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Abstract: There are many, nonequivalent notions of minimality in state space representations
for delay systems. In this class, one can express the transfer function as a ratio of two exponential
polynomials. Then one can introduce various notions of coprimeness in such a representation. For
example, if there is no common zeros between the numerator and denominator, it corresponds
to a spectrally minimal realization, i.e., all eigenspaces are reachable. Another fact is that if the
numerator and denominator are approximately coprime in some sense, then it corresponds to
approximate reachability. All these are nicely embraced in the class of pseudorational transfer
functions introduced by the author. The central question here is to characterize the Bézout
identity in this class. This is shown to correspond to a non-cancellation property in the extended
complex plane, including infinity. This leads to a unified understanding of coprimeness conditions
for commensurate and non-commensurable delay cases. Various examples are examined in the
light of the general theorem obtained here.

1. INTRODUCTION

Consider the following simple delay-differential system{
ẋ(t) = x(t− 1) + u(t)
y(t) = x(t). (1)

Taking the Laplace transform, one can compute, at least
formally, its transfer function:

G(s) =
1

s− e−s
=

es

ses − 1
. (2)

which is a ratio of exponential polynomials. In general, a
delay-differential system with point delays, commensurate
or non-commensurate, its transfer function is expressible
as the ratio of exponential polynomials. On the other
hand, for systems with distributed delays this is not true,
but their transfer functions are still expressible as the
ratio of entire (i.e., analytic on the whole plane) functions
of exponential type. This is due to the fact that delay
systems involve only finite-time memory, and this yields
a representation that is a ratio of entire functions. This
property is a consequence of the Paley-Wiener theorem.
One may then raise the following questions regarding such
expressions:
(1) How can one associate a state space realization to

such a representation (2)?
(2) When is a representation like (2) minimal?
(3) Given such a notion of minimality, how is it related

to minimality of a realization?
For infinite-dimensional systems, there can be various dif-
ferent notions of minimality of fractional representations
of a transfer function. For example, when there are com-
mon zeros between the numerator and denominator, the
corresponding eigenspace is not controllable or observable.
� This work was supported in part by the JSPS Grant-in-Aid for
Scientific Research (B) No. 18360203, and also by Grand-in-Aid for
Exploratory Research No. 17656138.

Likewise, there exist several distinct notions of control-
lability which correspond to coprimeness notions of such
fractional representations.
This paper gives a comprehensive account on these ques-
tions. We first place delay systems in a more general frame-
work of systems with pseudorational transfer functions,
and associate a standard observable realization to them.
We then introduce various notions of coprimeness for frac-
tional representations in this class, and their relationship
to various notions of controllability. A recently obtained
result on the Bézout condition is discussed in relation to
an extended notion of exact reachability. Finally, a rela-
tionship with behavioral controllability is also discussed.
The notation and nomenclature used are explained in the
Appendix.

2. REVIEW: PSEUDORATIONAL IMPULSE
RESPONSES

2.1 Pseudorationality

To motivate, we first consider system (1). An algebraic
approach toward such a system is that of systems over
rings (see, e.g., Kamen (1982); Khargonekar and Sontag
(1982); Fliess and Mounier (1998)). It is also studied in
the context of 2D (or nD) systems also. This amounts to
writing (1) as {

ẋ(t) = σx(t) + u(t)
y(t) = x(t). (3)

by formally introducing the delay operator (σx)(t) :=
x(t − 1) (often without specifying the domain of the
operator), and viewing the systems as given over the
ring R[s, σ] of two indeterminates instead of R[s]. Various
control synthesis problems are solved in this setting, but it
possesses an inherent difficulty that it ignores some crucial
analytical properties. For example, consider the pair (z −
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2, sz), where z denotes es. Over the ring R[s, z] this pair
is not coprime because they both vanish at s = 0, z = 2.
On the other hand, this is impossible under the constraint
z = es.
We thus conduct a study that reflects analytical properties
more faithfully. Note that the Dirac delta distribution δ1
acts on functions as a delay operator as (δ∗x)(t) = x(t−1)
via convolution. Then (1) can be expressed as x = (δ′ −
δ1)−1∗u. Shifting the time axis by 1, we obtain x = (δ′−1−
δ)−1 ∗ δ−1 ∗ u. The crux here is that both δ′−1 − δ and δ
have compact support, and this is a consequence of the
finite-time delay. This property clearly holds for general
delay-differential systems, and hence it is natural to view
them as a subclass of impulse responses which have this
property.
One may be tempted to develop a theory in the algebra
consisting of δ′ and δ−1. In the Laplace transform domain,
this corresponds to considering R[s, es]. However, this
ring is not adequate for studying minimality even in the
delay systems. For example, it is not closed under pole-
zero cancellation. Take as an example (ses − 1)/s. The
numerator and denominator both vanish at s = 0. On
the other hand, cancelling s does not yield an element in
R[s, es]. We are thus led to consider a more general class
of algebra. To this end, we consider space of distributions
generated by δa, a ≤ 0. This yields the space E ′(R−). For
the notation and nomenclature, see the Appendix.
Theorem 2.1. An impulse response function p×m matrix
G (suppG ⊂ [0,∞)) is said to be pseudorational (Ya-
mamoto (1988)) if there exist matrices Q and P having
entries in E ′(R−)p×p and E ′(R−)p×m, respectively, such
that
(1) G = Q−1 ∗ P where the inverse is taken with respect

to convolution;
(2) orddetQ−1 = − orddetQ.

From here on, we deal only with the SISO systems for
simplicity, i.e., assume that m = p = 1, although this is
not at all necessary. We will write G = q−1 ∗ p in place
of Q−1 ∗ P . This class covers all practical cases of delay
differential equations and some others Yamamoto (1988).
For some basic notions and results, the reader is referred
to Hale (1977); Kolmanovskii and Nosov (1986). See also
Fliess et al. (2002) for some practical examples that also
falls into the present framework.
Hence for a pseudorational impulse responseG, its Laplace
transform, i.e., transfer function, Ĝ(s) is p̂(s)/q̂(s), and
hence it is the ratio of entire functions satisfying the
estimate (24) in the Appendix.

2.2 Input/output Operators

In the subsequent three subsections, we give how a stan-
dard delay-differential system model can arise from an
abstract realization setting. Consider the following simple
retarded system:

dx(t)
dt

=Ax(t− 1) +Bu(t)

y(t) =Cx(t)

This system is often modeled by the following so-called
M2 space model:

d

dt

[
zt(θ)
xt

]
=

[
∂

∂θ
zt(θ)

Azt(1)

]
+
[

0
B

]
u(t)

y(t) =Czt(1) (4)
where [zt(θ), xt]T ∈ L2[0, 1] × R

•. The domain of
the right-hand side differential operator is given by
{[z(θ), x]T |(d/dθ)z(θ) ∈ L2[0, 1] and z(0) = x}. This is
called an M2 space model Delfour and Mitter (1972), and
we will give a realization formalism that naturally leads to
such a model.
Let G be an impulse response function. The input/output
or a Hankel operator associated with G is the continuous
linear mapping HG : Ω → Γ defined by

HG(ω)(t) :=
∫ 0

−∞
G(t− τ)ω(τ)dτ.

We now introduce the notion of a linear, time-invariant
system.
Definition 2.2. A (linear, time-invariant) system Σ is a
quadruple (X,Φ, g, h) such that

• X is a Banach space, and Φ(t) is a strongly continuous
semigroup defined on it;

• g : Ω → X is a continuous linear mapping such that
gσt = Φ(t)g for all t ≥ 0;

• h : X → Γ is also a continuous linear map satisfying
hΦ(t) = σth for all t ≥ 0.

Ω Γ�HG

X

g
�

�
�
��

h

�
�

�
��

Φ(t) is called the state transition semigroup. The mappings
g and h are called reachability map and observability map,
respectively. Σ is said to be approximately reachable if g
has dense image, and observable if h is one to one. It
is topologically observable if h gives a topological homo-
morphism (i.e., continuously invertible when its codomain
is restricted to imh). Σ is weakly canonical if it is ap-
proximately reachable and observable; it is canonical if
it is further topologically observable. Σ is said to be a
realization of G if HG = hg.
Remark 2.3. Various other notions of controllability have
been studied in the literature; see, for example, Fliess and
Mounier (1998) more in the sense of systems over rings.

2.3 Realization

The definition above is motivated by the following func-
tional differential equation model. We assume sufficient
smoothness when necessary. (see Yamamoto (1988) for
details):

dx

dt
=Ax(t) +Bu(t)

y(t) =Cx(t)
where A is the infinitesimal generator of the state transi-
tion semigroup Φ(t). Now define g and h as follows:

g(ω)(t) =
∫ 0

−∞
exp(−At)Bω(t)dt

h(x)(t) =C exp(At)x.
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The impulse response G is given by CeAtB. Under certain
regularity assumptions, one can check that they satisfy the
requirements of Definition 2.2.
We are interested in how this applies to the context of
pseudorational impulse responses. Let G = q−1 ∗ p be
pseudorational. One can always associate with it a topo-
logically observable realization Σq,p as follows (Yamamoto
(1988)):
Define Xq as follows:

Xq := {x ∈ Γ |π(q ∗ x) = 0}
where π is the truncation to (0,∞). It is easy to check Xq

is a σt-invariant closed subspace of Γ. To define Σq,p, take
this Xq as the state space with σt (restricted to Xq) as its
semigroup. Then define g : Ω → Xq and h : Xq → Γ as
follows.

g(ω) := π(q−1 ∗ p ∗ ω) (5)

h(x) = x (injection). (6)

Since h is clearly a topological homomorphism, Σq,p is
topologically observable. It is approximately reachable
if the pair (q, p) is further approximately coprime (Ya-
mamoto (1988)).

2.4 Computation of a canonical realization

Let us show how these abstract formulae lead to a concrete
realization (Yamamoto (1988)). Take the transfer function
Ĝ(s) = 1/(ses − 1). The inverse Laplace transform gives
G = (δ′−1 − δ)−1, hence this is pseudorational, with
q = δ′−1 − δ and p = δ (except the order condition which
becomes clear from formula (7) below. Expanding this
inverse, we obtain

G(t) = H(t− 1) ∗
( ∞∑

n=0

H(t− 1)∗n

)
(7)

where H(t) denotes the Heaviside unit step function.
We claim

Xq ≡ L2[0, 1] × R. (8)
Indeed, suppose x ∈ Xq. Then (δ′−1 − δ) ∗x ∈ E ′(R−), i.e.,
supp(δ′−1−δ)∗x ⊂ (∞, 0]. This means that ẋ(t+1) = x(t),
t > 0, that is,

ẋ(t) = x(t− 1), t > 1. (9)
This gives no constraint on x(t), 0 ≤ t < 1. Hence at
least x|[0,1) (x ∈ Xq) should be freely chosen from L2[0, 1].
Since x|[0,1) ∈ L2[0, 1], x should be absolutely continuous
fro t ≥ 1 in order that (9) be satisfied. Then (9) can be
successively integrated as

x(1 + t) = x(1) +
∫ 1+t

1

ẋ(τ)dτ = x(1) +
∫ t

0

x(τ)dτ. (10)

This means that for solutions of (9), [x|[0,1), x(1)] ∈
L2[0, 1] × R completely determines x(t) for all t. This
clearly yields (8).
Let us now compute the representation of A under (8).
Take [z(·), x]T ∈ L2[0, 1] × R. In order that it be the
restriction of an element of γ ∈ D(A), it is necessary that
(1) z(θ) = γ(θ), 0 ≤ θ < 1,
(2) z(·) ∈ H1[0, 1],
(3) z(1) = x,

where H1[0, 1] is the Sobolev space of the first order,
and D(A) denotes the domain of the closed operator A.
The first condition should be obvious, and the second
condition is required since γ should belong to H1 on
any compact interval in order that it be differentiable.
The third condition guarantees that the extension of the
pair [z(·), x]T is continuous. This, along with (9), indeed
guarantees that the extension of [x(·), x]T to [0,∞) is
indeed absolutely continuous, and hence belongs to D(A).
From (10) we have

γ(1 + ε) = γ(1) +
∫ 1+ε

1

γ̇(t)dt = x+
∫ ε

0

z(t)dt.

This implies that
1
ε

(γ(1 + ε) − γ(1)) =
1
ε

∫ ε

0

z(t)dt→ z(0) (11)

as ε → 0. (Note that γ is absolutely continuous.) This
yields

A

[
z(·)
x

]
=

[
d

dt
z(·)

z(0)

]

with
D(A) = {[z(·), x]T |z(·) ∈ H1[0, 1], z(1) = x}.

According to Yamamoto (1988), B and C are also com-
puted as follows:

(Bu)(t) = [G(·), G(1)]T u

C[z(·), x]T = z(0).
Since G|[0,1) ≡ 0 and G(1) = 1 by (7), we obtain the
functional differential equation

d

dt

[
zt(θ)
xt

]
=

[
∂

∂θ
zt(θ)
z(0)

]
+
[

0
1

]
u(t) (12)

y(t) = zt(0), (13)
which is what we encountered in (4).
It is not difficult to see that this gives a realization of

ẋ(t) = x(t− 1) + u(t)

y(t) = x(t).

3. MINIMALITY AND COPRIMENESS

Let G = q−1∗p be pseudorational. Then Ĝ(s) = p̂(s)/q̂(s),
and this is a ratio of entire functions.
In the previous section we have given a construction of
a topologically observable realization Σq,p. Reachability of
this realization is related to coprimeness of (p, q), and there
are various different notions of coprimeness here.
Definition 3.1. Let G = q−1 ∗ p be pseudorational. The
pair (p, q) is said to be spectrally coprime if p̂(s) and
q̂(s) have no common zeros. It is approximately coprime
if there exist sequences φn and ψn in E ′(R−) such that
p∗φn+q∗ψn → δ in E ′(R−) where δ denotes the Dirac delta
distribution. It is a Bézout pair if there exist φ, ψ ∈ E ′(R−)
such that

p ∗ φ+ q ∗ ψ = δ. (14)

If (p, q) is a Bézout pair, then p̂(s) and q̂(s) satisfies

p̂(s)φ̂(s) + q̂(s)ψ̂(s) = 1. (15)
Identity (14) or (15) is called the Bézout identity.
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The following theorem is crucial.
Theorem 3.2. Let (p, q) be pseudorational, and Σq,p,Xq as
above. Σq,p is approximately reachable if and only if (p, q)
is approximately coprime. The pair (p, q) is spectrally
coprime if and only if every eigenspace of Σq,p is reachable.
It is Bézout if and only if every state x ∈ Xq is reachable
if there exists input u ∈ E ′(R−) such that x = g(u), by
extending the input space to E ′(R−).

Proof We first prove the last statement. For the other
two, see Yamamoto (1988, 1989).
Suppose (14) holds. This yields

q−1 = q−1 ∗ p ∗ φ+ ψ. (16)
Take any x ∈ Xq. Then ω := q ∗ x ∈ E ′(R−) by definition.
It follows that x = q−1 ∗ω = (q−1 ∗p∗φ+ψ)∗ω. Applying
π on both sides, we obtain x = π(q−1 ∗p∗φ∗ω) = g(φ∗ω)
by (5) because π(ψ ∗ ω) = 0. Hence every x is reachable
with E ′(R−) input φ ∗ ω.
Conversely, suppose Σq,p is reachable with E ′(R−) inputs.
In particular, q−1 ∈ Xq is reachable. This implies q−1 =
π(q−1 ∗ p ∗ φ) for some φ ∈ E ′(R−). Hence q−1 = q−1 ∗ p ∗
φ+ ψ, for some ψ ∈ E ′(R−), which readily yields (14). �

The relationship between approximate coprimeness and
spectral coprimeness is rather striking. We recall the
following result obtained in Yamamoto (1989):
Theorem 3.3. Let G = q−1 ∗p be pseudorational. The pair
(p, q) is approximately coprime if and only if the following
two condition holds:
(1) (p, q) is spectrally coprime, and
(2) min{r(p), r(q)} = 0.

The proof is given in Yamamoto (1989), but let us
illustrate what this means.
Let q and Xq be as above. As described earlier, q̂(s)
is an entire function of exponential type, and it has at
most countably many zeros λ1, λ2, . . . , λn, . . .. Suppose,
for simplicity, that their multiplicity is all one. Then eλnt,
n = 1, 2, . . . are eigenfunctions. Let M be the closure of
the linear span of all such eigenfunctions in Xq. We know
from Yamamoto (1989) that M = Xq if and only if
r(q) = 0. That is, Xq is eigenfunction complete if and
only if q “touches” the origin. While it requires quite
technical arguments, let us see why. Suppose q is written as
q = q1∗δ−a, a > 0. It is easy to see that Xq ∼= Xq1⊕Xδ−a ,
and Xδ−a ∼= L[0,a]. The latter space actually refers to the
space of functions that becomes identically zero for t > a.
It is now clear that such functions cannot be spanned by
exponential functions eλnt.
If the second condition in Theorem 3.3 is satisfied, then one
can modify q to q + kp without altering the reachability
property. Since by the first condition (p, q + kp) do not
possess a common zero, its eigenspaces are reachable, and
hence the totality is dense in Xq. This is the structure of
the theorem.
We also note that there is indeed a gap between approxi-
mate coprimeness and the Bézout condition. The following
counterexample is given in Yamamoto (1998):
Example 3.4. Let q := δ−1 and p be any C∞ function
with support contained in [−1/2, 0] such that r(p) = 0.
Then by Theorem 3.3, this pair is approximately coprime.
But it is not Bézout. For if we had p ∗ φ + q ∗ ψ = δ,

supp(q ∗ ψ) ⊂ (−∞,−1], and hence in a neighborhood of
the origin, p ∗ φ = δ. Since p is a C∞ function, this is
clearly impossible.

4. COPRIMENESS CONDITIONS

Let us further examine coprimeness conditions for delay-
differential systems. So far, we have seen

• Spectral coprimeness < approximate coprimeness <
Bézout condition.

• The gap between spectral coprimeness and approx-
imate coprimeness is not very large: if (p̂(s), q̂(s)
has a common factor of type eas, a > 0, then the
pair is not approximately coprime; otherwise, spectral
coprimeness implies approximate coprimeness.

• there is a gap between approximate coprimeness and
Bézout condition (Example 3.4).

• On the other hand, in the behavioral systems context,
Glüsing-Lürssen (1997); Rocha and Willems (1997)
proved that spectral coprimeness implies Bézout con-
dition (behavioral controllability). This is mysterious,
and now is the theme of this section.

Let us start by quoting the following (Glüsing-Lürssen
(1997)):
Theorem 4.1. Let p̂, q̂ be elements of R[s, z], where z
denotes es. Suppose that p̂(s, es) and q̂(s, es) possess no
common zeros. Then there exists φ, ψ ∈ E ′(R) such that
p̂φ̂+ q̂ψ̂ = 1.

In other words, if (p, q) is a spectrally coprime pair, then it
is Bézout over the ring E(R) where φ and ψ have compact
support but not necessarily in the negative half line.
Actually, what she proved is stronger than this. She has
shown that φ and ψ can be taken in a much smaller ring
which is obtained as the finite Laplace transform arising
from delay-differential operators. She also showed that this
ring is a Bézout domain. But for our present purposes, the
above form is enough.
Let us first note that it is not mysterious that spec-
tral coprimeness implies approximate coprimeness in the
behavioral context. As we have seen in Theorem 3.3, a
spectrally coprime pair (p, q) is approximately coprime if
and only if they have no common factor of type δ−a, a > 0.
While δ−a is not invertible over E ′(R−), it is over E(R) over
the whole line, because δa ∈ E(R).
Hence the gap between spectral coprimeness and approx-
imate coprimeness is not so large. What is mysterious is
why the gap between approximate coprimeness and Bézout
condition can be circumvented somehow. Example 3.4 is
not a delay differential system, hence outside the scope of
Theorem 4.1. The clue is the “cancellation at infinity.”
Before discussing the detail, let us give some intuitive
ideas.
Let us consider the simplest case of measures, i.e., distri-
butions of order zero. That is, we consider

p ∗ φ+ q ∗ ψ = δ (17)
where not only are p and q measures, but also φ, ψ are.
Then

p̂(s)φ̂(s) + q̂(s)ψ̂(s) = 1. (18)
must hold. Since they have compact support, they are
also bounded, and hence p̂, q̂, φ̂, ψ̂ are all bounded on the
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whole plane. Suppose that there exists a sequence λn ∈ C

such that p̂(λn), p̂(λn) → 0. Then, since φ̂(S) and ψ̂(s)
are bounded, p̂(λn)φ̂(λn) + q̂(λn)ψ̂(λn) → 0. This clearly
contradicts (18).
In fact, the following theorem was obtained in Yamamoto
(2007):
Theorem 4.2. Let G = q−1 ∗ p be pseudorational, and
suppose further that q, p ∈ M(−∞,0], i.e., measures. Sup-
pose that there exists σ ∈ R such that p̂(s), q̂(s) �= 0 for
Re s ≥ σ. A necessary and sufficient condition for (p, q) to
be Bézout in the ring of measures is that there exists c > 0
such that

|p(s)| + |q(s)| ≥ c > 0 (19)
for every s ∈ C.

One may notice that condition (19) is the same as the
celebrated Corona condition. In fact, the situation here is
quite similar in that the proof amounts to characterization
of maximal ideals. This is in the context of the theory of
Banach algebras, especially Gel’fand algebras. However,
there is an important difference here in that q̂(s) is an
entire function so that it can have only countably many
discrete zeros. This makes the analysis of the limiting
behavior of p̂(s) along the zeros of q̂(s). The detail is given
in Yamamoto (2007), and omitted here.
However this is not the whole story. What we need a
characterization of the Bézout identity in E ′(R−), not in
the space of measures. To see the difference, consider the
following example:
Example 4.3. Consider the pair (ses − 1, es). The first
component ses−1 is not a measure. It has infinitely many
zeros λn → ∞. At these points, eλn = 1/λn → 0. Hence
this pair approximately cancels at infinity and does not
satisfy (19).
On the other hand, it satisfies the following Bézout iden-
tity:

(ses − 1) · (−1) + s · es = 1. (20)
This is outside the scope of Theorem 4.2.

We have the following theorem Yamamoto (2007):
Theorem 4.4. Let q−1 ∗ p be pseudorational, and suppose
that there exists σ ∈ R such that p̂(s), q̂(s) �= 0 for
Re s ≥ σ. Suppose also that the algebraic multiplicity
of each zero of q̂(s) is globally bounded. If there exists
a nonnegative integer m such that

|λm
n p̂(λn)| ≥ c, n = 1, 2, . . . (21)

Then the pair (p, q) is Bézout.

The following corollary is an easy consequence of Theorem
4.4, and gives a symmetric condition on p and q:
Corollary 4.5. Let (p, q) be as above. If there exist a
nonnegative integer m and c > 0 such that

|smp̂(s)| + |smq̂(s)| ≥ c > 0, (22)
Then the pair (p, q) is Bézout.

5. EXAMPLES IN DELAY SYSTEMS

Let us now re-examine Example 4.3. The pair (ses − 1, es)
clearly satisfies

|s(ses − 1)| + |ses| ≥ c > 0, (23)
and hence by Corollary 4.5, this pair is Bézout. Multi-
plication by s actually cancels the decay rate of es along

the zeros of ses − 1. This is precisely why the result of
Glüsing-Lürssen (1997) guarantees the Bézout condition
under spectral coprimeness; see also Rocha and Willems
(1997).
Generally speaking, this is a characteristic of delay systems
with commensurate delays.
On the other hand, when delays are not commensurable,
it is also known that her result does not carry over. Let us
see this with a typical example.

5.1 Commensurable Delay Case

In this case p and q belong to the polynomial ring R[s, z]
where we allow the interpretation z = es (normalizing the
delay length to be 1). Now consider p(s, z) as a polynomial
of two variables. Then p(s, z) as s → ∞ can go to zero
only at most with polynomial order in s, z. Hence if there
is an asymptotic cancellation as s → ∞, this can be
removed by multiplying a suitable factor sm, because such
a cancellation must be of polynomial order.
Theorem 4.1 claims that (p, q) is Bézout if it is spectrally
coprime; this is proven in the behavioral context, and
hence time shift does not count. Hence one can always
assume r(q) = 0 without loss of generality, so that spec-
tral coprimeness indeed implies approximate coprimeness
Yamamoto (1989). The argument above shows that there
is no cancellation at infinity in this commensurable delay
case, and hence the Bézout condition results.
Example 5.1. Consider the pair (z, sz − 1), z = es. This
pair has an asymptotic cancellation for z = 1/s, as s→ ∞.
But this cancellation can be removed by multiplying s to
the first component z. This is why the pair (es, ses − 1) is
Bézout over E ′(R−) while it is not over M(−∞,0].

5.2 Noncommensurable Delay Case

The case for noncommensurable delay case is completely
different. In such a case, spectral coprimeness does not
imply Bézout. We will see why by showing an example.
In this case, the pair p and q are elements of the ring
R[s, z1, z2], where z1 = eh1s, and z2 = eh2s and h2 is not
a rational multiple of h1 (and vice versa).
Let h1 = 1, and h2 an irrational, say π for example.
Consider the pair (es−1, eπs−1). By Kronecker’s approx-
imation theorem (Apostol (1997)), for any integer n and
ε > 0, there existsm such that |n−mπ| < ε. It then follows
that eπs − 1|s=2mπi = e2mπ2i − 1 is very close to e2nπi − 1
which is zero. Of course, es − 1|s=2mπi = e2mπi − 1 = 0,
so that (es − 1, eπs − 1) asymptotically cancels each other
at infinity. Moreover, since ε is arbitrary, this asymptotic
cancellation cannot be removed if we consider sm(es − 1)
in place of es − 1, because for zeros of sm(es − 1), there
always exists λ that is close to a zero of eπs−1. In a sense,
one can say that es − 1 and eπs − 1 are asymptotically
close with almost arbitrary order, and this is why the
result of the single-delay case does not carry over to the
noncommensurable delay case.

6. CONCLUSION

We have given some fundamental facts on minimality of
state space and transfer function representations for delay
systems. The whole discussions are given in the scope of
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distributions with compact support. It is worth noting
that the general condition for Bézout identity involves
cancellation at infinity in the Laplace transform domain,
and also the order of such cancellation for distributions.

APPENDIX: NOTATION AND NOMENCLATURE

Let E ′(R−) denote the space of distributions having com-
pact support contained in the negative half line (−∞, 0].
Distributions such as Dirac’s delta δa placed at a ≤ 0,
its derivative δ′a are examples of elements in E ′(R−). In
contrast, E ′(R) denotes the space of distributions with
compact support in (−∞,∞). M(−∞,0] denotes the sub-
space of E ′(R−) consisting of measures, i.e., distributions
of order 0. The order of a distribution ψ is denoted by
ordψ (Schwartz (1966).)
The following Paley-Wiener theorem gives a represen-
tation of pseudorationality in the Laplace domain, i.e.,
transfer functions.
Theorem 6.1. (Schwartz (1966)). A necessary and suffi-
cient condition for a complex function χ(s) to be the
Laplace transform of a distribution f ∈ E ′(R−) is that
(1) χ(s) is an entire function; and
(2) χ(s) satisfies the growth estimate

|χ(s)| ≤C(1 + |s|)mea Re s,Re s ≥ 0,

≤C(1 + |s|)m,Re s ≤ 0. (24)
for some C > 0, a > 0 and integer m ≥ 0.

We will refer to (24) as the Paley-Wiener estimate.
Note that the zeros of χ(s) are discrete, and each zero has
a finite multiplicity, because χ(s) is entire.
Since χ(s) is an entire function of exponential type, the
following Hadamard factorization holds (Boas (1954)):

χ(s) = skeas
∞∏

n=1

(
1 − s

λn

)
exp

(
s

λn

)
. (25)

Since there are no finite accumulation point for {λn},
λn → ∞ as n→ ∞.
Hence for a pseudorational impulse responseG, its Laplace
transform, i.e., transfer function, Ĝ(s) is p̂(s)/q̂(s), and
hence it is the ratio of entire functions satisfying the
estimate (24) above.
Let Ω := lim→ L2[−n, 0] denote the inductive limit of the

spaces {L2[−n, 0]}n>0; it is the union ∪∞
n=1L

2[−n, 0], en-
dowed with the finest topology that makes all injections
jn : L2[−n, 0] → Ω continuous; see, e.g., Treves (1967).
Dually, Γ := L2

loc[0,∞) is the space of all locally Lebesgue
square integrable functions with obvious family of semi-
norms:

‖φ‖n :=
{∫ n

0

|φ(t)|2dt
}1/2

.

This is the projective limit of spaces {L2[0, n]}n>0. Ω is the
space of past inputs, and Γ is the space of future outputs,
with the understanding that the present time is 0. These
spaces are equipped with the following natural left shift
semigroups:

(σtω)(s) :=
{
ω(s+ t), s ≤ −t,
0, −t < s ≤ 0, (26)

ω ∈ Ω, t ≥ 0, s ≤ 0.

(σtγ)(s) := γ(s+ t), γ ∈ Γ, t ≥ 0, s ≥ 0. (27)
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