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Abstract: In this paper, a data-driven model-free design method of PID controller is proposed
for a single-input single-output linear time-invariant plant for a loop shaping problem where the
integral gain is maximized under the maximum sensitivity constraint. This design problem is
reduced to a linear programming problem. The constraints on the PID gains are given from many
fictitious data, which are obtained by applying the wavelet transform to a step response. Our
design method does not require the iteration of modeling and control design and the performance
index refinement. Numerical examples show the robustness against measurement noise.

1. INTRODUCTION

Since PID control is widely used, such design methods that
do not require trial and error for tuning and that depends
on a plant response that can be easily measured would be
desirable. Although mathematical model plays key roles in
the analysis and the synthesis of control systems, modeling
error causes the intrinsic difficulty such as the iteration
of modeling and control design(Albertos et al [2002]). In
order to avoid modeling errors, data-driven designs that do
not rely on plant models would be useful. Further, in order
to avoid weight refinement in the design, a problem setting
whose performance index does not use weighting function
would be useful. Such a design problem is given by Ȧström
et al [1998], where the integral gain is maximized subject
to the maximum sensitivity constraint.

There are a few model-free methods; for example, unfalsi-
fied control(Safonov et al. [1997]), iterative feedback tun-
ing (Hjalmarsson et al. [2003]), and virtual reference feed-
back tuning (Cabral et al. [2003]). The unfalsified control
is a method of falsifying the controllers that do not satisfy
the performance criterion by the input-output response
data. In the iterative feedback tuning, the performance
index of LQ theory is minimized by a descent method
by iterating experiment and design. The virtual reference
feedback tuning reduces a matching problem of control
design to the identification problem of the controller.

Unfalsified control has the features that no model is re-
quired and the performance criterion of the robust control
can be treated. Robust adaptive control has been studied
(Jun et al. [1999]Cabral et al. [2003],Wang et al. [2005]).
The author applied it to the off-line control design, and
proposed a method of drawing the set of PID gains falsified
by the criterion of the mixed sensitivity control on the
parameter plane(Saeki. [2004]). Further, the class of input
output responses that effectively falsify the controllers is
clarified(Saeki et al. [2004]), and a method of generating
fictitious signals from a single response data is proposed
(Saeki et al. [2006]). It is useful to visualize the shape of
the unfalsified regions on the parameter plane. However,

it is not easy when the number of parameters is more than
two.

In this paper, we will give a loop shaping design method of
PID gains by developing an optimization method for the
problem of Ȧström et al [1998] with the additional condi-
tion that no mathematical model but a plant response is
given.

For signals w(t), v(t), t ∈ [0,∞), we use the following no-

tations. ‖w‖2 =
√∫ ∞

0 w2(τ)dτ , ‖w‖2T =
√∫ T

0 w2(τ)dτ ,

〈w, v〉 =
∫ ∞
0
w(τ)v(τ)dτ , and 〈w, v〉T =

∫ T

0
w(τ)v(τ)dτ .

2. A LOOP SHAPING PROBLEM

Let us consider the feedback system described by

y= Pe (1)

e=w − u (2)

u=Ky (3)

The plant P is linear time-invariant and single-input and
single output. K is a PID controller given by

K(s) = KP +KI
1
s

+KDs (4)

The maximum sensitivity is defined as

Ms = max
0≤ω<∞

∣∣∣∣ 1
1 + P (jω)K(jω)

∣∣∣∣ (5)

= max
0≤ω<∞

|S(jω)| (6)

where S is the sensitivity function. Ms is a good index for
the sensitivity and the stability margin, and typical values
of Ms are in the range of 1.2 to 2 (Ȧström et al [1994]).

For γ ∈ [1.2, 2], this condition is represented by

‖S(s)‖∞ < γ (7)

or it is represented by the time domain condition:
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‖e‖2 < γ‖w‖2 (8)
is satisfied for all w ∈ L2 where e = Sw.

In Ȧström et al [1998], an optimization problem where
the integral gain of the PID controller is maximized under
the maximum sensitivity constraint is given based on the
property that the integrated error IE is the reciprocal of
the integral gain. This problem is also interpreted from
loop shaping.

When KIP (0) �= 0, the next approximation is satisfied for
low frequencies.

|S(jω)| ≈ ω

KIP (0)
(9)

Thus, when the condition (7) is satisfied and KIP (0) �= 0,
the gain plot of the sensitivity function has the shape
illustrated in Fig. 1.
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Fig. 1. Loop shaping for the sensitivity function

By substituting the approximation (9) into |S(jω)| < 1,

ω < KIP (0) (10)
It is expected that the disturbance attenuation is improved
by feedback in the frequency range [0, KIP (0)], and that
the frequency range can be made wider by making KI

larger.

Remark 1 Let us compare this with the criterion
‖V (s)S(s)‖∞ < γ that uses a weighting function V (s).
From this,

|S(jω)| < γ

|V (jω)| , ω ∈ R (11)

Roughly speaking, an appropriate function V is deter-
mined as the reciprocal of the optimal S. However, the
optimal S cannot be known before giving the appropriate
V , which results in the iteration of the control design for
the weight selection. In our problem setting, the controller
gains are the only parameters to be determined, because γ
can be easily selected. Another drawback is that the gain
shape cannot be specified freely, because V (s) is usually a
low order rational function. For example, suppose that a
designer wants to set the bound shown by the lines of
Fig. 2. Then, the designer probably chooses it without
confidence, say V (s) = 0.7(s + 10)/(s + 1), whose gain
plot is shown by the curve. The bound given by the curve
is more restrictive than that given by the lines.

3. PROBLEM SETTING AND DERIVATION OF
CONSTRAINT

3.1 Problem setting

Assume that an input-output response of the plant,
e(t), y(t), is given on the finite interval t ∈ [0, T ] where the
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Fig. 2. Gain plot of 1/|V (jω)|
plant is at the steady state for t < 0, i.e. e(t) = 0, y(t) = 0
for t < 0. Further assume that the plant is linear time-
invariant (This assumption will not be used in this section,
but it will be used in the next section for the generation
of the fictitious data by filtering e and y).

Our problem is to construct a data driven design method
of PID controller for the next loop shaping problem on the
above assumptions.

Loop shaping problem : For the feedback system (1)-
(3), find a PID controller that maximizes the integral gain
KI subject to

‖e‖2 < γ‖w‖2 (12)

for all w ∈ L2.

Note that the performance criterion (12) is represented in
the time domain instead of (7), because it is suitable for
the following discussions.

3.2 Derivation of constraint

Lemma 1 Suppose that the system satisfies causality and
it is in the steady state at t = 0. If (12) is satisfied, then

‖ e ‖2T< γ ‖ w ‖2T (13)

for any T > 0.

This lemma means that if (13) is not satisfied, (12) is not
satisfied neither. This basic lemma appears in the input-
output stability theory, and Safonov used it first for the
unfalsified control(Safonov et al. [1997]). The condition
(12) requires the infinite time interval data, whereas (13)
requires the data in the finite time-interval [0, T ].

From (13)

〈w,w〉T >
1
γ2

〈e, e〉T (14)

The disturbance w that gives e, y is given by

w(t) = e(t) +K(s)y(t) (15)

= e(t) + ŷ(t)T K̂ (16)

where

yI(t) =

t∫
0

y(τ)dτ (17)
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yD(t) =
dy

dt
(t) (18)

K̂ = [KP KI KD ]T (19)

ŷ(t) = [ y(t) yI(t) yD(t) ]T (20)
w given by (16) is called a fictitious disturbance in the
model-free control methods.

Then, by substituting (16) into (14), we obtain

〈e+ v, e+ v〉T >
1
γ2

〈e, e〉T (21)

where

v(t) = ŷ(t)T K̂ (22)

This inequality gives a concave constraint on K̂ for fixed e
and y. Since it is difficult to treat non-convex constraints
in optimization problems generally, in the following, we
will derive a linear constraint from (21) as a sufficient
condition.

For any v0(t),

〈v − v0, v − v0〉T ≥ 0 (23)
Equivalently,

〈v, v〉T ≥ 2 〈v0, v〉T − 〈v0, v0〉T (24)

From (21),

〈e, e〉T + 2 〈e, v〉T + 〈v, v〉T >
1
γ2

〈e, e〉T (25)

From (24) and (25),

〈e+ v0, v〉T
≥ 1

2

{(
1
γ2

− 1
)
〈e, e〉T + 〈v0, v0〉T

}
(26)

This inequality is expressed as

a1KP + a2KI + a3KD > b (27)
Thus, the next constraint is obtained.

aK̂ > b (28)
where a = [ a1 a2 a3 ] and

a1 = 〈e+ v0, y〉T (29)

a2 = 〈e+ v0, yI〉T (30)

a3 = 〈e+ v0, yD〉T (31)

b=
1
2

{(
1
γ2

− 1
)
〈e, e〉T + 〈v0, v0〉T

}
(32)

3.3 Selection of v0

We will consider the case that a PID gain K̂ = K̂a

that stabilizes the closed-loop system is given. Denote
va(t) = ŷ(t)T K̂a and assume that (21) is satisfied for
v(t) = va(t).

The set of v that satisfies (21) corresponds to the outside
region of the sphere with center −e and radius ‖e‖2/γ (Fig.
3). This set is concave and va lies outside the sphere by
assumption. Let v0 be the intersection of the segment that
connects −e and va and the sphere. We consider that the
sphere is appropriately approximated by the plane which
touches the sphere at the point v0 as illustrated in Fig.
3. Note that this convex set determined by the plane is
described by (28) with this v0.

av

0v
e−

Fig. 3. Approximation of the concave region by plane

Now, calculate the point v0. The segment is described by

v = qva + (1 − q)(−e), 0 ≤ q ≤ 1 (33)
Substituting this into (21),

q2 〈e+ va, e+ va〉T ≥ 1
γ2

〈e, e〉T (34)

Then, the minimum value of q is found to be

q0 =
1
γ

‖e‖2T

‖va + e‖2T
(35)

, and v0 is given by

v0 = q0va − (1 − q0)e (36)

Note that 0 < q0 < 1 from the assumption that (21) is
satisfied for v = va. If q0 ≥ 1, this implies that va lies
inside the sphere and the linear approximation does not
hold.

4. FICTITIOUS DATA GENERATION BY
FILTERING

From the discussion in the previous section, one linear
constraint (28) is derived from an input-output response
e(t), y(t), t ∈ [0, T ] by the equations (35),(36). In order
to determine the PID gains, many linear inequalities are
necessary. One method is to experiment many times to
obtain many response data. But it is usually difficult.
Therefore, we will generate many fictitious data ei(t), yi(t)
by

ei(t) = Fi(s)e(t) (37)

yi(t) = Fi(s)y(t), t ∈ [0, T ] (38)
where Fi(s) is a filter transfer function.

Since P is assumed to be linear time-invariant,

yi(t) = P (s)ei(t) (39)
is obviously satisfied. This means that the data ei(t), yi(t)
is the input-output response of the plant.
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One of the important representation form of the system
dynamics is the frequency response. It is shown by nu-
merical examples that the many frequency response data
can falsify the gains effectively in (Saeki. [2004]), and that
the above filtering method is proposed in (Saeki et al.
[2006]). In this section, we will give a new Fi(s) and explain
the filtering from the viewpoint of wavelet transform(C.K.
Chui [1992]).

The input-output response treated here is a non-stationary
signal, and the important information about the frequency
property lies locally in the time-domain. In these ten
years, wavelet transform is becoming popular as the time-
frequency analysis tool. It is also known that wavelet
transform is a signal processing with many band-pass
filters.

In order to extract the frequency components of ωi, i =
1, 2, . . . , nF , we will use the next bandpass filters Fi(s).
The gain plot of ψ(s) is shown in Fig. 4.

Fi(s) = ψ̂(s/ωi) (40)

ψ̂(s) =
(

s

(s+ α)2 + 1

)4

(41)

Exactly speaking, the peak gain is taken not at ωi but at
ωi

√
1 + α2. Since this is not important, we do not take

the error into consideration. ωi are usually logarithmically
equally spaced frequencies. The impulse response ψ(t) of
ψ̂(s) with α = 0.5 is shown in Fig. 5.

In (Saeki et al. [2006]), the bandpass-filter made from
the butterworth filter is used. Though the difference by
the filters is small, Fi(s) is more suitable for the analysis
because the transfer function is simple.
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Fig. 4. Gain plot of ψ̂(jω)
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Fig. 5. Impulse response ψ(t) for α = 0.5

The impulse response of Fi(s) = ψ̂(s/ωi) is represented as

L−1{Fi(s)} = ωiψ(ωit) (42)

By the convolution formula,

yi(t) = Fi(s)y(t) (43)

= ωi

t∫
0

ψ(ωi(t− τ))y(τ)dτ (44)

On the other hand, the integral wavelet transform Wφ by
the mother wavelet φ(t) is defined by

(Wφy) (b, a) = |a|−1

∞∫
−∞

φ

(
τ − b

a

)
y(τ)dτ (45)

By comparing (44) and (45), we can immediately find the
next correspondense.

a↔ 1
ωi
, b↔ t, − φ(−t) ↔ ψ(t) (46)

Since −φ(−t) corresponds to ψ(t), the graph of −φdb10(−t)
is shown in Fig. 6 for the Daubechies wavelet ”db10”. Note
that α = 0.5 is the value so that ψ(t) may be close to
−φdb10(−t). From the uncertainty principle in the wavelet
analysis, there is a trade-off between the time window and
the frequency window. The time-frequency window can be
tuned by the parameter α.
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Fig. 6. Mother wavelet db10 y = −φdb10(−τ)

The next admissible condition is required for the Fourier
transform φ̂(ω) of the mother wavelet for the existence of
the inverse transform.

∞∫
−∞

|φ̂(ω)|2
|ω| dω <∞ (47)

Since ψ̂(s) has four zeros at s = 0 and the difference
between the numerator and the denominator degrees is
four, the admissible condition is satisfied.

Thus, the filtering is considered as the wavelet transform
and therefore we can expect that this filtering will be
useful for extracting the local information from the non-
stationary response.

5. ALGORITHM

In this section, we summarize the previous results as an
algorithm for control design.

In the first step, the input output response e(t), y(t), t ∈
[0, T ] is measured by exciting the system at the steady
state. If y(0), e(0) are nonzero at the steady state, they
should be unbiased as y(t) − y(0), e(t) − e(0), t ∈ [0, T ]
before computation.
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In the second step, set ωi, i = 1, 2, . . . , nF as logarithmi-
cally equally spaced nF points of an important frequency
range for control. Then, the next fictitious responses are
generated by (38) from e(t), y(t), t ∈ [0, T ].

ei(t), yi(t), t ∈ [0, T ], i = 1, 2, . . . , nF (48)

In the third step, give a PID gain K̂a that stabilizes the
closed-loop system and that satisfies (12) for a given γ
(For stable plants, this condition is satisfied for K(s) = 0
or K(s) = KP where KP is sufficiently small. Therefore,
K̂a is easily found for stable plants). Then, compute
linear constraints for nF set of responses ei(t), yi(t), and
represent them as aiK̂ < bi for i = 1, 2, . . . , nF .

In the last step, solve the next linear programming prob-
lem.

Minimize

J = cT K̂ (49)
subject to

AK̂ > B (50)
where

A= [aT
1 , a

T
2 , · · · , aT

nF
]T ∈ RnF ×3

B = [b1, b2, · · · , bnF ]T ∈ RnF ×1

c= [0 1 0]T

In the programming, the integral and the derivative cal-
culations are approximated by discretization.

Remark: When y(0), e(0) are nonzero at the steady state
and y(t), e(t) are given to the filter whose initial condition
is zero, the filtered outputs do not satisfy the input-output
relation of the plant. Therefore, the operation is essential
in the first step.

6. NUMERICAL EXAMPLES

Suppose that e(t), y(t), t ∈ [0, 30] are given as shown in
Fig. 7. This data is obtained for the feedback system

y= Pe (51)

e=K(r − y) (52)
for r(t) = 1, t ∈ [0, 30] where K(s) = 0.1 and

P (s) =
−s+ 1
(s+ 1)2

e−s (53)

Since the steady state error r(∞) − y(∞) is very large,
this response is not good. Note that this transfer function
and the related information that the plant is non-minimum
phase with time delay will not be utilized for design.

6.1 Design of PI controller

Let us design a PI controller for γ = 1.7. ωi’s are
logarithmically equally spaced nF = 90 points in the
interval [0.1, 10]. For K̂a = [KP , KI ]T = [0.1, 0]T , the
linear constraints are derived. The solution is obtained as
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Fig. 7. Step response of the closed-loop system for K = 0.1

K(s) = 0.3756 + 0.2092/s (54)

by solving the linear programming problem once.

The gains of the sensitivity function S and the comple-
mentary sensitivity function T are shown in Fig. 8. Ms

can be larger than γ, because the basic condition (13) is
a necessary condition, and γ is a little bit larger than the
specified value 1.7. A good loop shaping is attained and
the step response for r = 1 is shown in Fig. 9.
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Fig. 9. Step response of the closed-loop system

The linear inequality has been obtained by approximating
the concave inequality as a sufficient condition. In order to
make this certain visually, the concave regions are drawn
on the [KP ,KI ] plane in Fig. 10. In this figure, each
curve is the part of an oval, and the outside of the oval
is the region defined by (21). By the way, the stability
condition requires KI > 0 theoretically. Therefore, the
shaded portion is the region unfalsified by (21) and the
stability condition.

Each oval is approximated by a half-plane as shown in Fig.
11 where the point K̂a = [0.1, 0] is shown by the diamond.
The polygon region determined by the linear inequalities is
found to be a good approximation of the unfalsified region
of Fig. 10. The solution of the linear programming problem
is given by the point at which KI is maximized in the
polygon region.
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6.2 Robustness against observation noise

The response data affected by the observation noise is
shown in Fig. 12. From this data,

K(s) = 0.3763 + 0.2165/s (55)

, which shows the insensitiveness of our design method
against noise. The step response for r(t) = 1 is shown in
Fig. 13.

Our method also gives nice results for both PI and PID
controllers for other typical industrial processes given in
Chapter 5 of Ȧström et al [1994] where PID design is
more affected by the noise. Since the filter can remove
the constant disturbance effect from the response data,
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Fig. 12. Step response of the closed-loop system for K =
0.1 with observation noise
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Fig. 13. Step response of the closed-loop system

our method can be also applied to a certain case even if
disturbance exists.

7. CONCLUSION

In this paper, we proposed a data-driven PID controller
design method for loop shaping. The constraints on the
PID gains are derived from a step response by applying
the wavelet transform to the response to generate many
fictitious responses. Then, a PID gain that maximizes the
integral gain subject to the constraints is obtained by
solving a linear programming problem once. Extension to
a multi-input multi-output case is given in Saeki. [2008].
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K. Ȧström and T. Hägglund. PID controllers: Theory,
design, and tuning. Instrument Society of America,
North Carolina, 1994.
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