvalues are in the open
right half plane. Furthermore, S has exactly one zero eigenvalue
if and only if the digraph with S has a spanning tree.

Proof. See the Lemma 3.3 in Ren and Beard (2005). ¤
Lemma 2. If a nonnegative matrix A = [ai j] ∈ Rn has the same
positive constant row sums given by µ > 0, then µ is an
eigenvalue of A with an associated eigenvector 1 and ρ(A) =
µ , where ρ(·) denotes the spectral radius. In addition, the
eigenvalue µ of A has algebraic multiplicity equal to one, if
and only if the digraph associated with A has a spanning tree.

Proof. See Lemma 3.4 in Ren and Beard (2005). ¤
Lemma 3. Let A ∈ Rn and suppose that A is irreducible and
nonnegative, then
(a). ρ(A) > 0;
(b). ρ(A) is an eigenvalue of A;
(c). there is a positive vector x such that Ax = ρ(A)x;
(d). ρ(A) is an algebraically(and hence geometrically) simple
eigenvalue of A.

Proof. See the Horn and Johnson (1985), page 508, Theorem
8.4.4. ¤

3. PROBLEM STATEMENT

In this paper, we consider a networked system with n au-
tonomous agents, which are labeled through 1 to n. All these
agents share a common state space R and each of them updates
its state based upon the information received from the neighbor
agents. In what follows, we give the model of the considered
system:

xi[k +1] =
1

∑v j∈Ni βi j[k]
∑

v j∈Ni

βi j[k]xi[k], i ∈ I, (3)

where i, j ∈ I, k ∈ {0,1 · · · ,n} is the discrete time index, xi ∈ R
denotes the information state of the agent vi for all i. βi j[k]
denotes the confidence of the agent vi to the information sent
by the agent v j at time k. As v j ∈ Ni, βi j[k] > 0; otherwise,
βi j[k] = 0. If βii[k] > 0 for some i ∈ I, it means that the agent vi
can receive the information of itself at time k, i.e., the agent vi
has a loop. On the contrary, if βii[k] = 0, it means that the agent
vi has no loop.

System (3) can solve consensus problem means that as k → ∞,
the information value of all agents are equal, i.e., limk→∞ xi(k)=
limk→∞ x j(k) = x∗ for all i, j ∈ I. x∗ is called group de-
cision value. The special cases with x∗ = max‖xi‖xi, x∗ =
min‖xi‖xi,x∗ = 1

N ∑N
i=1 xi are called max-consensus problem,

min-consensus problem and average consensus problem, re-
spectively. Let x = [x1,x2, · · · ,xn]>, hi j =

βi j [k]
∑v j∈Ni βi j [k]

, then equa-

tion (3) can be rewritten in a compact form

x[k +1] = H[k]x[k]. (4)

Clearly, H[k] is a row stochastic matrix. In what follows, we
define a Laplacian-type matrix as follows.

Lh[k] = In−H[k], (5)

where In ∈ Rn denotes identity matrix. Let
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aii[k] =1−hii[k], i ∈ I;

ai j[k] =hi j[k], i, j ∈ I, i 6= j.
(6)

Then the elements of matrix Lh[k] is aii[k] ≥ 0 for all i ∈ I and
−ai j[k]≤ 0 for all i 6= j, i, j ∈ I. Moreover, for a given row i in
matrix Lh, the following equation is satisfied.

aii[k] =
n

∑
j=1, j 6=i

ai j[k] i, j ∈ I. (7)

Thus, Lh is a Laplacian-type matrix. Therefore, we can say that
the digraph G1 represented by H[k] is the same as the digraph
G2 represented by Lh by introducing some notation as follows.

Firstly, because the operation in (5) can not change the neighbor
relations among the agents, so the edges in G1 are the same as
the edges in G2 except for the loops. Secondly, if there exists a
loop in G1, the corresponding principal diagonal element in Lh
is less than 1. Thus, if we take aii < 1 in Lh as a loop in G2 with
weight h∗ii = 1− aii = hii, then the loops in G2 is also equal to
loops in G1. From the above, we can say that G1 and G2 are the
same digraph. Now, the above analysis can be summarized as
the following lemma.
Lemma 4. Let the matrix H[k] defined in (4) represent the
digraph G1, the corresponding Laplacian-type matrix Lh[k]
defined in (5) represent the digraph G2, let −ai j[k] in Lh[k]
denote the edge from the agent vi to the agent v j with weight
ai j[k], and aii[k] < 1 in Lh[k] denote the loop of the agent vi with
weight 1− aii[k] in G2, then the digraph G1 is the same as the
digraph G2.
Note 1. Although the matrix Lh[k] has the form of the Lapla-
cian matrix, it is not a true Laplacian matrix because the digraph
represented by a Laplacian matrix has no loops. However, this
difference does not affect the use of the properties of the Lapla-
cian matrix to study the considered problem.

In what follows, we first give the algebraic conditions for
connectivity of digraph. These results are the basis of our
method.

4. ALGEBRAIC CRITERIA FOR CONNECTIVITY OF
DIGRAPH

Obviously, all the information about a digraph is reflected by
its Laplacian matrix, L. For a given node vi(i ∈ I), the row i of
L denotes how much the other nodes directly affect the node
vi. By contrast, the column i of L reflects how much the other
nodes are affected by the node vi. In this sense, the study of
Laplacian matrix is helpful for us to learn something about the
digraph, especially to understand the structure information of
digraph. Here, we first construct a vector ω from the Laplacian
matrix L as follows.

ω = [ω1,ω2, · · · ,ωn]> = [det(L11),det(L22), · · · ,det(Lnn)]>,(8)

where det(Lii) denotes the determinant of matrix Lii, and Lii ∈
R(n−1)×(n−1) (i∈ I) is obtained from L by deleting the row i and
the column i. Now, we are in a position to establish the relations
between such a vector ω and the connectivity of digraph.
Theorem 1. Suppose that digraph G contains a spanning tree, L
is its Laplacian matrix, let ω be defined in (8), then

ω>L = 0. (9)
and ω ≥ 0.

Proof. See Appendix A. ¤
Corollary 1. Suppose that G is a strongly connected digraph, L
is its Laplacian matrix, let ω be defined in (8), then

ω>L = 0. (10)
and ω > 0.

Proof. See Appendix B. ¤
Corollary 2. Suppose that a weakly connected digraph G con-
tains a spanning tree and L is its Laplacian matrix, let vector ω
be defined in (8), then

ω>L = 0.

Furthermore, ω ≥ 0 and has at least one zero element.

Proof. See Appendix C. ¤
Theorem 2. Suppose that G represents a digraph and L is its
Laplacian matrix, then G is strongly connected if and only if
the vector ω defined in (8) is positive.

Proof. By Corollary 1 and Lemma 1, the conclusion obviously
holds. We omit the detail due to the limitation of space. ¤
Theorem 3. Suppose that G represents a digraph and L is its
Laplacian matrix, then G is weakly connected but contains
a spanning tree if and only if the vector ω defined in (8) is
nonnegative and has at least one zero element.

Proof. By Corollary 1, Corollary 2 and Lemma 1, the conclu-
sion obviously holds. We omit the detail due to the limitation
of space. ¤
Remark 1. It is noted that all determinants of the principal
square submatrix of order n− 1 must be zero if it contains the
submatrix D which is induced by the nodes corresponding to
nonzero elements of ω .
Remark 2. Compared with Theorem 2 and Theorem 3, the
structure difference between a strongly connected digraph and
a weakly connected digraph with spanning tree is clearly re-
flected by vector ω , i.e., these two type of digraph can be easily
distinguished from each other by employing ω .
Remark 3. It is noted that for a disconnected digraph, it is
possible that its Laplacian matrix may have a positive left
eigenvector associated with its one of zero eigenvalues. It does
not contradict with the results in Theorem 2 and Theorem 3.
Corollary 3. Suppose that G is a weakly connected digraph of
order n and contains a spanning tree, L is its laplacian matrix,
let vector ω be defined in (8), then the subgraph induced by
the nodes corresponding to positive elements of ω is strongly
connected, meanwhile, L has the following decomposition,

L =
[

A11 A12
0 A22

]
, (11)

where A22 is the submatrix corresponding to the positive ele-
ments of ω .

Proof. See Appendix D. ¤
Corollary 4. Suppose that G is a connected digraph and L is its
Laplacian matrix, then G is a balanced digraph if and only if the
vector ω of L is positive. Furthermore, ωi = ω j for all i, j ∈ I.
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Proof. Due to the limitation of space, we omit the detail. ¤
Remark 4. Corollary 4 is important because it implies that a
connected balanced digraph must be strongly connected, i.e.,
it is impossible that a weakly connected digraph is balanced.
In other words, either a strongly connected digraph or a dis-
connected digraph with strongly connected components has the
possibility to be a balanced digraph.

5. ALGEBRAIC CRITERIA FOR CONSENSUS PROBLEM

In this section, we study the algebraic conditions for system (3)
to solve consensus problem. For this purpose, we first introduce
some definitions and results in digraph theory and matrix theory
which will be used in the below.
Definition 1. (Horn and Johnson (1985), P: 516, Definition
8.5.0)Primitive: A nonnegative matrix A ∈ Rn is said to be
primitive if it is irreducible and has only one eigenvalue of
maximum modulus.
Lemma 5. Let A ∈ Rn be nonnegative and irreducible, if there
exists at least one main diagonal element positive, then A is a
primitive.

Proof. See Horn and Johnson (1985), P522, Problem 5. ¤
Lemma 6. Let A = [ai j] ∈ Rn be a stochastic matrix, if A has
an eigenvalue λ = 1 with algebraic multiplicity equal to one,
and all the other eigenvalues satisfy |λ |< 1, then A is SIA, that
is, limm→∞ Am → 1v>, where v satisfies A>v = v and 1>v = 1.
Furthermore, each element of v is nonnegative.

Proof. See Lemma 3.7 in Ren and Beard (2005). ¤
Lemma 7. With time invariant topology, system (4) solves a
consensus problem if and only if 1 is an algebraically (and
hence geometrically) simple eigenvalue of H, and is the unique
eigenvalue of maximum modulus.

Proof. See Theorem 1 in Xiao et al. (2006). ¤

In what follows, we give our main results.
Theorem 4. Suppose that system (4) has time-invariant topol-
ogy H, Lh is its Laplacian-type matrix defined in (5) and the
corresponding left eigenvector ω of Lh is defined in (8), let
submatrix H22 of H denote the subgraph induced by the nodes
corresponding to the positive elements in ω , then system (4)
solves consensus problem if and only if (i). ω is nonnegative;
(ii). H22 is primitive.

Proof. To begin with, let G1 and G2 be digraph represented by
H and Lh, respectively.

Necessity: We first show vector ω is nonnegative. Because
system (4) can solve consensus problem, 1 is an algebraically
(and hence geometrically) simple eigenvalue of H by Lemma
7. So digraph G1 contains a spanning tree by Lemma 2, i.e.,
digraph G2 also contains a spanning tree by Lemma 4. Thus,
the vector ω is nonnegative by Theorem 3.

Next, we show the second part. Let submatrix A22 of Lh denote
the subgraph of G2 which is induced by the agents correspond-
ing to the positive elements of ω , then A22 is irreducible by
Corollary 3. Thus the submatrix H22 of H is also irreducible by
Lemma 4. In what follows, let the number of positive elements
of ω be m < n(m = n will be discussed at the end), we can
renumber the agents in G1 and G2 such that Lh and H have the
following form by Corollary 3 and equation (5).

Lh =
[

A11 A12
0 A22

]
⇐⇒ H =

[
H11 H12
0 H22

]
(12)

where A11 ∈ R(n−m)×(n−m) and H11 ∈ R(n−m)×(n−m) represent
the agents corresponding to zero elements of ω , A22 ∈ Rm×m

and H22 ∈ Rm×m represent the agents corresponding to positive
elements of ω just as in the above analysis. By the decompo-
sition in (12), 1 is an eigenvalue of H22. Because 1 is also the
unique eigenvalue of maximum modulus of H by Lemma 7,
thus 1 is the unique eigenvalue of maximum modulus of H22.
Combining the fact that H22 is nonnegative and irreducible, H22
is primitive by definition 1.

Sufficiency: Because of ω ≥ 0, then digraph G2 contains a
spanning tree by Theorem 3, i.e., G1 also contains a spanning
tree by Lemma 4. Then 1 is an algebraically (and hence geomet-
rically) simple eigenvalue of H by Lemma 2. At the same time,
1 is unique eigenvalue of maximum modulus of H22 because
it is primitive. Thus, 1 is the unique eigenvalue of maximum
modulus of H, then system (4) solves consensus problem by
Lemma 7.

As m = n, H22 = H, the proof is similar as the above. ¤

Theorem 4 is important because it gives another necessary
and sufficient condition for the considered problem. Since the
primitive of a nonnegative irreducible matrix is also not easy to
verify in practice, an improved corollary is given as follows.
Corollary 5. Suppose that system (4) has fixed topology H, Lh
defined in (5) is its Laplacian-type matrix and a left eigenvector
ω of Lh is defined in (8), let A22 and H22 respectively denote the
subgraph of Lh and H induced by the agents which correspond
to the positive elements of ω , then system (4) solves consensus
problem if (i). ω is nonnegative; (ii). A22 has at least one
main diagonal element less than 1(or: H22 has at least one main
diagonal element positive).

Proof. Let G1 and G2 be digraph represented by H and Lh,
respectively. It is further noted that Lh and H has the form as
(12).

Because ω is nonnegative, digraph G2 contains a spanning tree
by Theorem 3, i.e., digraph G1 is also contains a spanning tree
by Lemma 4. Thus, 1 is an algebraically (and hence geometri-
cally) simple eigenvalue of H by Lemma 2. In addition, because
that A22 has at least one main diagonal element less than 1
is clearly equivalent to that H22 has at least one main diago-
nal element positive by Lemma 4, we only consider H22 with
positive main diagonal elements. Because H22 is a irreducible
nonnegative matrix with positive main diagonal elements, we
have H22 is primitive by Lemma 5. Thus, system (4) can solve
consensus problem by Theorem 4. ¤
Remark 5. The condition (ii) in Corollary 5 is equivalent to the
requirement that there exists at least one loop in H22(or: A22).
Such a condition is suitable and easy to be satisfied.
Remark 6. Clearly, the corresponding results reported in Ren
and Beard (2005) is a special case of Corollary 5.

As system (4) can solve the consensus problem, another im-
portant and attractive question is what value is reached by the
group and how much each agent contributes to final group
decision value. Before answering such a problem, suppose that
ω is nonnegative and let
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ωl =[ω l
1, · · · ,ω l

n]
> =

1
∑i ωi

ω,

ωr =[1,1, · · · ,1]>,

(13)

where ω is defined in (8), ω>
l L = 0, Lωr = 0 and ω>

l ωr = 1.
Then, we have the following theorem.
Theorem 5. Suppose that system (4) can solve consensus prob-
lem, let its information topology be represented by stochastic
matrix H, and Lh be the corresponding Laplacian-type matrix.
Let the left/right eigenvector ωl/ωr of Lh be defined in (13),
then the group decision value is

x∗ = ωl
>x(0) = ∑

i
ω l

i xi(0) (14)

where x(0) = [x1(0), x2(0), · · · , xn(0)]>, and xi(0) denotes the
initial state of the agent vi.

Proof. Because the system (4) can solve consensus problem, 1
is an algebraically (and hence geometrically) simple eigenvalue
of H, meanwhile, 1 also is the unique eigenvalue of maximum
modulus by Theorem 4. On the other hand, from equation (5)
and (13), ωl/ωr also are left/right eigenvector of H associated
with eigenvalue 1 by simple calculation. Thus, by Lemma 6, we
have limk→∞ Hk = ωrω>

l , i.e.,

x∗ = lim
k→∞

x[k] = lim
k→∞

Hkx(0) = ωrω>
l x(0) (15)

where x∗ = [x∗, x∗, · · · , x∗]> ∈ Rn×1. So x∗ = ∑i ω l
i xi(0) by

(15). ¤
Remark 7. Theorem 5 clearly reflects the role of each agent in
consensus procedure, i.e., the agent vi with large ω l

i contributes
more to the final group decision value than the other agent v j
with small ω j, where i, j ∈ I.

In contrast to the above results about the fixed topology case,
a result about the switching topology case is discussed in the
below. To begin with, suppose that there exists constants k ≥
0, T > 0, and let the interaction topology at each time l ∈ [k,k+
T ) be represented by a stochastic matrix H(l). Then the union
Hu of these interaction stochastic matrixes H(k), · · · ,H(k+T−
1) is defined as,

Hu =
1
T

k+T−1

∑
l=k

H(l). (16)

Clearly, Hu is also a stochastic matrix and all historical edges
during interval [k, k + T ) are reflected by it. Now, a result for
the switching topology case can be given, which reproduces in
algebraic form a special case of Theorem 2 in Moreau (2005).
Theorem 6. Let G[k] ∈ G be a switching interaction graph at
time t = kT and the diagonal elements of G[k] be positive,
suppose that there exists an infinite sequence of uniformly
bounded,non-overlapping time intervals [k jT,k j+1T ), j = 1,2 · · · ,
starting at k1 = 0, let Hu( j) be the union of interaction digraphs
during each interval [k jT,k j+1T ) and Lu( j) be the correspond-
ing Laplacian matrix of Hu( j) . Then, system (4) achieves
consensus asymptotically if and only if the vector ω( j) of Lu( j)
is nonnegative, where Lu( j) and ω( j) are defined in (5) and (8),
respectively.

Proof. The conclusion obviously holds by Theorem 3, Lemma
4 and Theorem 2 in Moreau (2005). ¤

Remark 8. From Theorem 6, we can not say more about the
contribution of each agent to the group decision value. How-
ever, if the element ωi( j) is zero for all time interval j, then
agent i must give no contribution to the group decision value.
This is a new fact that is not reflected by Theorem 2 in Moreau
(2005).

6. ALGEBRAIC CRITERIA FOR AVERAGE CONSENSUS
PROBLEM

In this section, we study the average consensus problem of
networked system with discrete-time dynamics. As reported in
Olfati and Murray (2004) , the balanced digraph plays a crucial
role in solving such a problem. Here motivated by Theorem
5 and Remark 7, we first give the algebraic conditions for
the system (4) with fixed topology to solve average consensus
problem as follows.
Theorem 7. Suppose that system (4) has fixed information
topology H, Lh defined in (5) is its laplacian-type matrix and a
left eigenvector ω of Lh is defined in (8), then system (4) solves
average consensus problem if and only if (i). ω is positive and
ωi = ω j for all i, j ∈ I; (ii). H is primitive.

Proof. The conclusion obviously holds by Theorem 4 and
Theorem 5. ¤
Remark 9. For the fixed topology case, it is easy to verify that
if system (4) can solve average-consensus problem, then H is
a double stochastic matrix, i.e., the digraph G represented by
H(or Lh) is a balanced digraph.

Similar to the Theorem 4, primitive of H is not easy to be
tested in practice, therefore the following corollary is given to
overcome this difficulty.
Corollary 6. Suppose that system (4) has fixed information
topology H, Lh defined in (5) is its laplacian-type matrix and a
left eigenvector ω of Lh is defined in (8), then system (4) solves
average consensus problem if and only if (i). ω is positive
and all elements in ω are equal; (ii). Lh has at least one
main diagonal element less than 1(or: H has at least one main
diagonal element positive).

Proof. Sufficiency of the conclusion obviously holds by Theo-
rem 4, Theorem 5 and Corollary 5. The Necessity of the proof
is omitted due to the limitation of the space. ¤
Remark 10. In Corollary 6, if further assume that each agent
can receive its own information, i.e., hii > 0 for all i ∈ I, then
the necessary and sufficient algebraic condition for system (4)
to solve average consensus problem is ω > 0 and ωi = ω j for
all i, j ∈ I.

As the discussion in section 5, let he union of the interaction
digraphs be defined as (16), then a result about the switching
topology case can be given as follows.
Theorem 8. Let G[k] ∈ G be the interaction digraph with pos-
itive diagonal elements at time t = kT and Lh(k) be its
Laplacian-type matrix, suppose that there exists an infinite se-
quence of uniformly bounded, non-overlapping time intervals
[k jT, k j+1T ), j = 1,2, · · · , starting at k1 = 0, let Gu( j) be the
union of the interaction digraphs during interval [k jT, k j+1T )
and Lu

h( j) be the laplacian-type matrix of Gu( j), then system
(4) asymptotically achieves average consensus if i). 1>Lh(k) =
0, ∀k ∈ [k jT, k j+1T ); ii). The left eigenvector ω( j) of Lu

h( j) is
positive, where Lu

h( j) and ω( j) are defined by (5) and (8).
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Proof. The conclusion obviously holds by Theorem 2, Theo-
rem 4 in Liu et al. (2007). ¤
Remark 11. Combining with Corollary 4, Theorem 8 and Re-
mark 4, we know that if system (4) can solve average consensus
problem, then each connected component of its interaction di-
graph at time k is strongly connected and balanced.

7. CONCLUSION

This paper has developed the algebraic criteria for the con-
sensus problem of discrete-time networked systems with fixed
and switching topology. The proposed results not only can
algebraically determine whether the consensus problem can be
solved or not but also clearly reveal that the average consensus
problem is a special case of the general consensus problem.
More importantly, for the fixed topology case, a necessary and
sufficient algebraic condition has been derived, which extends
the information topology to non-self loop topology. Further-
more, it is shown that only the agents corresponding to the
positive elements of ω contribute to the group decision value
but the other agents corresponding to zero elements of ω give
no contribution to the group decision value except for converg-
ing to it. In addition, for the fixed topology case, the consensus
procedure has been distinctly clarified. All these new facts give
us a deep insight into the consensus procedure.
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APPENDIX
A. Proof of theorem 1

Proof. Because digraph G may be reducible, we prove it di-
rectly. The proof is divided into four steps as follows.

Step 1: Because the digraph G has a spanning tree, rank(L) =
n− 1 by Lemma 1. Therefore, square matrix L contains at
least one nonsingular submatrix of order n−1. Without loss of
generality, assume that Li j is such a submatrix which is obtained
by deleting the row i and the column j of L. So the row vectors
of L except for the row i are linearly independent. Now, let L∗
denote the submatrix of L obtained by deleting the row i of L as
follows.

L∗ =




a11 −a12 · · · −a1n
...

...
...

...
−ai−1,1 −ai−1,2 · · · −ai−1,n
−ai+1,1 −ai+1,2 · · · −ai+1,n

...
...

...
...

−an1 −an2 · · · ann




.

It is clear that L∗ ∈ R(n−1)×n is a row full rank matrix(i.e.,
rank(L∗) = n− 1). At the same time, the sum of each row
of L∗ is zero because L is a Laplacian matrix. Therefore,
any n− 1 column vectors of L∗ must be linearly independent.
Thus, the first (n− 1)× (n− 1) leading principal submatrix A
of L is nonsingular if we renumber the node vi as the node
vn and the node vn as the node vi. To start with, let B =
[−a1n,−a2n, · · · ,−an−1,n]> and C = [−an1,−an2, · · · ,−an,n−1],
then there must exist an inverse column permutation matrix
P ∈ Rn×n such that

LP =L
[

A−1 0
0 1

]
=

[
A B
C ann

]
×

[
A−1 0

0 1

]
=

[
In−1 B

CA−1 ann

]
= L∗∗,

where In−1 is identity matrix of order n−1.

Step 2: Let

D =CA−1 = [−an1,−an2, · · · ,−an,n−1]A−1

=[−b1,−b2, · · · ,−bn−1],
substitute it into L∗∗, and then perform some elementary col-
umn transformations on matrix L∗∗, we have

L∗∗ ∼
[

In−1 0
D ann−DB

]
= L∗∗1 .

Since the above operations on L are invertible, rank(L∗∗1 ) =
rank(L) = n−1. Thus, we directly have ann−DB = 0 and get
the following two equivalent equations

ω>L = 0⇐⇒ ω>L∗∗1 = 0 (17)

In what follows, we calculate the value of bi for all i =
1, · · · ,n− 1. Due to A−1 = 1

det(A)A∗, where A∗ is the adjoint
matrix of A, we have
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D =
1

det(A)
CA∗

=
1

det(A)
C




A∗11 A∗21 · · · A∗n−1,1
A∗12 A∗22 · · · A∗n−1,2

...
...

. . .
...

A∗1,n−1 A∗2,n−1 · · · A∗n−1,n−1


 ,

where A∗i j = (−1)i+ jdet(Ai j), Ai j is the submatrix of A by
deleting the row i and the column j. Then combining with the
vector C defined in the above, we have

−bi =
1

det(A)
(−an1A∗i1−an2A∗i2−·· ·−an,n−1A∗i,n−1)

=
(−1)i

det(A)
[(−1)2an1det(Ai,1)+(−1)3an2det(Ai,2)

+ · · ·+(−1)nan,n−1det(Ai,n−1)].

(18)

Let 4i denote the (n−1)× (n−1) submatrix of L as follows

4i = BL
{

1,2, · · · , i−1, i+1, · · · ,n
1,2, · · · , i−1, i, i+1, · · · ,n−1

}
, (19)

i.e., 4i is obtained by deleting the row i and the column n of L
. Noting that 4i is a square matrix of order n−1, we have

det(4i) =(−1)n+1an1det(4n1)+(−1)n+2an2det(4n2)+

· · ·+(−1)2n−1an,n−1det(4n,n−1),
(20)

where 4i j is submatrix of 4i by deleting the row i and
the column j of 4i. From equations (18) and (20), we have
det(4n1) = det(Ai1), det(4n2) = det(Ai2), · · · , det(4n,n−1) =
det(Ai,n−1). Thus, equation (20) becomes

det(4i) =(−1)n+1an1det(Ai1)+(−1)n+2an2det(Ai2)

+ · · ·+(−1)2n−1an,n−1det(Ai,n−1)

=(−1)n−1[(−1)2an1det(Ai1)+(−1)3an2det(Ai2)

+ · · ·+(−1)nan,n−1det(Ai,n−1)].

(21)

Then by (18) and (21), we have

bi =





(−1)i

det(A)
det(4i), if n = 2k,k ∈ N+;

(−1)i−1

det(A)
det(4i),if n = 2k +1,k ∈ N+.

(22)

Step 3: In this step, we show that bi ≥ 0 for all i = 1,2, · · · ,n−1
and give a formula to calculate ω defined in (8) by bi. In what
follows, we only consider the case in which n is even and then
show b2 ≥ 0 for i = 2. The others can be proved by the similar
way. Under these assumptions, we have

det(A)b2 = det(42)

= det




a11 −a12 . . . −a1,n−1
−a31 −a32 . . . −a3,n−1

...
...

. . .
...

−an1 −an2 . . . −an,n−1




=(−1)n−3det




a11 −a13 . . . −a12
−a31 a33 . . . −a32

...
...

. . .
...

−an1 −an3 . . . −an2




(23)

=(−1)n−3det




a11 −a13 . . . a11−
n−1

∑
j=2

a1, j

−a31 a33 . . . a33−
n−1

∑
j=1, j 6=3

a3, j

...
...

. . .
...

−an1 −an3 . . . −
n−1

∑
j=1

an−1, j]>




=(−1)n−4det




a11 −a13 . . . −a1n
−a31 a33 . . . −a3n

...
...

. . .
...

−an1 −an3 . . . ann


 = det(L22),

where the third step is obtained by some elementary column
transformations; the fourth step is obtained by adding the first
n − 2 columns to the last column; the fifth step used the
properties of Laplacian matrix L, ∑n

j=1 ai j = 0 for each i; and the
last step is obtained by using the fact that n is even. It is clear
that L22 is the principal submatrix of L . By step 2, we know
det(A) > 0 and det(L22) ≥ 0, which directly implies b2 ≥ 0.
Just as the same analysis, we can show bi = det(Lii)/det(A)≥ 0
for i ∈ {1,3, · · · ,n−1}. Thus, we have

b1 =
det(L11)
det(A)

;b2 =
det(L22)
det(A)

; · · · ;bn−1 =
det(Ln−1,n−1)

det(A)
.(24)

Substitute (24) into the right equation of (17) and let the free
variable ωn = det(A) = det(Lnn), we have

ω1 = det(L11);ω2 = det(L22); · · · ;ωn = det(Lnn). (25)

such that ω>L = 0.

Step 4: In this step, we show ω is nonnegative. For convenience,
we denote eigenvalues of Lii as λ k

i , where i ∈ I and k ∈
{1,2, · · · ,n−1}. Because each principal minor Lii of Laplacian
matrix L is diagonally dominant and main diagonal element of
it is nonnegative, and then by Gerŝgorin disc Theorem, each
eigenvalue λ k

i of Lii is in the right open plane, i.e., λ k
i ≥ 0

for all k. Therefore, det(Lii) = λ 1
i λ 2

i · · ·λ n−1
i ≥ 0 for all i ∈ I.

Combining with Step 1 and Step 3 ω is nonnegative.

Combining all of the above, the conclusion holds. ¤

B: Proof of corollary 1

Proof. Because the strongly connected digraph must have a
spanning tree, the nonnegative vector ω defined by (8) satisfies
ω>L = 0 by Theorem 1. To this end, we only need to show
that each element of ω is positive. Because L is irreducible, the
nonnegative matrix P = ρ(L)In − L also is irreducible, where
ρ(L) is spectral radius of L and In is the identity matrix of order
n. Let v = [1,1, · · · ,1]> ∈ Rn×1 and note that Lv = 0, we have

Pv = (ρ(L)In−L)v = ρ(L)v,

which implies that the sum of all rows in P are identical, then
ρ(L) also is spectral radius of P by Lemma 2, i.e., ρ(P) = ρ(L).
Meanwhile, the following equation also holds.

P>ω = (ρ(L)In−L)>ω = ρ(P)ω,

where the equation L>ω = 0 is used. Because P> also is
irreducible and nonnegative, thus ω > 0 by Lemma 3. ¤
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C: Proof of corollary 2

Proof. Because the weakly connected digraph G contains a
spanning tree, we have ω>L = 0 and ω is nonnegative by
Theorem 1. In what follows, we prove that there exists at least
one zero element in ω . Since the digraph G contains a spanning
tree, then rank(L) = n− 1 by Lemma 1. In addition, because
G is weakly connected, there exist at least two nodes vi and v j
such that there has no path from vi to v j, i.e., a ji = 0. Let the
set S denote the nodes such that for each node vs ∈ S there has a
path from vs to v j, and let the set T denote the other nodes which
are not in the set S, which means that there has no path from the
node vt ∈ T to the node vs ∈ S. Suppose that the number of the
nodes in the set S is m, then we can renumber the nodes and
write the Laplacian matrix of digraph as the following form

L =
[

A B
0 D

]
, (26)

in which the node vi is renumbered as node v1 and the node
v j is renumbered as node vn, and A ∈ R(n−m)×(n−m) ,B ∈
R(n−m)×m ,0 ∈ Rm×(n−m), D ∈ Rm×m. From (26), the first n−m
rows contain all nodes in the set T and the last m rows contain
all nodes in the set S. It is worth noting that B is a nonzero
submatrix due to the weakly connectedness of the digraph G.

Clearly, submatrix D of L is also a Laplacian matrix. Mean-
while, the subgraph of G represented by D also has a spanning
tree because the possible root node of G must be in the set S.
We prove it by contradiction. Suppose the node vk ∈ T is a root
node, then there must exist a path from vk to any other node
in the set S, which is a contradiction. Then we have vk ∈ S.
Therefore, rank(D) = m−1 by Lemma 1. It implies that the row
vectors of D are linear dependent. Without loss of generality, we
assume that there exist a series of scalars α1,α2,αm−1, not all
them are zeros, such that

dm = α1d1 +α2d2 + · · ·+αm−1dm−1, (27)

where d1,d2, · · · ,dm denote the row vector of D. Then, by
equation (26), the Laplacian matrix L and its first leading
principal minor L11 of order n− 1 can be respectively written
as follows.

L =

[a11 A12 B1
A21 A22 B2
0 0 D

]
; L11 =

[
A22 B2
0 D

]
, (28)

with

A =
[

a11 A12
A21 A22

]
; B =

[
B1
B2

]
.

where D is as same as (26) and all the other blocks have the
suitable dimension. Then we have

ω1 =det(L11) = det
([

A22 B2
0 D

])

=det







A22 B2
0 D∗

0 dm−
m−1

∑
i=1

αidi





 = 0,

(29)

where D∗ is a submatrix of D obtained by deleting the last row
of D. Thus, there exists at least one zero element in ω , which
completes the proof. ¤

Remark 12. From the above proof, it is clear that all determi-
nants of the (n−1)× (n−1) leading principal minor of L must
be zero if it contains the submatrix D. Thus, the first n−m
elements in ω are zero.

D: Proof of corollary 3

Proof. Because digraph G contains a spanning tree, then just as
the proof of Corollary 2 does, we can renumber the nodes and
rewrite the Laplacian matrix of digraph G as equation (26) and
the corresponding submatrix is also denoted by A,B, 0 and D. It
is noted that the first n−m elements in ω are zeros by Corollary
2 and Remark 12. Without loss of generality, suppose that the
numbers of zero elements in ω are k, then k ≥ n−m. Thus, the
vector ω can be rewritten as

ω = [0, · · · ,0,ωk+1, · · · ,ωn]> ∈ Rn×1.

In what follows, we discuss it by two cases.
Case 1: If k = n−m, we show that the last m nodes induce a

strongly connected digraph. From (26), D is also a Laplacian
matrix. Due to ω>L = 0n×1, we have

ω∗>D = 0m×1,

where ω∗ = [ωk+1, · · · ,ωn]> ∈ Rm×1. Due to ω∗ > 0, by The-
orem 2, the subgraph induced by the nodes in D is strongly
connected.

Case 2: If k > n−m, we show that the last n− k nodes induce
a strongly connected subgraph. Due to k > n−m, it means that
there are l = m + k− n nodes in D corresponding to the zero
elements in ω . Without loss of generality, suppose that the first
l nodes in D correspond to the zero elements. Thus, (26) can be
rewritten as

L =

[A B11 B12
0 D11 D12
0 D21 D22

]
, (30)

where A is same as the corresponding submatrix in (26), D11 ∈
Rl×l , D22 ∈ R(n−k)×(n−k), the other matrixes have the compati-
ble dimension. Just as the case 1, we also have

ω∗>D = 0(n−k)×1, (31)

where ω∗ = [0, · · · ,0,ωk+1, · · · ,ωn]> ∈ Rm×1. Let di j de-
note the entries in D for all i, j ∈ {1,2, · · · ,m} and dt =
[d1,t , · · · ,dm,t ]> denote the first l columns of D, t ∈ {1,2, · · · , l}.
Then, combining with equation (31), we have

ωk+1dl+1,t +ωk+2dl+2,t + · · ·+ωndm,t = 0. (32)

Because the elements in submatrix D21 are nonpositive and the
vector ω∗∗ = [ωk+1, · · · ,ωn]> are positive, so the elements in
D21 must be zero, i.e., we have

L =

[A B11 B12
0 D11 D12
0 0 D22

]
. (33)

Thus, D22 is a Laplacian matrix and ω∗∗>D22 = 0(n−k)×1. Due
to ω∗∗ positive, then the subgraph induced by the nodes in D22
is strongly connected by Theorem 2. Combining all the above
analysis, the conclusion is true. ¤
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