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Abstract: This paper is concerned with the derivative feedback control of a 2-degree-of-freedom (2-DOF) 
torsional bar with parameter perturbations. The time-delay is introduced into the controller and the 
maximum allowed time-delay bound is estimated by employing a discretized Lyapunov functional method. 
It is shown, through a numerical example with simulation results, that suitably introducing time-delay into 
the controller can indeed improve the performance of the stability of the closed-loop system.  

 

1. INTRODUCTION 

Continuous-time control systems have been studied for many 
years and used successfully in many industrial applications. 
Time delays are ubiquitous in practical control systems. 
There are two aspects of time delays in continuous-time 
control systems. One aspect is that while effectiveness of a 
control system relies on timely delivery of control signals, 
small time delays are inherent in industrial sensors and 
actuators (Moon and Johnson, 1998). Also, in many large 
scale (distributed) control systems, such as manufacturing 
plants and power generation plants, communication networks 
are employed to exchange information and control signals 
between spatially distributed system components where 
substantial time delay is inherent (Walsh et al., 2002, Yue et 
al. 2004, 2005).  

Traditionally, apart from some scattered research, time delays 
have been thought of as having a deleterious effect on both 
the stability and the dynamic performance of the controlled 
systems. Intensive research has been done in attempting to 
eliminate them, compensate for them, or nullify their 
presence. Examples include, e.g. in modelling of internal 
combustion engines (Cook and Powell, 1998), and steel 
rolling mill control (Sbarbaro-Hofer, 1993).  

In recent years, a new research area has emerged that makes 
use of time delays for good engineering control purposes, 
such as stabilizing oscillatory systems (Abdallah et al., 
1993), controlling chemical reactors (Schneider et al, 1993), 
actively controlling buildings against earthquakes (Udwadia  
et al., 2003), and controlling aeroelastic systems in aerospace 
engineering (Yuan et al. 2004). It has been shown that 
introducing time delay in control is beneficial to achieve 
superior control performance, e.g. regulating chaos into their 
unstable periodic orbits (Pyragas 1992, 2002; Chen and Yu, 
1999), vibration control of resonators (Olgac and Holm-

Hansen, 1994), actively control of buildings (Udwadia et al. 
2003), and aeroelastic systems control (Yuan et al. 2004). 

In this paper, we consider the problem of controlling a 2-
degree-of-freedom (2-DOF) torsional bar with parameter 
perturbations. The assumption is that the ideal controller is 
designed a priori. Then time-delay is then introduced in the 
controller, and we will investigate the effect of time-delay on 
the performance of the stability of the closed-loop system. 
The maximum allowed time-delay bound will be estimated 
by using a discretized Lyapunov functional method. A 
numerical example will be given to show that suitably 
introducing time-delay into the controller can improve the 
performance of the stability of the closed-loop system. 

2. MODELING OF A 2-DEGREE-OF-FREEDOM (2-DOF) 
TORSIONAL BAR 

This paper considers a 2-degree-of-freedom (2-DOF) 
torsional bar (Udwadia et al. 2003), which consists of 2 disks 
that undergo torsional vibrations, see Figure 1.  The inertial 
properties of the disks can be altered by fastening additional 
weights to them.  The control system has four primary 
components: (1) the real-time controller that generates the 
input trajectory and computes the control algorithm, (2) the 
software for defining the controller, (3) the actuator at the 
lower disc, and (4) the optical sensors. The real-time 
controller is a digital signal processor-based single-board 
computer. The servo loop closure involves the computation 
of the user-supplied control algorithm, and these 
computations occur at a rate of once every sampling period 
(0.00442 s). The actuator that actuates the lower disk utilizes 
a brushless dc motor with electrical commutation. Electrical 
commutation is accomplished by a sinusoidal switching 
scheme which has the advantage of reducing the magnitude 
of torque ripple. A sensor is secured to the motor shaft and 
reads its position. There are four incremental rotary shaft 
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optical encoders on the system. Three are used to sense the 
position of the rotating disks. They have a resolution of 4000 
pulses per revolution. The fourth encoder, with a resolution 
of 1000 pulses per revolution, is connected to the motor. 

The equations of motion of the two masses in Figure 2 are as 
follows: 

1 1 1 1 1 1 2

2 2 2 2 1 2 1 2 2

( ) ( ) [ ( ) ( )] ( )
( ) ( ) [ ( ) ( )] ( ) 0

cJ t c t k t t T t
J t c t k t t k t

θ θ θ θ
θ θ θ θ θ

 + + − =
 + + − + =

        (1) 

where iJ , 1, 2,i =  are the mass moments of inertia of the 
disks; ic , 1, 2,i =  are the respective viscous damping 
coefficients; ik , 1, 2,i =  are the stiffness coefficients; ( )i tθ , 

1, 2,i =  are the angular displacements of the disks; and ( )cT t  
is the actuator torque, respectively. 

 

Fig. 1. Experimental apparatus 

 

Fig. 2. Model of experimental apparatus 

Let 1 1( ) ( )x t tθ= , 2 1 1( ) ( ) ( )x t x t tθ= = , 3 2( ) ( )x t tθ= , 

4 3 2( ) ( ) ( )x t x t tθ= = , and ( ) ( )cu t T t= . Then system (1) can 
be written as 

( ) ( ) ( )x t Ax t Bu t= +  (2) 

where ( )1 2 3 4( ) ( ) ( ) ( ) ( ) Tx t x t x t x t x t= and 

1 1 1

1 1 1
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0 1 0 0

0

0 0 0 1
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J J J
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k k k c
J J J

 
 
 − −
 

=  
 
 +

− −  
 

, 1

0
1

0
0

JB

 
 
 
 =
 
 
 
 

. 

In practice, there always exists an uncertainty in the values of 
the system’s parameters. The uncertainty usually arises from 
situations where the system parameters cannot be measured 
accurately or variations of the system’s parameters are caused 
by fatigue, structural degradation and so on. Therefore, taking 
account into the perturbation of system’s parameters yields 
the following system 

( ) [ ( )] ( ) [ ( )] ( )x t A A t x t B B t u t= + ∆ + + ∆  (3) 

where ( )A t∆  and ( )B t∆  are real matrix functions 
representing time-varying parameter uncertainties. The 
uncertainties are assumed in the form 

[ ( ) ( )] ( )[ ]a bA t B t LF t E E∆ ∆ =  (4) 

where ( ) p qF t ×∈  is an unknown continuous time-varying 
matrix function satisfying 

max ( ( )) 1F tσ ≤  (5) 

and L , aE  and bE  are known real constant matrices which 
characterize how the uncertainty enters the nominal matrices 
A and B. 

3. A TIME-DELAYED DERIVATIVE CONTROLLER 
AND STABILITY CRITERIA 

In this paper we are interested in studying the effect of time-
delay on the control of a 2-degree-of-freedom (2-DOF) 
torsional bar.  For this purpose, we introduce the time-delay 
derivative controller as 

( )4( ) ( ) 0 0 0 ( ) ( )u t x t r x t r Cx t rρ ρ= − − = − − = − −  (6) 

where ρ  is the control gain and 0r >  is the time-delay, 
respectively. From (3) and (6) we have 

( ) [ ( )] ( ) [ ( )] ( )x t A A t x t B B t Cx t r= + ∆ − + ∆ −  (7) 

with initial condition 

( ) ( )x θ φ θ= , [ ,0]rθ∀ ∈ − . (8) 

In the following, the control gain ρ  is assumed to have been 
designed a priori. We are to find the maximum allowed time-
delay bound such that the system described by (7) and (8) is 
robustly stable. 

Since there exist time-varying uncertainties in (7), one can 
not employ the frequency-domain approach, such as the 
eigenvalue analysis method, to determine the time-delay 
bound. We use the Lyapunov-Krasovskii functional approach 
in the time-domain. A discretized Lyapunov functional 
method will be employed to study the robust stability of 
system (7)-(8). 
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Choose a Lyapunov-Krasovskii functional ( )V φ  of a 
quadratic form 

0

0 0

1( ) (0) (0) (0) ( ) ( )
2

1          [ ( ) ( , ) ( ) ]
2

T T
r

T
r r

V P Q d

R d d

φ φ φ φ ξ φ ξ ξ

φ ξ ξ η φ η η ξ

−

− −

= +

+

∫

∫ ∫
 

01 ( ) ( ) ( )
2

T
r

S dφ ξ ξ φ ξ ξ
−

+ ∫                                          (23) 

where 
4 4P ×∈ , P PT= ; 4 4: [ ,0]Q r ×− → ; 

4 4:[ ,0]S r ×− → , S ST ( ) ( )ξ ξ= ;  
4 4: [ ,0] [ ,0]R r r ×− × − → , R RT( , ) ( , )η ξ ξ η= . 

Choose Q, R and S to be continuous piecewise linear, i.e.  

1 1( ) ( ) (1 )i
i i iQ Q h Q Qα δ α α α

∆

− −= + = − +  (24a) 

S S h S Si
i i i( ) ( ) ( )α δ α α α= + = − +− −

∆

1 11   (24b) 

1 1

1, 1 , 1

1, 1 1,

( , ) ( , )

(1 ) ( ) , 
(1 ) ( ) , 

ij
i j

i j ij i j

i j ij i j

R h h R

R R R
R R R

δ α δ η α η

α η α η α η
η α η α α η

− −

∆ − − −

− − −

+ + =

− + + − ≥= − + + − <

 (24c) 

for 0 1≤ ≤α , 0 1η≤ ≤ , where 

i r ihδ = − + , 0,1, 2, ,i N= ; /h r N=  

i.e., N is the number of divisions of the interval [ ,  0]r− , and 
h is the length of each division. 
Applying Lemma 1 in Han et al. (2003), we have the 
following result. 

Theorem 2: For continuous piecewise linear Q, S and R as 
described by (24) and for ( )A t∆  and ( )B t∆  satisfying (4), 
the system described by (7)-(8) is robustly stable if the 
following LMIs hold 

01T

P Q

Q S R
h

 
  > + 
 

 (25) 
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s a

T s a

sT sT
d d
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d
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t D t D t S R
h

D t D t S
h
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 

− 
 
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 
 
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 (26) 

for ∆A t( ) and ( )B t∆  satisfying (4), where  
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R
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1
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1 1( ) [ ( )] ( ) ( )
2 2

a T T T T
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For norm-bounded, and possibly time-varying, uncertainty, 
using the technique in Han et al. (2003), the following result 
can be derived. 

Theorem 3: The uncertain system (7)-(8) is robustly stable if 
there exist real 4 4×  matrices TX X= , Yi , 

T
i iW W=  

( 0,1, 2, ,i N= ) and Z Zij ji
T=  ( ,  0,1, 2, ,i j N= ) such that 

01T

X Y

Y W Z
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4. NUMERICAL RESULTS AND SIMULATIONS 

In the following, the following system’s parameter setting 
from Udwadia et al. (2003) is used for simulation studies. 
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TABLE II  SYSTEM’S PARAMETERS 

System parameter  Experimental Value 

1J  0.00252 2kg m  

2J  0.00194 2kg m  

1k  2.830 N m/rad  

2k  2.697 N m/rad  

1c  0.00659 N m s/rad  

2c  0.00229 N m s/rad  

Suppose that the control gain is designed as 0.008ρ = . We 
calculate the maximum allowed time-delay for asymptotic 
stability of the closed-loop system (7) as max 0.10r = . Figure 
3 shows the simulation results for max 0.10r =  while Figure 4 
gives the simulation results for 0r = , which means that there 
is no time-delay in the controller. One can clearly see that 
suitably introducing time-delay in the controller can 
significantly improve the performance of the stability of the 
closed-loop system. 
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Fig. 3. The trajectories of states 1 2 3 4, , ,x x x x  for max 0.10r = . 
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Fig. 4. The trajectories of states 1 2 3 4, , ,x x x x  for 0r = . 

We now analyze the effect of time-delay on the robustness of 
the stability of the closed-loop system with parameter 
perturbations. For the sake of simplicity, we first consider the 
case where there is only a single uncertainty 1 1 1( ) ( )J t F tα∆ = , 

1 ( ) 1F t ≤ , in 1J . The allowed time delay bounds can be 
calculated. Table III lists the maximum allowed time delay 
bounds for different 1α . For example, Figures 5 and 6 show 
the results for max 0.09r =  and 0r = , respectively with 

1 0.0001α = .  It again shows that that introducing a suitable 
time-delay in the controller can indeed improve the 
performance of the stability of the closed-loop system with 
parameter perturbations.  Similarly, we can also consider 
cases where there is only a single uncertainty in 2 1 2 1, , ,J k k c  
and 2c , respectively. It should be pointed out that we can 
consider the cases that there are more than one uncertainties 
in 1 2 1 2 1, , , ,J J k k c  and 2c , simultaneously. Due to page 
limitation, it is omitted here. 

TABLE III 
The Maximum Time Delay Bound for 1 1 1( ) ( )J t F tα∆ = , 1( ) 1F t ≤  

1 0.0001α =                max 0.09r =  
1 0.0002α =                max 0.08r =  
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Fig. 5. The trajectories of states 1 2 3 4, , ,x x x x  for 1 0.0001α = , 

max 0.09r = . 
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Fig. 6. The trajectories of states 1 2 3 4, , ,x x x x  for 1 0.0001α = , 0r = . 

 

4. CONCLUSION 

The effect of time-delay on the derivative feedback control 
for a 2-degree-of-freedom torsional bar with parameter 
perturbations has been investigated. The maximum allowed 
time delay bound has been estimated by employing the delay 
bi--decomposition method and the discretized Lyapunov 
functional method.  The simulation results have illustrated 
that suitably introducing time-delay into the controller can 
improve the performance of the stability of the closed-loop 
system. 
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