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Abstract: Consideration was given to identification of discrete processes, which is reducible to the 
functional decomposition of discrete functions, where by the decomposition is meant the representation 
of a function by a formula in the basis of binary operations. A procedure of optimal formula design was 
based on a novel approach of spectral expansion. Both exact and asymptotic complexity estimate of the 
designed formulas were given.  

 

1. INTRODUCTION 

Computer science and digital technology form a complex and 
wide subject that extends from social implementation of 
technological development to deep mathematical foundations 
of the techniques that make this development possible. In 
control science digital technology is used widely for discrete 
control. Explicit models are required by many of modern 
control methods including control design (Ikonen and Najim, 
2002). In the model-based approaches the controller can be 
seen as an algorithm operation on a model of the process 
(Fig. 1). 

 

Fig. 1. Discrete control 

From control design’s point of view, we need to construct 
discrete function representation. Decomposition of discrete 
function is one of the universal approaches to modeling 
(Astola and Stankovic, 2006). The function is represented as 
a composition of smallest-dimensionality functions. In limit 
required for practical purposes, the composition is 
constructed of the variables and operations, which are 
immediately realized by the computing facility. 

For discrete control it is required a compact representation of 
function. In spectral techniques there is an optimal method of 
synthesis called Karunen-Loev transformation (Achmed and 
Rao, 1980), where expansion is done in the eigenvectors of 
the function covariance matrix, thus providing its best root-
mean-square approximation.  

However, in distinction to Karunen-Loev transformation, in 
actual practice one needs to minimize not only the 
complexity of expansion, but also the complexity of function 
representation. Therefore, we pose the problem of designing 
the least-complexity formula representation of function. We 

note that such a problem does not arise with the Karunen-
Loev expansion. 

For the optimal Karunen-Loev expansion, the spectral 
functions are calculated with a certain degree of freedom, 
their number being equal to the number of nonzero 
eigenvalues. As the result, this transformation guarantees 
determination of the least complexity function expansion. We 
make use of the available degrees of freedom in the definition 
of the spectral functions and take their subset such that at the 
minimum complexity of expansion it also provided the 
minimum complexity of the function representation.  

Our approach is also similar to approach that uses linear 
independence of spectral function in the orthogonal 
expansion (Perkowski, 1992)  

This paper is devoted to the spectral discrete decomposition 
where the variables and functions assume values over 
arbitrary finite set and the choice of operations is not 
confined to any of their subsets. It is needed to design 
optimal formula representations of the discrete function. The 
gist of this approach lies in merging the algebraic methods 
and orthogonal expansions within a wide spectrum of 
operations. The analytical construction of the spectral 
expansion is used to find the upper estimate of the designed 
formulas. 

2. NOTATIONS AND DEFINITIONS 

For discrete coding of data, we take the integer sets 
}1,,1,0{ −= kNk K , where 0>k  is the number of elements 

in kN .  

2.1 Discrete function 

The function f  of one variable x  defined on set kN  is a 
map on kN  to 

fkN  such that each element x  of the 
definition domain kN  is related (corresponds) to a most one 
element )(xfy =  of the range space 

fkN . The number k  is 
called the digit capacity of the variable, fk , the digit 
capacity of the function. 

Let the function f  be defined on set 
nkkk NNN ××× K

21
 

and assume values on the set 
fkN , where ×  is the Cartesian 

product of sets. In this case, the function depends on n  
variables 1x , 2x , …, nx  with respective digit capacities 1k , 
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2k , …, nk , that is, ),,,( 21 nxxxfy K= , or )(Xfy = , 
where },,,{ 21 nxxxX K= .  

An arbitrary function is defined by the vector 
],,,[ 21 mfffF K=  and vector ],,,[ 21 nkkkK K=  of the 

digit capacities of the variables, nkkkm K21= , where the 
brackets are used to denote the vectors. 

2.2 Discrete operation 

By the operation is meant the function, which is essentially 
dependent on its variables. Operation is defined by the 
number of operands (variables) involved in the generation of 
its result. Obviously, if result on a r -place operation does not 
depend on one of the operands, then this operation should be 
regarded as ( 1−r )-place operation. 

The binary (two-place) operation may be defined by a matrix. 
The 21 kk ×  matrix defines a binary operation if it has at least 
one row (column) differing from the rest of the rows 
(columns). In this case, the first operand has the digit 
capacity 1k , and the second, 2k . 

Let the binary operation o  be defined by the matrix ][ ijy . 
Application of the binary operation o  to the variables 1x  and 

2x  will be denote by 
21

),]([ 2121 xxij yxxyxx ==o . 

2. SPECTRAL DECOMPOSITION 

The decomposition of a discrete function means its 
representation by a formula relating the variables and 
operations over them.  

Let f  be a discrete function of digit capacity fk  that 
depends on n  variables },,,{ 21 nxxxX K= . The variables 
digit capacities are },,,{ 21 nkkkK K= . We expand f  in 
some system of functions },1|)({ miXgG i ==  over finite 
field or integral domain >×+=< ,,kNR  defined on the 
discrete set kN ,  

 ∑
=

×=
m

i
ii hXgXf

1
)()( , (1) 

where kk f ≤ , ih  are expansion coefficients (the elements of 
R ).  

2.1 Spectral functions 

We demand an effective computation from spectral functions. 
For that let nn xxxxXg 132211   )( −= oLoo , where io  are 
some discrete operations. In this case, the spectral function 

)(Xg  may be written in matrix form, 
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where ∗  is used to denote arbitrary elements. 

Example 1.  Let the formula of function ),,( 321 xxxg  be 
defined in matrix form (2),  

 )(
01
20
12

112
201

2

3

1

2

1 Xg

x
x
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In this case, 32211)( xxxXg oo= , }2,3,2{=K  and 3=k . To 
find the vector g  we calculate its truth table (Table 1). As a 
result of calculation, we have the vector of function G , 

]020120102012[=G , where vector of digit capacities K  is 
]232[ . 

Table 1. Truth table of function 

1x  2x  3x  g  
0 0 0 0 
1 0 0 1 
0 1 0 2 
1 1 0 0 
0 2 0 1 
1 2 0 0 
0 0 1 2 
1 0 1 0 
0 1 1 1 
1 1 1 2 
0 2 1 0 
1 2 1 2 

 
Example 2. Let the spectral function g  be defined by the 
vectors G  and K , ]102010210111011020[=G , ]323[=K . 
To represent the function in matrix form (2) we construct of 
its matrix pattern, 
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Now we replace the numbers of the function points into 
matrix of operation 2o  by the values of function, 
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We reduce the operation 2o  by finding the same rows into 
the matrix and replace numbers of these rows into the matrix 
of the operation 1o . After deletion of duplicate rows, we have 
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or, in symbolic form, 

 32211)( xxxXg oo= , 

where  
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2.2 Reductive spectral expansion 

As τ×′=× )()( XghXg iii , where τ  is a neutral element of 
the algebra R  relative to the multiplication (unit), the 
function )(Xgi′  is got from the function )(Xgi  by 
multiplication the matrix of last operation 1−no  by the 
constant ih . Then the spectral expansion (1) may be 
represented as matrix equation, 
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where some coefficients are equal to zero σ  (a neutral 
element of the algebra R  relative to the addition) and the 
residuary coefficients equal to unit τ . 

Because of zero coefficients existence, we need only M  
spectral functions in expansion (1),  

 τ×= ∑
=

M

i
i XgXf

1
)()( ,   mM ≤ . 

From )()( XgXg ii =τ× , we have  

 ∑
=

=
M

i
i XgXf

1
)()( .  (3) 

Hence the requirements of the algebra R  can be weaken and 
the reductive expansion (3) can be fulfilled over a group 

>+< ,kN  defined on the set kN  by binary operation +  that 
is called addition, such that for all a  and b  the equations 

bxa =+  and bax =+  have unique solutions with respect 
to kNx ∈ . It is meant that the addition matrix has no 
repeating elements in each row and column. 

Example 3.  A formula to compute the first 24 decimal digits 
of 4626535897932383.14159265=π  modulo 3 is required. 
In this case, ] 020222010020210111202020[=F  and 

]2223[=K . Let >+=< ,3NR  and  
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where 0=σ  and each row and each column has no repeating 
elements. Then function f  has the following representation, 

 )()()( 21 XgXgXf += , 

where 
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2.3 Upper Bound Estimate 

For the maximum number of addends in (3) required to 
realize an arbitrary function on n  variables with the digit 
capacities 1k , 2k  … nk , it was found (Vykhovanets, 2006), 
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where α  is the parameter, 10 <α< , which called the 
generating ability of the analytical construction (2), and β  is 
the correction coefficient taking into account the initial 
generating ability of the construction. 

Estimate (4) can be interpreted in rather simple descriptive 
terms. The upper bound of the degrees of freedom of the 
analytical representation (3) is smaller then the operations 
total area. The lower bound is equivalent to the area, which is 
obtained by deleting one row of each operation but the first 
one.  

Fig. 2 depicts the generating ability α  vs. the number of 
variables n . Calculation was carried out for identical digit 
capacities of the group G , function, and their variables.  

We note that with growing n  the parameter α  tends 
asymptotically to some value kα , which is referred to as the 
limit generating ability. 
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Fig. 2. Generating ability of finite region 

We establish from (4) for ∞→n  that  
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Analysis of (5) and Fig. 3 show that the limit generating 
ability kα  tends to unity with k , but its least value is 
attained for 4=k .  

 

Fig. 3. Limit generating ability  

Example 4. For spectral expansion of the function from 
Example 3, it is required 2=M  addends,  

 57.1
)78.122(9

24  
75.03

1 ≈
−+−−

≤M .  

3. SPECTRAL SYNTHESIS 

The base operation in spectral synthesis of discrete functions 
is the representation of vector as composition of operations, 
which may be defined by unknown matrices from (2). 

3.1 Matrix decomposition 

For a given vectors F  and K , let us find 1−n  matrices to , 
1,1 −= nt , such that )()( XgXf = , where )(Xg  is a 

spectral function. Let the matrices io  be defined by recurrent 
rule, 
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where 10 =K , 1,0 1 −= −tKi , 1,0 1 −= +tkj , and 
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where qf  is the q th element of vector F . 

For an arbitrary function f , we obtain the matrices to , such 
as )()( XgXf = , where the digit capacities of the operations 
are greater then k  (see Example 2). 

3.2 Reduction of operations 

The next step in spectral synthesis consists of the reduction of 
)(Xg  and corresponding modification of to , such that its 

digit capacities have to equal to k . Like approach was used 
for polynomial factorization of spectral bases (Vykhovanets, 
2004). 

For this purpose, the rows of the matrices to  are subdivided 
in equivalent classes. The matrix to  itself is transformed to a 
form containing one row from each classes. 

Let },,,{ 110 −uCCC K  be the equivalent classes of the rows 
consisting of indexes of identical rows (or comparable rows if 
the row contains unspecified value). The reduced matrix is 
constructed as follows: the i th row of new matrix is taken to 
be a row from the class iC .  

To preserve equality )()( XgXf = , all elements iCc ∈  of 
the matrix 1−to  must be replaced by i . We obtain new 
matrices 1−to  and to  such that they have no duplicate rows.  

If the dimension of to  is not greater then k , then reduction 
of to  is assumed to be successful and the matrix of 1−to  must 
be reduced. Otherwise, we choose only k  rows of to  and 
repeat replacing the indexes of 1−to  so that the indexes, 
which have no corresponded rows of to , are replaced by 
asterisk (unspecified value). 

3.3 Residual vector 

When we have )()( XgXf ≠ , we need to calculate residual 
vector GFF −=′  over group R  by solving the equation 

ffg =′+  with respect to f ′  for all elements g  and f  of 
vectors G  and F  correspondently.  

In the next step the decomposition, the vector F′  is used as 
new vector of decompose function. If the vector F′  equals to 
zero, then the decomposition of f  is finished. 

Thus, the spectral decomposition can be described by the 
following recurrent rule, 
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where 1−iG  is the reduction of 1−iF , σ  is left zero of the 
group R . 
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3.4 Swapping variables 

To minimize the number of equivalent classes we use 
variable swapping. We establish a one-one correspondence 
between the value i  of the variable mNX ∈  and the values 

ji  of the variables jx  by representing the number i  in a n -
digit positional system with bases defined by the digits 
capacities of variables: 

 
11

)( 11 kkknn nn
iiii KK

−−= , 

where ji  is j th digit in the representation of the number i  
in the positional notation with vector of bases 

][ 21 nkkk K=K .  

If we change the order of variables from ] [ KKK qp xx=X  
to ] [ KKK pq xx=′X  for calculating )(if ′ , then we need 
swap the correspondents digit capacities in vector of bases 
from ] [ KKK qp kk=K  to ] [ KKK pq kk=′K . 

It is very important that we need swap only the last variable 
of X  as the reduction of the last operation 1−no  does not 
depend of the order of variables expect for the last one. 

Example 5.  Now the formal representation of function from 
Example 3 will be synthesized. At first we change orders of 
variables and calculate new vectors of values for various last 
variable (Table 2).  

Table 2. Swapping variables 
X  F  

]   [ 4321 xxxx  0202]22010020210111202020[  
]   [ 3214 xxxx  0002]21200012200221001221[  
]   [ 2143 xxxx  2012]02122020100220201001[  
]   [ 1432 xxxx  0122]00110002100122220022[  

 
The very best of orders is ]   [ 3214 xxxx=X , where the last 
matrix of operation has the least number of equivalent 
classes. In this case, we have 
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where are the following equivalent classes: }5,0{0 =C , 
}10,8,7,2,1{1 =C , }9,3{2 =C , }4{3 =C , and }11,6{4 =C .  

Now we must choose only k  classes, where k  is the digit 
capacity of group R , 3=k . Obviously the classes 0C , 1C  
and 2C  are ensured the most covering of the matrix 3o .  

Thus, after the reducing of 3o , we obtain 
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where asterisk is used when there is no required row into the 
matrix of operation 13o . 

After the swapping variables ]  [ 214 xxx  and the reducing of 
12o  we have 
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where elements denoted by asterisk are used to minimize the 
number of the rows classes.  

Let us calculate the vector 1G  and the residual vector 2F ,  

 ]000022200022000221002221[1 =G , 

 0002]21200012200221001221[112 =−= GFF .  

In the same way we derive from 2F  the following results: 

 )(
20
22
00

02
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00
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20
01

2

23

3

22

2

21

1

4 Xg

xxx

x →
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ooo

, 

 ]000202000020200000002000[2 =G , 

 ]000000000000000000000000[3 =F . 

Finally we find  

 21 GGF += , 

 )()()( 21 XgXgXf += ,  

 32322212143132121114)( xxxxxxxxXf oooooo += , 

where  

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

20
20
12

11o , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01
22
00

12o , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01
20
02

13o , 
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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01

21o , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

02
10
00

22o , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

20
22
00

23o . 

4. EFFICIENCY 

To study computation of discrete function, we use efficiency 
criteria witch taking into account both computation time and 
size of memory required to compute. 

4.1 Criteria of efficiency 

We introduce the following criteria for efficiency of the 
spectral expansion: 

 
S

T

S

T

T
T

V
VE = , (6) 

where SV  is the size of memory required to the spectral 
expansion, TV  is the size of memory required to store the 
truth table of function, ST  is the time required to calculate a 
value of function by spectral expansion, and TT  is the time 
required to calculate a value of function by tabular method. 

Thus, we calculate the efficiencies relatively tabular 
implementation of discrete functions, which is function-
invariant. It is allowed one not only to compare different 
representations of the same function, but different 
representations of different functions as well.  

4.2 Efficiency of spectral expansion 

Let us estimate memory and time requirements of the tabular 
and of the optimal spectral method, 

 ∏
=

=
n

i
iT kV

1
, 1=TT ; 

 1=SV , 
∑

∏

=

=

β−α−
≤ n

i
i

n

i
i

S
k

k

k
nT

1

1 . 

Then the efficiency of the reductive spectral expansion (6) 
can be written so, 

 1)( >⎟
⎠
⎞

⎜
⎝
⎛ β−α−≥

n
kkE , 

where k  is the mean digit capacity of the variables. In 
asymptotic region, we have 

 kkE k )(~ α− . 

Example 6.  Let us calculate efficiency of the spectral 
expansion of the function from Example 5, 

 81.3)
75.03

432)(75.03(
4
1 ≈

−
−+−=E . 

4.3 Efficiency of implementation 

We note that to implement the tabular computation it is 
necessary to calculate an entry x  into truth vector of 
function, 

 ))(( 122211 KK nn xkxkxkxx −++++= , 

what requires )1(2 −n  units of time. It increases the 
efficiency of computation in spectral form. And the spectral 
expansion requires some hardware to implement its 
operations.  

In contrast to the tabular method, we may also use parallel 
computation of the spectral expansion (Fig. 4). 

 

Fig. 4. Parallel computation of the spectral expansion 

In this case, )1( −nM  operations may be fulfilled 
simultaneously, what requires units of time equal to 1−n . 
From (6) and 2−+≤ nMTS , we find 

 
∏∑

∏∑

==

==

+⎟
⎠

⎞
⎜
⎝

⎛ β−α−−

⎟
⎠

⎞
⎜
⎝

⎛ β−α−
≥

n

i
i

n

i
i

n

i
i

n

i
i

kkkn

kkk
E

11

11

))(2(

)(
.  (7) 

Example 7.  Let us calculate efficiency of the parallel 
computation of function from Example 5. Using (7), we have 

71.6≈E . 
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