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Abstract: A second order sliding mode (SOSM) approach is proposed for orbital stabilization
of a friction pendulum, operating under uncertain conditions. Only position measurements are
assumed to be available. A SOSM velocity observer is developed and included into the closed-
loop system, driven by the quasihomogeneous controller that provides orbital stabilization of the
pendulum. Performance issues of the observer-based position feedback synthesis are illustrated
in a simulation study.

1. INTRODUCTION

Primary concern of the paper is to develop a SOSM-based
approach to output feedback stabilization of friction me-
chanical systems. To facilitate exposition a test problem,
chosen for treatment, is confined to orbital stabilization
of an inverted pendulum over position measurements. Al-
though the classical friction model, consisting of the vis-
cous friction and the Coulomb friction, is only under study,
the dynamic LuGre friction modeling is involved into the
simulation runs made to account for most of the experi-
mentally observed friction behavior and demonstrate the
robustness of the proposed SOSM-based position feedback
synthesis against different friction forces.

The quasihomogeneous state feedback synthesis, recently
developed in Orlov et. al. (2008), is utilized and accompa-
nied with a SOSM-based velocity observer, inspired from
Davila et. al. (2005), to present the position feedback, solv-
ing the problem in question. A nonsmooth Lyapunov func-
tion is constructed for the over-all plant-observer system.
In contrast to Davila et. al. (2005), where the developed
geometrical method is only capable of proving the observer
stability in the open-loop, our method handles the closed-
loop stability.

The resulting closed-loop system is shown to track the
model orbit in a sliding mode of the second order, even
in the presence of external disturbances with an a priori
known magnitude bound (see the original work of Levant
(1993) for second order sliding modes and Bartolini et.
al. (1998); Fridman and Levant (1996, 2002) for advanced
results in the area). The proposed synthesis is thus ex-
pected to yield desired robustness properties against the
discrepancy between the real friction and that described

in the model. In particular, advantage of the controller
constructed may be outstanding if Coulomb friction, typi-
cally ignored in the existing controllers design, is relatively
strong for the actuator’s power.

As in Orlov et. al. (2008), a modification of the Van
der Pol oscillator is introduced into the synthesis as
a reference model. This modification is made to shape
the oscillator limit cycle to a harmonic one. Moreover,
the limit cycle production of the modified Van der Pol
oscillator possesses a single harmonic (as opposed to multi-
harmonics of a standard harmonic oscillator) and the
oscillator parameters specify amplitude, frequency, and
damping of oscillation. Similar to Orlov et. al. (2008),
amplitude, frequency, and damping can thus be modified
dynamically by simply changing the oscillator parameters.

The control law, enforcing the system to slide along a
periodic orbit of the phase space, and a SOSM velocity
observer, being coupled together, yield a novel unified
framework for orbital stabilization of a friction pendulum
using position measurements only. The resulting closed-
loop system possesses its own limit cycle, producing a
prescribed harmonic whose frequency and amplitude can
be modified dynamically at our will.

Capabilities of the proposed orbitally stabilizing synthesis
are illustrated in a simulation study of a laboratory pendu-
lum. Good controller performance is concluded from this
study in spite of the dynamic nature of friction forces,
involved into simulations, and the presence of actuator
dynamics. Thus, the model description of the pendulum
presents a simple underactuated system and the extension
to orbital stabilization of underactuated systems seems
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possible. However, this is not trivial and remains beyond
the present investigation.

The rest of the paper is organized as follows. Section 2 is
focused on the observer to be used in Section 3 as a velocity
estimation in the quasihomogeneous orbital stabilization
of a friction pendulum. Section 4 presents numerical results
and Section 5 finalizes the paper with some conclusions.

2. ORBITAL STABILIZATION OF FRICTION
PENDULUM

2.1 Problem Statement

The state equation of the controlled one-link pendulum,
depicted in Fig. 2, is given by

(ml2 + J)q̈ = mgl sin(q) − F (q̇) + τ (1)

where q is the angle made by the pendulum with the
vertical, m is the mass of the pendulum, l is the distance
to the center of mass, J is the moment of inertia of
the pendulum about the center of mass, g is the gravity
acceleration, F (q̇) is the friction force, τ is the control
torque.

In order to describe the friction force F (q̇) the classical
model is utilized

F (q̇) = αv q̇ + αcsign(q̇). (2)

The above model comes with the viscous friction coefficient
αv > 0, the Coulomb friction level αc > 0, and the
standard notation sign(q̇) for the signum function of the
angular velocity. Subject to (2), the right-hand side of the
dynamic system (1) is piece-wise continuous. Throughout,
solutions of such a system are defined in the sense of
Filippov (1988) as that of a certain differential inclusion
with a multi-valued right-hand side.

An interesting problem for mechanical systems, affected
with friction, is the way we have access to the data. Usually
we have access to position data, but not to velocity data.
With this in mind, our objective is to track the output x(t)
of the asymptotic harmonic generator

ẍ + ε[(x2 +
ẋ2

µ2
) − ρ2]ẋ + µ2x = 0, (3)

using position measurements only, while also attenuating
the effect of friction, i.e., the limiting relation

lim
t→∞

[q(t) + x(t)] = 0 (4)

is to be satisfied for trajectories of the closed-loop system.

A modification of the Van der Pol oscillator, resulting in
the asymptotic harmonic generator (3), was proposed in
Roup and Bernstein (2002). Motivation behind the use
of the harmonic generator (3) as a reference model and

quasihomogeneous state feedback synthesis, solving the
above problem, were given in Orlov et. al. (2008). To attain
our objective, using position measurements only, we ac-
company the afore-mentioned quasihomogeneous synthesis
with SOSM-based observer design.

3. OBSERVER DESIGN AND CONTROL SYNTHESIS

3.1 Observer design

To begin with, we present a SOSM observer

˙̂q1 = q̂2 + wsign(q1 − q̂1)

˙̂q2 =
1

ml2 + J
(mgl sin(q1) − F (q̂2) + w1sign(q1 − q̂1) + τ)

+w1sign(q1 − q̂1) (5)

that copies the pendulum structure with the positive
parameters w,w1 > 0, used to improve the observer
performance, and F (q̂2) = αv q̂2 + αcsign(q̂2).

3.2 Control Synthesis

Let us now utilize the quasihomogeneous state feedback,
developed in Orlov et. al. (2008). This control law is readily
modified to the position feedback by running in parallel the
SOSM observer (5) and substituting the velocity estimate
q̂2 from the SOSM observer into the state feedback for the
velocity.

Due to (1), (2), (3), the error tracking dynamics in terms
of the tracking error

y(t) = q(t) + x(t) (6)

is given by

(ml2 + J)ÿ = mgl sin(q) − αvq2 − αcsign(q2) + τ

−(ml2 + J){ε[(x2 +
ẋ2

µ2
) − ρ2]ẋ + µ2x}. (7)

The quasihomogeneous control low, extracted from Orlov
et. al. (2008) and modified to use the velocity estimation
q̂2 rather than the velocity itself, is as follows

τ = (ml2 + J){ε[(x2 +
ẋ2

µ2
) − ρ2]ẋ + µ2x} − mgl sin(q)

−αvẋ − αsign(y) − βsign( ˙̂y) − hy − p ˙̂y (8)

where ˙̂y = q̂2 + ẋ, and the parameters are governed

h, p ≥ 0, β > M + αc, α > β + M + αc. (9)

The error dynamics (7), driven by the dynamic position
feedback (8), take the form

(ml2 + J)ÿ =−αcsign(q2) − αsign(y) − βsign( ˙̂y)

−hy − p ˙̂y − αv ẏ. (10)
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Relating the quasihomogeneous synthesis from Orlov
(2005a), the above controller has been composed of the
nonlinear compensator

uc = (ml2+J){ε[(x2+
ẋ2

µ2
)−ρ2]ẋ+µ2x}−mgl sin(q), (11)

the relay part (the so-called twisting controller from Frid-
man and Levant (1996, 2002))

uh = −αsign(y) − βsign( ˙̂y),

and the linear remainder

ul = −hy − p ˙̂y − αv ẏ.

For later use, the tracking error dynamics (10) is brought
into the canonical form

ẏ1 = y2

ẏ2 = k[−αcsign(q2) − αsign(y1) − βsign(ŷ2)

−hy1 − pŷ2 − αvy2] (12)

whereas the observation error dynamics

η̇1 = q̇1 − ˙̂q1 = q2 − (q̂2 − wsign(q1 − q̂1))

= η2 − wsign(η1)

η̇2 = q̇2 − ˙̂q2 = k (−αvη2 − αc(sign(q2) + sign(q2 − η2)))

−w1sign(η1) (13)

are given in terms of the estimation error

η1 = q1 − q̂1

η2 = q2 − q̂2. (14)

We are now in a position to state our main result.

Theorem 1. The over-all error system (12), (13), driven
by the dynamic position feedback (8) subject to the
parameter subordination (9), is globally asymptotically
stable.

Proof : The proof follows the line of reasoning used in the
proof of (Orlov et. al., 2008, Theorem 3) and it is based
on the nonsmooth Lyapunov function

V (y,y2, η1, η2) =
1

2
(khνy2

1 + νy2
2 + η2

2) + kνα|y1| + γ|η1|

(15)
where k = 1

ml2+J > 0 and

γw > 2(p + αv)

[
ν(αc + β) +

w1 + γ

k

]2

,

ν ≤
(p + αv)αv

p2
. (16)

The time derivative of V (y1(t), y2(t), η1(t), η2(t)), com-
puted along the trajectories of (12), (13), is given by

V̇ = khνy1ẏ1 + νy2ẏ2 + η2η̇2

+kναsign(y1)ẏ1 + γsign(η1)η̇1

= khνy1y2 + kνy2[−αcsign(q2) − αsign(y1)

−βsign(ŷ2) − hy1 − pŷ2 − αvy2]

+kη2 [−αvη2 − αc (sign(q2) + sign(q2 − η2))]

−η2w1sign(η1) + kναsign(y1)y2

+γsign(η1)(η2 − wsign(η1)).

(17)

Setting ŷ2 = y2 − η2 and making rather lengthy manipu-
lations yield

V̇ =−kναcy2sign(q2) − kβνy2sign(ŷ2) − kpνŷ2y2

−kναvy2
2 − kαvη2

2

−kαcη2sign(q2) − kαcη2sign(q̂2)

+γη2sign(η1) − wγ − η2w1sign(η1)

=−kναcsign(q2)y2 − kνβsign(ŷ2)(ŷ2 + η2)

−kναvy2
2 − kpνy2(y2 − η2) − kαvη2

2

−kαcη2 (sign(q2) − sign(q̂2)) + γη2sign(η1)

−wγ − w1sign(η1)η2

−kναcsign(q2)y2 − kνβ|ŷ2| − kνβη2

−kναvy2
2 − kpνy2

2 + kpνy2η2

−kαvη2
2 − kαc|q2| (1 − sign(q2)sign(q̂2))

−kαc|q̂2| (1 − sign(q2)sign(q̂2))

+γsign(η1)η2 − wγ − w1sign(η1)η2

≤−kναcsign(q2)(η2 + ŷ2) − kνβ|ŷ2|

−kνβsign(ŷ2)η2 − kναvy2
2 − kpνy2

2 + kpνy2η2

−kαvη2
2 + γsign(η1)η2

−wγ − w1sign(η1)η2

≤−kναcsign(q2)η2 − kναcsign(q2)ŷ2

−kνβ|ŷ2| − kνβsign(ŷ2)η2 − kναvy2
2

−kpνy2
2 + kpνy2η2 − kαvη2

2

+γsign(η1)η2 − wγ − w1sign(η1)η2

= η2[−kναcsign(q2) − kνβsign(ŷ2) − w1sign(η1)

+γsign(η1)] − kν|ŷ2|[β

−αcsign(q2)sign(ŷ2)] − k(p + αv)νy2
2

−kpνy2η2 + kαvη2
2 − wγ.

(18)

Now employing the well-known inequality

ab <
a2

2ǫ1
+

ǫ1b
2

2
, (19)
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the resulting inequality (18) is rewritten as follows

V̇ ≤
η2
2

2ǫ1
+

ǫ1
2

(kναc + kνβ + w1 + γ)
2
− wγ

−kν|ŷ2| [β − αcsign(q2)sign(ŷ2)]

−k(p + αv)νy2
2 +

kpν

2ǫ2
y2
2 +

kpǫ2ν

2
η2
2 − kαvη2

2

≤−wγ +
ǫ1
2

[kναc + kνβ + w1 + γ]
2

−kν|ŷ2| [β − αc] −

[
p + αv −

p

2ǫ2

]
kνy2

2

−

[
kαv −

kpǫ2ν

2
−

1

2ǫ1

]
η2
2 .

(20)

Letting

ǫ1 >
1

kαv
, ǫ2 ≥

p

2(p + αv)
(21)

and taking the parameter subordinations (9), (16) into

account it follows that V̇ (t) is negative definite along
the trajectories of (12), (13). Thus, the global asymptotic
stability of the error system (12), (13) is established, and
the proof of Theorem 1 is completed.

4. NUMERICAL RESULTS

Performance issues of the quasihomogeneous synthesis us-
ing position feedback were tested on numerical experi-
ments using the software MATLAB. The pendulum of
mass m = 0.5234 kg, centered at l = 0.108 m, and the
inertia J = 0.006 kg · m2 about the center of mass. This
parameters are taken from a real pendulum from CICESE
laboratory. The friction in the motor brushes and bearings
was identified with the parameters αv = 0.00053 N · m ·
s/rad and αc = 0.05492 N · m. The initial position of the
pendulum and that of the modified Van der Pol oscillator,
selected for the experiments, were q(0) = 0.5 rad and
x(0) = 0.01 rad, whereas all the velocity initial conditions
were set to q̇(0) = 0.1.

In our numerical study the controller gains in (8) were set
to h = 0, p = 0, α = 5 N · m, β = 1 N · m whereas the
reference parameters were tuned to ε = 20 [rad]−2s−1,
ρ = 2 rad, µ = 2 s−1.

We simulated two cases of the quasihomogeneous observer-
based controller. First we ran simulations with no dis-
turbances. In order to test the robustness of the nonlin-
ear observer (5) we then introduced a parametric dis-
turbance, changing the Coulomb friction level to αc =
0.05. The resulting trajectories are depicted in Figure
1. This figure demonstrates that the controller stabilizes
the disturbance-free system motion around the desired
trajectory and rejects the parametric uncertainties.

In order to additionally illustrate capabilities of the nonlin-
ear observer we involved into simulations the Lugre model
of friction phenomena. This model is well-known Canudas-
de-Wit et. al. (1995) to provide an adequate description
of friction phenomena even at low velocities and especially
while crossing the zero velocity. The Lugre model is given
by
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Fig. 1. Orbital stabilization of the pendulum: left column
for the no disturbance case; right column for the
permanent parameter variation.

Fl = σ0z + σ1ż + σ2v

ż = v −
|v|

g(v)
z (22)

where g(v) = αc + (Fs − αc)e
−v/v0

2

, σ0 is the stiffness, σ1

a damping coefficient, αc is the Coulomb friction level, Fs

is the level of the stiction force, vs is the Stribeck velocity
and v is the viscous friction.

To carry out capabilities of the nonlinear observer against
friction model discrepancies, we substituted the dynamic
Lugre friction Fl, given by (22), for the friction force F
into the plant equation (1). The numerical values of the
friction parameters, used in the simulations, are presented
in Table 1, whereas the plant parameters as well as the
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Fig. 2. Orbital stabilization of the pendulum: robustness
against unmodeled dynamics resulting from the Lu-
Gre friction substitution.

initial conditions were the same as before. The resulting
trajectories are depicted in Figure 2. It is concluded
from Figure 2 that good performance of the controller is
achieved in spite of friction model discrepancies.

Table 1. Lugre model parameters.

Notation Value Unit

σ0 0.1 N/rad
σ1 0.1 N · s/rad
σ2 0.0053 N · m · s/rad
Fs 0.004 N
v0 0.01 rad/s

5. CONCLUSIONS

Orbital stabilization of a friction pendulum, operat-
ing under uncertain conditions, is under study. The
quasihomogeneity-based control synthesis is utilized to de-
sign a variable structure controller that drives the state of
the pendulum to a model orbit in finite time. The resulting
closed-loop system is capable of tracking the model orbit
in a sliding mode of the second order, even in the presence
of external disturbances with an a priori known magnitude
bound.

A well-known Van der Pol oscillator is modified to possess
a stable limit cycle, governed by a standard linear oscil-
lator equation. The proposed modification is introduced
into the synthesis as an asymptotic harmonic generator of
the periodic motion. The resulting closed-loop system is
capable of moving from one orbit to another by simply
changing the parameters of the modified Van der Pol
oscillator.

Capabilities of the quasihomogeneous synthesis and its
robustness against parametric disturbances and unmod-
eled friction dynamics are illustrated in an experimental
study. The developed approach is hoped to suggest a
practical framework for orbital stabilization of mechanical
manipulators and it has additionally been supported by
real-time experiments made for an underactuated two-link
pendulum robot (Pendubot), required to swing up from its
downward position to the upright position. This work is
in progress and it will be reported elsewhere.
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