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Abstract: On the basis of Markowitz mean-variance framework, a new optimal portfolio selection approach is 
presented. The portfolio selection model proposed in the approach includes the expected return, the risk, and 
especially a quadratic type transaction cost of a portfolio. Using this model may yield an optimal portfolio solution 
that maximizes return, and minimizes risk, as well as also minimizes transaction costs by softening the transaction 
strength and smoothing the volume of the transacted securities in trading process. The optimization problem appeared 
in this approach is convex and can be solved by the quadratic programming (QP) routine. A case study demonstrates 
the effectiveness and the significant performance improvements of the optimal portfolio selection strategy proposed.  

 

1. INTRODUCTION 

The main study of the modern portfolio theory is still how to 
trade off risk and reward in choosing among risky 
investments under various conditions. The famous 
Markowitz mean-variance model shows how investors could 
achieve the lowest possible risk for any given target rate of 
return (Markowitz, 1952, 1959, 1987). The core of the 
Markowitz model is to take the expected return of a portfolio 
as the investment return and the variance of the expected 
return of a portfolio as the investment risk, and then to derive 
the maximum investment return by maximizing the expected 
return of a portfolio for a given risk level, or derive the 
minimum risk by minimizing the variance of a portfolio for a 
given specific return level. 1
 

On the basis of the Markowitz theory, a number of the 
effective models, criteria and strategies have been proposed 
for portfolio selection under certain assumptions (Wang and 
Xia, 2002). However, many problems still remain to be 
solved, in which how to effectively cope with the transaction 
cost, caused by changing the investment from an existing 
portfolio to a new portfolio according to an optimal portfolio 
selection strategy, is one of the main concerns. Ignoring the 
transaction cost in a portfolio selection model often leads to 
an inefficient portfolio in practice (Patel and Subrahmanyam, 
1982). A typical way to consider the transaction cost in a 
model was to assume that the transaction cost is a V-shaped 
function of the difference between an existing portfolio and a 
new portfolio, and is formulated explicitly into the portfolio 
return (Markowitz, 1987, Wang and Xia, 2002, Perold, 1984). 
However, this resulted in nonlinear and non-convex function 
optimization problems (also see in Konno et al., 2005, 
Ehrgott et al., 2004, and Wang et al., 2006) that usually are 
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easily got stuck in a local optimal solution if using general 
nonlinear optimization problem solvers.  
 

In this paper, the transaction cost is still to be assumed as a 
V-shaped function of the difference between an existing 
portfolio and a new portfolio. To avoid solving non-convex 
optimization problems in portfolio selection, and to soften the 
transaction strength or smooth the transacted securities for 
avoiding too radical trading, the transaction cost is indirectly 
controlled in this paper. To this end, a quadratic-type mean-
variance model including the expected return, the variance of 
the return and the trading-cost described by the norm of the 
transacted securities is built, and a standard quadratic 
programming (QP) routine can thus be applied to solve the 
portfolio optimization problem. A case study to a portfolio 
having two securities whose corresponding indexes are 
respectively the growth-style index and the value-style index 
related to the benchmark index in a market is also given to 
illustrate the effectiveness and the significant performance 
improvements of the optimal portfolio selection approach 
proposed in this paper.   

2. MARKOWITZ MEAN-VARIANCE MODEL 

A portfolio selection problem in the Markowitz mean-
variance framework may be written as follows as in Wang 
and Xia (2002) and Adcock (2002) 
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and  is the number of risky securities,  is the portfolio 
weight that is the asset proportion invested in security i , 

n iw
r  
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is the expected security return,  is the actual security return, 
 is the variance of the expected security return, and 

r
V µ  is 
the risk aversion factor of the investor satisfying 0 1µ≤ ≤ . 

In optimization problem (1), Tr w  is the expected portfolio 
return, and  is the portfolio risk. The input data of 
minimization problem (1) are 

Tw Vw
r  the expected return of 

securities and V  the variance-covariance matrix of the 
expected returns of securities in a portfolio. 
 
Solving the quadratic type optimization problem (1) yields an 
optimal portfolio selection, which maximizes the portfolio 
return and minimizes the portfolio risk. However, the trading 
process often shows too radical transaction of assets, as 
shown in the case study in this paper. Transaction cost is 
another important issue in portfolio selection. If applying the 
widely used V-shaped function of the difference between an 
existing portfolio and a new portfolio, and formulating it 
explicitly into the portfolio return, finally one has to solve a 
non-convex optimization problem. An improved mean-
variance model presented in the next section may be utilized 
to overcome the difficulties mentioned above.  
 

3. A NEW POTFOLIO SELECTION STRATEGY 

3.1 Quadratic-Type Mean-Variance Model with Transaction 
Costs 

To use vector and matrix versions to represent the new mean-
variance model, first define 
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(6) 
where ( )ix t  is the i-th asset component in the portfolio ( )x t  
at time t, ( )s t  is the gross asset of a portfolio at time t,  
is the transacted asset with respect to the i-th asset 

( )iu t
( )ix t , 

obviously the sum of all transacted assets in a portfolio must 

be zero, i.e. , 
1

( ) 0
n

i
i

u t
=

=∑ ( 1|ir t t+ )  is the expected return of 

the i-th asset at time , 1t + ( )1|r t t+  is the predictive return 

at time  , and  is the variance-covariance 
matrix of the expected return.  

1t + ( 1|V t t+ )

 
An improved mean-variance portfolio selection strategy with 

quadratic type transaction cost term can now be given as 
follows 
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where n nR ×∈  is the constant positive-definite weighting 
matrix,  is the constant rate with respect to the i-th asset 

component, 
ik

( )i ik u t  is the transaction cost with respect to 

the i-th asset, and ( 1)ir t +  is the real return of the i-th asset 
component, which will be know at time . In portfolio 
select strategy (7), the expected return is 

1t +

( ) [T1 | ( ) ( )r t t x t u t+ + ] , the risk is measured by the variance 

of the return, i.e. [ ] ( )[ ]T( ) ( ) 1 | ( ) ( )x t u t V t t x t u t+ + + , and it 
is easy to confirm that  the two terms above are equivalent to 
the portfolio return and risk appeared in (1) respectively. The 
quadratic penalizing term  in (7) is utilized to 
soften the transacting strength in order to control the 
transaction costs and also decrease the risk of too drastic 
over- or under-trading of assets. Furthermore, the 
optimization problem (7) is of the quadratic form, and is 
equivalent to the following model after removing the constant 
terms  
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Notice that the absolute value function in (8) does not destroy 
the quadratic type structure of model (8), so the minimization 
problem (8) can be easily solved by a standard QP algorithm. 

3.2 Estimation of Future Return and its Variance 

To obtain the estimation of the expected return and its 
variance, first, a set of the first order AR models are used to 
estimate the future values of individual indexes 
corresponding to individual securities in a portfolio, and then 
the estimates of the future return and its variance are 
calculated based on the predictions of the indexes and the 
past sample data in this paper. Assume that for the i-th 
asset , its corresponding trading-index at 
current time t is 

( 1, 2, , )i = n
( )iI t  that is known, and the predictive index 

difference at time 1t +  is , which is estimated by 
the following AR model  

( 1|iI t t∆ + )
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where  and  are the parameters of the model, and 
 is a white noise. The parameters of model (9) are 

estimated by the following gradually forgetting least squares 
method 
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where  is the efficient data horizon, and 2m > ( )t +Θ  is the 

pseudo-inverse of ( )tΘ , calculated using the singular value 
decomposition (SVD) for overcoming ill-conditioned 
problems, which will improve the robustness of the numerical 
computation. According to model (9-11), the prediction of the 
index difference  is then given by ( 1|iI t t∆ + )

)i( ) (0 1
ˆ ˆ ˆ1 | ( ) ( )i i iI t t a t a t I t∆ + = + ∆                   (12) 

From the estimated future individual index-differences 
corresponding to individual assets in a portfolio, the 
estimation of the expected return of each asset in a portfolio 
is thus calculated by the following formula 
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The latest estimate of variance-covariance matrix of the 
portfolio return is approximated by the sample variance- 
covariance matrix obtained from the past and the predicted 
data in this paper, which is given by 
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4. CASE STUDY 

4.1 Two Special Style Stocks Indexes Related to Benchmark 
Index and the Portfolio to be Studied 

This case study is based on monthly data from December 
1979 to April 2001 for the portfolio with two special styles 
stocks from a stock market. The indexes of two stocks are the 
value-style index and the growth-style index respectively 
related to a benchmark index. There is a particular 

relationship between the benchmark index and the two stocks 
indexes, that is, to the benchmark index, if one of the two 
style-indexes is good, another one is almost bad. This implies 
that if one switches his/her assets well between the two style-
indexes, he/she can obtain a return better than the return 
gotten from the benchmark index alone. The benchmark 
index, the value-style index and the growth-style index are 
shown in Fig.1 respectively. In this case study, each month, 
the estimate of expected return and variance-covariance of 
the portfolio are computed by (10)-(15). The optimal 
portfolios are built and held for one month in the cases 
without transaction costs and with 0.2% transaction costs, by 
using the Markowitz mean-variance model (1) and the 
improved mean-variance model (8) proposed in this paper 
respectively. The optimization problem (1) or problem (8) is 
solved by the ‘quadprog’ function in Matlab Optimization 
Toolbox. 
 
Assume that the initial value of gross asset of the portfolio to 
be studied is 200, in which the initial value of both value-
style stock and growth-style stock are all 100 identical with 
their corresponding indexes’ initial values as showed in Fig. 
1. For comparison, assume also that one buys a stock whose 
index is just the benchmark index showed in Fig. 1 and the 
initial value are also 200, and thus the benchmark stock’s 
assets vary only with the benchmark index. The portfolio’s or 
the benchmark stock’s gross asset and its corresponding 
mean year rate-of-return with respect to the initial asset (i.e. 
200) in trading process are used for evaluating the investment 
performance, which is illustrated in Figs. 2-13.  
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Fig. 1.  Benchmark index and two special style stocks indexes; 
monthly data from December 1979 to April 2001. 

4.2 Portfolio Selection Results Using the Markowitz Mean- 
Variance Method 

Figs. 2-4 show the portfolio selection results yielded by the 
mean-variance model (1) without transaction costs where the 
used risk aversion factor 0.7µ =  and the efficient data 
horizon 30m = . Figs. 2-3 give the comparisons of gross 
asset and mean year rate-of-return between the optimal 
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portfolio built by model (1) without transaction costs and the 
benchmark stock mentioned in Section 4.1. In Figs. 2-3, also 
in Figs. 5-6, Figs. 8-9, and Figs. 11-12, the red line marked 
by ‘Optimal portfolio’ is the gross asset or the mean year 
rate-of-return of an optimal portfolio, the blue line marked by 
‘Benchmark’ is the asset or the mean year rate-of- return of 
the benchmark stock, and the green line marked by 
‘Benchmark + 1.8% year rate’ is the asset or the mean year 
rate-of-return of a target fund whose mean year rate-of-return 
is the benchmark stock’s mean year rate-of-return plus 1.8%. 
Fig. 3 shows that in the last half part of trading, the mean 
year rate-of-return of the portfolio built by model (1) without 
transaction costs is about 0.9% higher than that of the 
benchmark stock, which is not so good from the practical 
point of view. Fig. 4 gives the transacted assets of two stocks 
of the portfolio built by model (1) without transaction costs, 
from which one can see that the too radical over- or under- 
transacting of assets are appeared because there are no any 
restrictions directly adding on the transacted-assets.  
 
Figs. 5-7 show the portfolio selection results yielded by the 
mean-variance model (1) with 0.2% transaction costs, where 
the risk aversion factor 0.7µ = , and the efficient data 
horizon . Figs. 5-6 shows the comparisons of gross 
asset and mean year rate-of-return between the optimal 
portfolio built by model (1) with 0.2% transaction costs and 
the benchmark stock. From Figs. 5-7, it is clear that the built 
optimal portfolio is even worse than the benchmark stock in 
most of the cases of trading, because too drastic over- or 
under-transacting of assets appears in the trading process. 
This can be seen in Fig. 7 and yields a larger negative effect 
on the portfolio under the condition of deducting transaction 
costs in trading. 

30m =

4.3  Portfolio Selection Results Using the Improved Mean- 
Variance Modeling Approach Proposed 

Figs. 8-10 show the portfolio selection results yielded by the 
proposed mean-variance model (8) without transaction costs, 
where the risk aversion factor 0.7µ = , the weighting matrix 

,  represents the identity matrix, 
the cost rate , and the efficient data horizon 

20.02R I= 2 2
2I ×∈ 2 2×

0ik = 7m = . 
Figs. 8-9 give the comparisons of gross asset and mean year 
rate-of-return between the optimal portfolio built by model (8) 
without transaction costs and the benchmark stock mentioned 
in Section 4.1. From Figs. 8-9 one can see that in the last half 
part of transacting, the gross asset and the mean year rate-of-
return of the optimal portfolio built by model (8) without 
transaction costs are very close to that of the target fund 
introduced in Section 4.2.  
 

Compared with the portfolio built by model (1) also without 
transaction costs showed in Figs. 2-3, the portfolio built by 
the proposed model (8) without transaction costs given in 
Figs. 8-9 reveals much better performance. This is because an 
additional penalty for the transacted assets is added to the 
mean-variance model (7) for avoiding too radical over- or 

under- transacting of assets, which is particularly useful in 
general case that the estimate of expected return and 
variance-covariance of a portfolio may be not so accurate, 
and thus such radical over- or under-transacting of assets will 
lead to a larger loss of portfolio performance, especially in 
case with transaction costs, as showed in Figs. 2-7. 
Comparing Fig. 10 and Fig. 4, it reveals that the transacting-
strength of assets in Fig. 10 is largely softened and smoothed 
by using strategy (8). Therefore, the performance of the 
portfolio built by model (8) is far better than that of the 
portfolio built by model (1) as showed in Figs. 8-9 and Figs. 
2-3 under the condition of using the same estimation 
approach to the expected return and variance-covariance.  
 

Figs. 11-13 give the portfolio selection results yielded by the 
proposed mean-variance model (8) with 0.2% transaction 
costs, where the risk aversion factor 0.7µ = , the weighting 
matrix 20.02R I= , the constant cost-rate , and the 
efficient data horizon 

0.2%ik =
7m = . In Fig. 12, the mean year rate-

of-return of the optimal portfolio built by model (8) with 
0.2% transaction costs is 1.06-2.35% higher than the mean 
year rate-of-return of the benchmark stock in the last half part 
of transacting; this is quite good from the practical point of 
view. Furthermore, comparing Fig. 13 and Fig. 7, one can see 
that the variation of transacted assets of the portfolio built by 
the proposed model (8) are mach smoother than that of the 
portfolio built by model (1), this is the reason for that the 
portfolio performance yielded by model (8) is far better than 
the portfolio performance yielded by model (1) as seen from 
the comparison between Figs. 11-12, and Figs. 5-6. 

5. CONCLUSIONS 

This paper proposed a novel mean-variance approach for 
optimal portfolio selection with transaction costs, which 
effectively avoided too drastic transaction of assets during 
portfolio selection process, and could be easily solved by a 
standard quadratic programming algorithm. This implies that 
the local minimum problem does not exist in the strategy 
proposed. The first order AR model applied for predicting the 
expected return and variance of a portfolio is simple but 
efficient. However, using other model better than AR model 
may yields better portfolio if using the mean-variance 
approach proposed in this paper. 
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Fig. 2.  Gross asset for the optimal portfolio based on two stocks 
built by mean-variance model (1) without transaction costs. 
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Fig. 3.  Mean year rate of return for the optimal portfolio built by 
mean-variance model (1) without transaction costs. 
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Fig. 4.  Two stocks assets and the corresponding transacted-assets 
for the optimal portfolio built by mean-variance model (1)  
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Fig. 5.  Gross asset for the optimal portfolio based on two stocks 
built by mean-variance model (1) with 0.2% transaction costs. 
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Fig. 6.  Mean year rate of return for the optimal portfolio built by 
mean-variance model (1) with 0.2% transaction costs. 
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Fig. 7.  Two stocks assets and the corresponding transacted-assets 
for the optimal portfolio built by mean-variance model (1) with 
0.2% transaction costs. 
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Fig. 8.  Gross asset for the optimal portfolio based on two stocks 
built by the proposed mean-variance model (8) without transaction 
costs. 
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Fig. 9.  Mean year rate of return for the optimal portfolio built by the 
proposed mean-variance model (8) without transaction costs. 
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Fig. 10.  Two stocks assets and the corresponding transacted-assets 
for the optimal portfolio built by the proposed mean-variance model 
(8) without transaction costs. 
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Fig. 11.  Gross asset for the optimal portfolio based on two stocks 
built by the proposed mean-variance model (8) with 0.2% 
transaction costs. 
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Fig. 12.  Mean year rate of return for the optimal portfolio built by 
the proposed mean-variance model (8) with 0.2% transaction costs. 
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Fig. 13.  Two stocks assets and the corresponding transacted-assets 
for the optimal portfolio built by the proposed mean-variance model 
(8) with 0.2% transaction costs. 

 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1632


