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Abstract: Tracking control for switched linear systems with time-delay is investigated in
this paper. Sufficient conditions for the solvability of the tracking control problem are given
respectively for the cases that the state of system is measurable and unmeasurable.When the
state is measurable, we design a switching control law to achieve the H∞ model reference tracking
performance. When the state is not available, the design of a switching control law based on
measured output instead of the state information is considered. Lyapunov function methods are
utilized to the stability analysis and controller design for the switched linear systems with time-
delay. By using linear matrix inequalities and convex optimization techniques, the controller
design problem can be solved efficiently. The simulation examples show the validity of the
switching control laws.

1. INTRODUCTION

Switched systems, due to their significance both in the-
ory development and practical applications, have been
attracting considerable attention in recent years (see, e.g.,
Liberzon [1999], Hespanha and Morse [1999], Zhao and
Dimirovski [2004]). As an important class of hybrid sys-
tems, switched systems have hybrid features comprising
of a family of subsystems described by continuous or dis-
crete time dynamics, and a rule specifying the switching
among them. As useful tools, Lyapunov functions can deal
with the stability problems for switched systems, although
certain switching laws incorporated with compatible infor-
mation sometimes should be designed (see, e.g., Branicky
[1998], Hespanha and Morse [1999]).
On the other hand, it is well known that time-delays, which
are the inherent features of many engineering process,
are great sources of instability and poor performance. So,
many researchers have devoted to the study of systems
with time-delay (see, Hale [1977], Dugard and Verrist
[1998], Kharitonov [1999]). Since switched systems with
time-delay have strong engineering background, special
attention has been attracted, and several useful results
have been reported in the literature such as the issues on
stability analysis (Zhai et al. [2000], Sun et al. [2006]),
optimal control (Wu et al. [2006]), and so on. The impor-
tance of the study of tracking control for switched systems
with time-delay arises from the extensive applications in
robot tracking control (Zhou et al. [1996]), guided mis-
sile tracking control, etc. However, to the authors’ best
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knowledge, up to now, the issue of tracking control, which
has been well addressed for non-switched systems without
delay (Schmitendorf and Barmish [1986]), has been rarely
investigated for switched linear systems with time-delay.
In this paper, we investigate the problem of tracking
control for switched linear systems with time-delay. Suf-
ficient conditions for the solvability of the tracking control
problem are given for the cases that the state of a system
is measurable and unmeasurable, respectively. When the
state is measurable, we use single Lyapunov function tech-
nique to design tracking controllers and a switching law
such that the H∞ model reference tracking performance
is satisfied; and when the state is not available, we design
observer-based tracking control laws. The method in (Sun
and Ge [2005]) is extended to the design of the switching
controllers. Meanwhile, multiple Lyapunov functions are
used to the design of the tracking control problem. The
feasibility of the problem can be realized by convex opti-
mization techniques and linear matrix inequalities (LMIs).
Finally, the simulation examples show the validity of the
proposed methods.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper, we use P > 0 (≥, <,≤ 0) to denote a
positive definite (semi-definite, negative definite, semi-
negative definite) matrices P . The superscript “T” stands
for matrix transpose; and the symmetric terms in a matrix
are denoted by ∗, R

n denotes the n dimensional Euclidean
space; L2[0,∞) is the space of square integrable functions
on [0,∞) and ‖ · ‖ stands for the usual 2-norm. Let xt

be defined by xt(θ) = x(t + θ), θ ∈ [−τ, 0] and ‖xt‖cl =
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sup−τ≤t≤0 ‖x(t + θ)‖.
Consider the switched linear time-delay system

{

ẋ(t) = Aσx(t) + Dσx(t − τ) + Bσu(t) + ω(t),
φ(θ) = x(t + θ), θ ∈ [−τ, 0], x(0) = φ(0) = 0,
y(t) = Cσx(t), t ∈ [0,∞),

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

p is the con-
trol input, ω(t) ∈ R

n is bounded exogenous disturbance;
y(t) ∈ R

q is the output, φ(t) is the continuous vector
valued function specifying the initial state of the sys-
tem, τ > 0 is the constant, the right continuous func-
tion σ(t) : [0,∞) → N , {1, 2, · · · , N} is the switch-
ing signal which can be characterized by the switch-
ing sequence Σ = {x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · |ij ∈
N, j = 0, 1, · · · }. Moreover, σ(t) = i implies that the ith
subsystem (Ai, Di, Bi, Ci) is active, where Ai, Di, Bi and
Ci are constant matrices of appropriate dimensions, i ∈ N .
For simplicity, we denote σ := σ(t).
Given a reference model

ẋr(t) = Arxr(t) + r(t), xr(0) = 0, (2)

and performance index
∫ tf

0

eT
r (t)er(t)dt < γ2

∫ tf

0

̟T (t)̟(t)dt, (3)

where xr(t) ∈ R
n is reference state, Ar is a Hurwitz

matrix, r(t) is bounded reference input; er(t) = x(t) −
xr(t) denotes the error between the real state of the
switched system (1) and the reference state; tf is the
control terminated time; ̟(t) = (ωT (t), rT (t))T , γ > 0
is disturbance attenuation level.
Combining (1) with (2), we get the augmented system

[

ẋ(t)
ẋr(t)

]

=

[

Aσx(t) + Dσx(t − τ) + Bσu(t)
Arxr(t)

]

+

[

ω(t)
r(t)

]

.

(4)

Definition 1. For system (4), if there exist control input
u = u(t) and switching signal σ = σ(t) such that (4) is
asymptotically stable when ̟ ≡ 0 and (3) is satisfied when
̟ 6= 0 under the initial conditions stated in (1) and (2),
then the switched system (1) is said to have H∞ model
reference tracking performance.
Our purpose is to design a tracking controller u(t) =
Kσ(t)er(t) and a switching law such that system (1) has
the H∞ model reference tracking performance.
To conclude this section, we recall the following lemma.
Lemma 1 (Cao [1998]). Let M, N be real matrices of
appropriate dimensions. Then, for any matrix Q > 0 of
appropriate dimension and any scalar γ > 0, the following
inequality holds

MN + NT MT ≤ γ−1MQ−1MT + γNT QN. (5)

3. PERFORMANCE ANALYSIS AND CONTROLLER
DESIGN

3.1 The measurable state case

We first consider the case that the state of system (1) is
measurable. We will show how to design state feedback
gain Ki and a switching law σ(t) such that the H∞ model
reference tracking performance is satisfied.
For a fixed switching signal σ(t) = i, consider the ith sub-
system with the state feedback controller u(t) = Kier(t).
The augmented system (4) can be rewritten as

˙̄x(t) = Āix̄(t) + D̄ix̄(t − τ) + ̟(t), (6)

where

x̄(t) =

[

x(t)
xr(t)

]

, Āi =

[

Ai + BiKi−BiKi

0 Ar

]

, D̄i =

[

Di0
0 0

]

Consider the following closed-loop switched linear system
with time-delay,

˙̄x(t) = Āσx̄(t) + D̄σx̄(t − τ) + ̟(t). (7)

We have the following result.

Theorem 1. For the augmented system (7), if there exist
positive definite matrices P, S, matrices Ki, and scalars

αi > 0, i ∈ N,
∑N

i=1 αi = 1, such that










N
∑

i=1

αiΞi + Q̄
N

∑

i=1

αiPD̄i P

∗ −S 0
∗ ∗ −γ2I











< 0 (8)

holds, then the feedback controller u(t) = Kσer(t) for
system (4), such that the H∞ model reference tracking per-
formance in (1) is guaranteed, the corresponding switching
law is given by

σ(t) = i, if

[

x̄(t)
x̄(t − τ)

]

, ξ(t) ∈ Ωi, ∀t ≥ 0, (9)

where

Ξi = ĀT
i P + PĀi + S, Q̄ =

[

I −I
−I I

]

.

Ωi =

{

y ∈ R4n|yT

[

Πi PD̄i

∗ −S

]

y < 0

}

, (10)

in which Πi = Ξi + γ−2PP + Q̄.

Proof. By Schur complement lemma, the condition (8) is
equivalent to the following inequality







N
∑

i=1

αiΠi

N
∑

i=1

αiPD̄i

∗ −S






< 0. (11)

Obviously, we have
⋃

Ωi = R4n\{0}. Define a Lyapunov-
Krasovskii functional candidate

V (x̄(t)) = x̄T (t)Px̄(t) +

∫ t

t−τ

x̄T (σ)Sx̄(σ)dσ, (12)

which is positive definite since P and S are positive definite
matrices.
First, we will prove that the system (7) is asymptotically
stable while ̟(t) ≡ 0.
For any t ≥ 0, there exists i ∈ N such that ξ(t) ∈ Ωi, which
means σ(t) = i, that is , the ith subsystem is active. From
(10) we can get

[

Ξi PD̄i

∗ −S

]

<

[

−Q̄ − γ−2PP 0
0 0

]

≤ 0. (13)

Therefore, we have

dV (x̄(t))

dt
= ξT (t)

[

Ξi PD̄i

∗ −S

]

ξ(t) < 0, (14)

which implies asymptotic stability of the switched systems
(7) with ̟(t) ≡ 0.

Next, we prove
∫ tf

0
eT
r (t)er(t)dt < γ2

∫ tf

0
̟T (t)̟(t)dt un-

der the zero initial condition and with ̟(t) 6= 0.
Differentiating the Lyapunov-Krasovskii functional candi-
date along the trajectories x̄(t) of the system (7) gives

dV (x̄(t))

dt
= ξT (t)

[

Ξi PD̄i

∗ −S

]

ξ(t) + 2x̄T (t)P̟(t). (15)
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Applying Lemma 1, we get

2x̄T (t)P̟(t) ≤ γ−2x̄T (t)PP x̄(t) + γ2̟T (t)̟(t). (16)

Then
dV (x̄(t))

dt
≤ ξT (t)

[

Ξi + γ−2PP PD̄i

∗ −S

]

ξ(t) + γ2̟T (t)̟(t).

(17)

By the condition (10), it holds that
[

Ξi + γ−2PP PD̄i

∗ −S

]

<

[

−Q̄ 0
0 0

]

. (18)

Substituting (18) into (17), we obtain

dV (x̄(t))

dt
< −x̄T (t)Q̄x̄(t) + γ2̟T (t)̟(t), (19)

where

x̄T (t)Q̄x̄(t) =

[

x(t)
xr(t)

]T [

I −I
−I I

] [

x(t)
xr(t)

]

= eT
r (t)er(t).

(20)

Substituting (20) into (19) results in

dV (x̄(t))

dt
< −eT

r (t)er(t) + γ2̟T (t)̟(t), (21)

Integrating both sides of (21) from zero to tf yields

∫ tf

0

∑

ij∈N

V̇ (x̄(t))dt =

tf
∑

j=0

∑

ij∈N

∫ tij+1

tij

V̇ (x̄(t))dt

= V (x̄(tf )) − V (x̄(0))

< −

∫ tf

0

eT
r (t)er(t)dt + γ2

∫ tf

0

̟T (t)̟(t)dt.

According to the zero initial condition and V (x̄(t)) being
positive definite, it is easy to derive

∫ tf

0

eT
r (t)er(t)dt < γ2

∫ tf

0

̟T (t)̟(t)dt

which completes the proof. ¤

Remark 1. Theorem 1 presents a sufficient condition for the
solvability of the problem of H∞ model reference tracking
control. Although we might seek N controllers u(t) =
Kier(t) for N subsystems according to (8). It is noticed
that the ith subsystem of (1) usually cannot achieve the
H∞ model reference tracking performance, this is because
the Lyapunov function does not decrease along the solu-

tion of the subsystem whenever
[

xT (t) xT (t − τ)
]T

/∈ Ωi.
Therefore, in order to get the whole H∞ model refer-
ence tracking performance for switched system, switching
should be designed among subsystems.
Remark 2. Theorem 1 does not give a method of getting
the positive definite matrices P, S, and Ki. We now convert
(8) into LMIs, then apply convex optimization techniques.

Denote P̂ = P−1, Ŝ = P̂SP̂ , and let P̂ =

[

P̃ 0

0 P̃

]

, Ŝ =
[

S̃1 0

0 S̃2

]

. Multiplying both sides of (8) by the matrix

diag{P−1, P−1, I}, we have

N
∑

i=1

αi





℘i D̄iP̂ P̂

∗ Ŝ 0
∗ ∗ −γ2I



 < 0, (22)

where

℘i =

[

P̃AT
i + AiP̃ + XT

i BT
i + BiXi + S̃1

−XT
i BT

i

−BiXi

P̃AT
r + ArP̃ + S̃2

]

with Xi = KiP̃ .
Once we have P̃ , S̃1, S̃2 from (22), the tracking controller

u(t)=Kier(t), with Ki =XiP̃
−1, i∈ N can be constructed.

3.2 The unmeasurable state case

In this subsection, we will investigate the possibility of
designing observer-based tracking control laws when the
state is not available. For the convenience of designing,
we will use multiple Lyapunov function method rather
than single Lyapunov function method which used for the
measurable state case.
Consider the state estimator given by

˙̂x(t) = Aσx̂(t)+Dσx̂(t−τ)+Bσu(t)+Lσ(y(t)−ŷ(t)) (23a)

ŷ(t) = Cσx̂(t) (23b)

in which y(t) and σ(t) are the measurable output and
switching signal of system (1), respectively. The matrices
L1, L2, · · · , LN ∈ Rn×q are to be determined later.
Define the difference between the real state and the esti-
mator state as

e(t) = x(t) − x̂(t). (24)

From (1) and (23a), we have

ė(t) = (Aσ − LσCσ)e(t) + Dσe(t − τ) + ω(t). (25)

Assumption 1. There exist positive definite matrices X, G
and matrices Yi, such that

Φi :=AT
i X + XAi − CT

i Y T
i − YiCi

+G + XDiG
−1DT

i X < 0. (26)

Remark 3. The above assumption asserts the existence
of a common Lyapunov-Krasovskii functional candidate
V (e(t)) for the switched linear time-delay system

ė(t) = (Aσ − LσCσ)e(t) + Dσe(t − τ). (27)

In fact, let Li = X−1Yi, and choose

V (e(t)) = eT (t)Xe(t) +

∫ t

t−τ

eT (s)Ge(s)ds

as a Lyapunov-Krasovskii functional candidate. It is easy
to show that there exist scalars α1 > 0, α2 > 0, such that

α1‖e(t)‖
2 ≤ V (e(t)) ≤ α2‖e(t)‖

2
cl.

Moreover,

‖e(t)‖ ≤

√

α2

α1
e−

λ
2α1

(t−t0)‖e(t0)‖cl

holds with λ being the smallest eigenvalue of the matrices
Φi. This implies that the system (27) is exponentially
stable under arbitrary switching.
Now, define the estimation error between the observer
state and the reference state as

êr(t) = x̂(t) − xr(t), (28)

and the difference between the real state and the reference
state as

er(t) = x(t) − xr(t),

Design the estimation error feedback control law

u(t) = Kσ êr(t). (29)
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Combining (23a), (2) with (24), (25), (28) and (29), we
have the augmented switching linear time-delay system as
follows:

ė(t) = (Aσ − LσCσ)e(t) + Dσe(t − τ) + ω(t), (30a)






˙̂x(t) = Aσx̂(t) + Dσx̂(t − τ) + BσKσ êr(t)
+LσCσe(t),

ẋr(t) = Arxr(t) + r(t).
(30b)

Let

x̃(t) =

[

x̂(t)
xr(t)

]

, D̃ =

[

Dσ0
0 0

]

, Q̃ =

[

I −I
−I I

]

Ãσ =

[

Aσ + BσKσ−BσKσ

0 Ar

]

, fσ(t) =

[

LσCσe(t)
r(t)

]

.

Then, (30b) can be rewritten as

˙̃x(t) = Ãσx̃(t) + D̃σx̃(t − τ) + fσ(t). (30b’)

Take ˙̃x(t) = Ãσx̃(t) + D̃σx̃(t − τ) as the nominal system
of (30b’) and e(t) as the exoteric disturbance of (25),
and further, fσ(t) can also be viewed as the exoteric
disturbance of (30b’).
Assumption 2. There exist T ≥ t0, and β > 0, such that
when t > T , it holds that

fT
i (t)fi(t) < βx̃T (t)x̃(t).

Theorem 2. For system (30), suppose that Assumption 1
and Assumption 2 hold. If there exist positive definite
matrices Pi, S, matrices Ki, and scalars αij > 0, (i, j ∈ N),
such that the following matrices inequalities hold,

[

∆i PiD̃i

∗ −S

]

< 0, (31)

where

∆i =ÃT
i Pi + PiÃi + S + βI + PiPi + Q̃

+
∑

j 6=i, j∈N

αi,j(Pj − Pi),

then the feedback controller u(t) = Kσ êr(t) for the aug-
mented system (23), such that the H∞ model reference
tracking performance in (1) is guaranteed, the correspond-
ing switching law is given as

σ(t) = arg min
i∈N

{x̃T (t)Pix̃(t)}. (32)

Proof. Design Lyapunov-Krasovskii functional candidate

V (x̃(t)) = x̃T (t)Pσ(t)x̃(t) +

∫ t

t−τ

x̃T (s)Sx̃(s)ds. (33)

Obviously, the Lyapunov-Krasovskii functional candidate
is positive definite.
First, we prove asymptotic stability of system (30) with

̟(t) ≡ 0. Let ζ(t) =
[

x̃T (t) x̃T (t − τ)
]T

. For any t > 0,
the jth switching instant is denoted by tj−1(j ≥ 1).
During any time interval [tj−1, tj), suppose that the ith
subsystem is active. The time derivative of V (x̃(t)) along
the trajectory of (30b’) with ̟(t) = 0 is

dV (x̃(t))

dt
= ζT (t)

[

ÃT
i Pi + PiÃi + S PiD̃i

∗ −S

]

ζ(t)

+ 2x̃T (t)Pifi(t). (34)

Note that fi(t) =

[

LiCie(t)
0

]

, by Lemma 1, we have

2x̃T (t)Pifi(t) ≤ fT
i (t)fi(t) + x̃T (t)PiPix̃(t). (35)

Assumption 1 guarantees e(t) → 0 (t → ∞), which in turn
gives fi(t) → 0 (t → ∞). Assumption 2 guarantees that
there exist T > t0, and scalar β > 0, such that when
t > T , it holds

fT
i (t)fi(t) < βx̃T (t)x̃(t) (36)

It follows from (34), (35) and (36), that

dV (x̃(t))

dt
< ζT (t)

[

Σi PiD̃i

∗ −S

]

ζ(t). (37)

where Σi = ÃT
i Pi + PiÃi + S + βI + PiPi.

By virtue of the designed switching law (32), there holds

x̃T (t)(
∑

j 6=i, j∈N

αij(Pj − Pi))x̃(t) ≥ 0,∀t ∈ R2n.

Also we note that Q̃ =

[

I −I
−I I

]

, we obtain

dV (x̃(t))

dt
<

[

x̃(t)
x̃(t − τ)

]T [

∆i PiD̃i

∗ −S

] [

x̃(t)
x̃(t − τ)

]

.

in which ∆i = Σi + Q̃ +
∑

j 6=i, j∈N αij(Pj − Pi).

With the condition (31), during [tj−1, tj), we easily get
dV (x̃(t))

dt
< 0 when ζ(t) =

[

x̃T (t) x̃T (t − τ)
]T

6= 0.
In addition, by the switching law (32), at the switching
instant tj , we have

x̃T (tj)Pσ(tj)x̃(tj) ≤ lim
t→t

−

j

x̃T (t)Pσ(t)x̃(t),

which implies V (x̃T (tj)) ≤ limt→t
−

j
V (x̃T (t)). So, with the

multiple Lyapunov functions technique (Branicky [1998]),
system (30) with ̟(t) = 0 is asymptotically stable under
the switching law (32).
Secondly, we prove under zero initial condition with

̟(t) 6= 0 that
∫ tf

0
eT
r (t)er(t)dt < γ2

∫ tf

0
̟T (t)̟(t)dt.

Again, assume σ(t) = i, t ∈ [tj−1, tj). Therefore

x̃T (t)(
∑

j 6=i, j∈N

αij(Pj − Pi))x̃(t) ≥ 0.

Differentiating the Lyapunov-Krasovskii functional candi-
date V (x̃(t)) along the trajectory of the system (30b’) with
̟(t) 6= 0, and taking (31) into account, we have

dV (x̃(t))

dt
< ζT (t)

[

Σi PiD̃i

∗ −S

]

ζ(t)

≤ ζT (t)

[

−Q̃0
0 0

]

ζ(t) = −êT
r (t)êr(t).

(38)

Note that êr(t) = er(t) − e(t), using Lemma 1 with
Q = diag{ 1

2 , · · · , 1
2} ∈ R

n×n gives

−êT
r (t)êr(t) =−eT

r (t)er(t) − eT (t)e(t) + 2eT
r (t)e(t)

≤−eT
r (t)er(t) − eT (t)e(t)

+eT
r (t)Qer(t) + eT (t)Q−1e(t)

=−
1

2
eT
r (t)er(t) + ‖e(t)‖2. (39)

Assumption 1 gives that the nominal system of (30a) is
exponentially stable, according to Variation-of-constants
(Hale [1977]), when et(0) = e(0) = 0, there exist constants
α > 0, 0 < k ≤ 1 such that

‖et(t, ω)‖ ≤

∫ t

0

ke−α(t−s)‖ω(s)‖ds (40)
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holds for (30a), and according to Cauchy-Schwartz In-
equality, there has (Li et al. [2008])

‖e(t)‖2 ≤
k2

β

∫ t

0

e−β(t−s)‖ω(s)‖2ds. (41)

Substituting (39), (41) into (38) gives rise to

dV (x̃(t))

dt
< −

1

2
eT
r (t)er(t) +

k2

β

∫ t

0

e−β(t−s)‖ω(s)‖2ds.

(42)
Integrating (42) from zero to tf , we get

∫ tf

0

∑

ij∈N

V̇ (x̃(t))dt =

tf
∑

j=0

∑

ij∈N

∫ tij+1

tij

V̇ (x̃(t))dt

< −
1

2

∫ tf

0

eT
r (t)er(t)dt +

k2

β

∫ tf

0

∫ t

0

e−β(t−s)‖ω(s)‖2dsdt

< −
1

2

∫ tf

0

eT
r (t)er(t)dt +

k2

β2

∫ tf

0

‖ω(s)‖2dt

< −
1

2

∫ tf

0

eT
r (t)er(t)dt +

1

2
γ2

∫ tf

0

̟T (t)̟(t)dt, (43)

where 2k2

β2 ≤ γ2.

Again, taking the switching law (32) into account, on the
switching instant tj , it holds

V (x̃(tj)) ≤ V (x̃(t−j )). (44)

Substituting (44) into the expansion of the left side of (43),
yields

V (x̃(tf )) − V (x̃(t0))

≤ V (x̃(tf )) − V (x̃(tf−1)) + V (x̃(t−f−1))

− V (x̃(tf−2)) + · · · + V (x̃(t−1 )) − V (x̃(t0))

=

∫ tf

0

∑

ij∈N

V̇ (x̃(t))dt =

tf
∑

j=0

∑

ij∈N

∫ tij+1

tij

V̇ (x̃(t))dt

< −

∫ tf

0

eT
r (t)er(t)dt + γ2

∫ tf

0

̟T (t)̟(t)dt.

By the zero initial condition and the positive definiteness

of V (x̃(t)),
∫ tf

0
eT
r (t)er(t)dt < γ2

∫ tf

0
̟T (t)̟(t)dt holds.

4. NUMERICAL EXAMPLES

We illustrate the main results by examples in this section.
Example 1. Consider the systems (1) and the reference
system (2) with

A1 =

[

1.2 0
3.6−2.2

]

, D1 =

[

0.5 0.8
−0.1 −0.4

]

, Ar =

[

−1.5−1.2
2 1.2

]

;

A2 =

[

1.5 1.7
0 −3.3

]

, D2 =

[

0.3 0.2
0.1 0.3

]

, B1 =

[

0
−0.3

]

, B2 =

[

1.3
0

]

.

Consider the closed-loop switched linear time-delay sys-
tems (7) with the measurable state case.
To solve the inequality (22), we take the following param-
eters: γ = 0.7, τ = 3, so we have

P =

[

P̃−1 0

0 P̃−1

]

, where P̃ =

[

0.2227 −0.1388
−0.1388 0.2677

]

;

S = P−1

[

S̃10

0 S̃2

]

P−1, where

0 5 10 15 20
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Fig. 1. State tracking with switching control.

S̃1 =

[

0.4370 −0.1028
−0.1028 6.5786

]

, S̃2 =

[

6.9846 0.3230
0.3230 0.7246

]

;

X1 = [−0.1019 0.3278] , X2 = [−0.7544 0.1639] ;
K1 = [4.0344 14.3356] ,K2 = [−4.4402 −1.6902] .

According to Theorem 1, the switching region are

Ωi = {y ∈ R4n|yT Wiy < 0}, i = 1, 2,

where

W1 =

[

X11 X12

∗ X22

]

, W2 =

[

Y11 Y12

∗ Y22

]

,

in which

X11 =







165.8484 169.1334 −1 0
∗ 189.6761 22.8229 26.8988
∗ ∗ 359.4153 236.2133
∗ ∗ ∗ 187.2741






,

Y11 =







89.3348 142.9769 44.8530 31.9824
∗ 208.5541 0 −1
∗ ∗ 359.4153 236.2133
∗ ∗ ∗ 187.2741






,

X22 = Y22 =







−2.2968 −0.0359 0 0
∗ −0.1526 0 0
∗ ∗ −0.1462 0.0652
∗ ∗ ∗ −1.4091






.

X12 =







2.9731 3.9315 00
1.1680 0.5442 00

0 0 00
0 0 00






, Y12 =







2.3342 2.3588 00
1.5838 2.3437 00

0 0 00
0 0 00






,

Thus, the switching law is designed as follows,

σ(t) =

{

1, if y ∈ Ω1

2, if y ∈ Ω2\Ω1
when y =

[

x̃(t)
x̃(t − τ)

]

.

With tf = 20, r(t) and ω(t) are generated by square
wave form, the simulation result is depicted in Fig.1, it is
obvious that neither subsystem 1 nor subsystem 2 tracks
the reference system, while the switching control achieves
tracking control.
Example 2. Consider the systems (1) and the reference
system (2) with

A1 =

[

−1.5−1.2
−1.2 1

]

, D1 =

[

−0.5 0.8
−0.1−0.4

]

, B1 =

[

−0.1
−0.3

]

;

A2 =

[

1.5 −1
−1−2.3

]

, D2 =

[

−0.3−0.2
0.1 −0.3

]

, B2 =

[

−1.3
−0.1

]

;

Ar =

[

−1.5−1.2
2 −0.2

]

, C1 = [−0.1 0.5] , C2 = [1.3 −0.7] .

We now consider the unmeasurable state case. First, by
Assumption 1, we have the candidate observer gains via
arbitrary switching as
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Fig. 2. State x1 tracking the reference state xr1.
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Fig. 3. State x2 tracking the reference state xr2.

L1 =

[

−39.3909
41.7974

]

, L2 =

[

12.9363
−11.9392

]

.

Consider the closed-loop system (32). We adopt the pa-
rameters below: γ = 1, τ = 3. Solving the inequality (31)
by using LMIs, we get

P1 =

[

P̃−1
1 0

0 P̃−1
1

]

, P2 =

[

P̃−1
2 0

0 P̃−1
2

]

, in which

P̃1 =

[

0.5426 −0.2007
∗ 0.4784

]

, P̃2 =

[

0.5026 −0.0527
∗ 0.7023

]

;

S =

[

S10
0 S1

]

, where S1 =

[

6.5442 −0.0466
∗ 6.4185

]

K1 = [4.0344 14.3356] ,K2 = [−4.4402 −1.6902] .
According to theorem 2, the switching control law are
given by

σ(t) = arg min
i∈N

{x̃T (t)Pix̃(t)}, u(t) = Kσ(t)êr(t).

With tf = 40, r(t) and ω(t) are generated by sine wave
form, the simulation results are given in Fig.2-Fig.3. Due
to the complicated design of the switching control, for
example, the imposed assumptions restrict the simulation
conditions, the result can not compare beauty with the
measurable state case, see in Fig.2 and Fig.3.

5. CONCLUSION

In this paper, tracking control for switched linear systems
with time-delay is investigated. When the state is measur-
able, we use single Lyapunov function technique to design
a tracking control law such that the H∞ model reference
tracking performance is satisfied, and when the state is
not available, the observer-based tracking control laws and
multiple Lyapunov functions techniques are utilized for

the stability analysis and control synthesis. The controller
design problem can be solved efficiently by using LMIs and
convex optimization techniques.
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