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Abstract: By introducing a new dynamical linearization technology, this paper presents a model-free 
adaptive control approach for density control of freeway traffic flow via ramp metering, which is consisted 
with a control input learning law and a parameter updating law. The design and analysis only depends on 
the I/O data of the freeway traffic system. Furthermore, the control input learning law is extended to a 
higher-order form by incorporating more control information of previous sampling instants for improving 
the control performance. Both convergence analysis and simulation results illustrate the validity of the 
presented methods. 

 

1. INTRODUCTION 

Ramp metering has been recognized as one of the most 
effective ways for combating freeway congestion 
(Papageorgiou & Kotsialos, 2002). A common objective of 
ramp control is to regulate the amount of traffic entering a 
freeway from entry ramps during certain time periods so that 
the flow on the freeway does not exceed its capacity. 

From the viewpoint of system control, ramp metering is a 
typical regulating problem and numerous control methods 
have been exploited (Papageorgiou et al, 1991; Zhang et al, 
2001; Chang & Li, 2002; Akiyama & Okushima, 2006). 
However, the freeway traffic flow system is of nonlinearities, 
coupling, and uncertainties and an accurate model is hardly 
available in practice. The above mentioned control methods 
may encounter some difficulties in practice to design and 
construct for nonlinear processes, such as model uncertainties, 
unmodelled dynamics, and so on. 

In this paper, we explore the possibility of extending the 
model-free adaptive control (Hou & Huang, 1997; Chi, 2005) 
to deal with the density control of freeway traffic flow via 
ramp metering just depending upon the I/O data. The 
dynamical linearization of the freeway macroscopic traffic 
flow system is given firstly and then the model-free adaptive 
control scheme is presented for the density control of freeway 
traffic flow, which is constituted with a control input updating 
law and a parameter updating law. Furthermore, the control 
input updating law is extended to a higher-order form by 
using a new weighted control input criterion function. Both 
convergence analysis and simulation results illustrate the 
validity of the proposed method.  

The rest of this paper is organized as follows. Section 2 is the 
problem formulation. Section 3 provided a new dynamic 
linearization for the freeway macroscopic traffic flow. Section 
4 presents the model-free adaptive control for traffic flow 

density. Section 5 extends the control input updating law to a 
higher-order form for improving the control performance 
furthermore. Case studies with simulations are provided in 
Section 6. Finally, Section 7 concludes this paper. 

2. PROBLEM FORMULATION 

2.1  Macroscopic Traffic Model 

The spatially discretized traffic flow model, proposed by 
Papageorgiou et al (1989; 1990), for a single freeway with 
one on-ramp and one off-ramp on each section is shown in 
Fig. 1 and (1)-(4) below 

 

Fig. 1 Sections on a freeway with on/off ramp 
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freeway, and N is the total section number. )(kiρ : density in 
section i at time kT (veh/lane/km); )(kvi : space mean speed 
in section i at time kT (km/h); )(kqi : traffic flow leaving 
section i and entering section i+1 at time kT (veh/h); )(kri : 
on-ramp traffic volume for section i at time kT (veh/h); )(ksi : 
off-ramp traffic volume for section i at time kT (veh/h), which 
is regarded as an unknown disturbance; iL : length of freeway 
in section i, (km); freeV  and jamρ  are the free speed and the 
maximum possible density per lane, respectively. 

ωκγτ ,,,,, ml  are constant parameters which reflect particular 
characteristics of a given traffic system and depend on the 
freeway geometry, vehicle characteristics, drivers’ behaviours, 
etc.  

2.2  Boundary 

We assume that the traffic flow rate entering section 1 during 
the time period kT and (k+1)T is )(0 kq and the mean speed of 
the traffic entering section 1 is equal to the mean speed of 
section 1, i.e. )()( 10 kvkv = . We also assume that the mean 
speed and traffic density of the traffic exiting section N+1 are 
equal to those of section N, i.e. )()(1 kvkv NN =+ , 

)()(1 kk NN ρρ =+ . Boundary conditions can be summarized 
as follows 

),(/)()( 100 kvkqk =ρ                             (5) 
),()( 10 kvkv =                                   (6) 

),()(1 kk NN ρρ =+                                (7) 
.),()(1 kkvkv NN ∀=+                         (8) 

2.3 Control Objective 

The control objective is to seek an appropriate on-ramp traffic 
flow, )(kri  for the i-th on-ramp locally driving the traffic 
density )(kiρ of section i  to track the desired traffic density 

)(, kdiρ of section i, i.e. the tracking error 
)()()( , kkke idii ρρ −=  converges to zero asymptotically as k 

approaches to infinity. Obviously, due to the highly nonlinear 
and uncertain nature of traffic flow model, such a control 
profile cannot be calculated directly from the model. 

3. DYNAMICAL LINEARIZATION OF MACROSCOPIC TRAFFIC 
FLOW MODEL 

The macroscopic traffic flow model described by equations (1) 
and (2) can be written in the following form 
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Assumption 1: The partial derivative of dynamical system (10) 
with respect to control input )(kri  is exist and continuous. 

Remark 1: It shall be noted that the macroscopic traffic flow 
model (1)-(4) is continuous differentiable in all arguments, 
thus Assumption 1 holds in nature. 

Assumption 2: The system (10) is generalized Lipschtz, that is, 
for any k and 0)( ≠∆ kri , 

,)(1)( krMk ii ∆≤+∆ρ                         (11) 

where M  is a constant, )(-1)(1)( kkk iii ρρρ +=+∆ , and 
)1(-)()( −=∆ krkrkr iii . 

Remark 2: Assumption 2 is some limitation on the rate of the 
system output change when the control input increases. 
Clearly, it is satisfied with freeway traffic system in practice. 
Furthermore, we just need the existence of such a constant M  
without requiring the exact value. 

Theorem 1: For dynamical system (10) under assumptions 1 
and 2, there must exist a parameter variable )(kiθ  such that 
when 0)( ≠∆ kri ,  

),()(1)( krkk iii ∆=+∆ θρ                        (12) 

and Mki ≤)(θ . 

Proof: From system (10), we have 
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Consider an equation with )(kiη  

),()()( krkk iii ∆= ηξ                            (14) 

when 0)( ≠∆ kri , we must have the solution )(kiη  of 
equation (14). 
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Let )()()( kkck iii ηθ += , equation (12) can be obtained 
directly from (13) and (14). And in terms of Assumption 2, 

.)( Mki ≤θ  

Remark 3: In fact )(kiθ  is a most complicated unknown 
function about the past inputs and system states. In this paper, 
we will give its prediction or estimation values by using the 
information of previous sampling times. 

Remark 4: In fact, the traffic dynamics may be expressed as a 
general nonlinear form (Papageorgiou & Kotsialos, 2002) 

)],(),(),([)1( kkkfk drxx =+  

where the state vector x  comprises all traffic densities and 
mean speeds, as well as all ramp queues; the control vector r  
comprises all controllable ramp volumes; the disturbance 
vector d  comprises all on-ramp demands and turning rates. 
According to Hou (1997), we can still give its responding 
linearization form similar to (12). The macroscopic traffic 
flow model (1)-(4) above is a special case and only serves as a 
simulation evaluation in this paper. The design and analysis of 
the MFAC does not require any information of the traffic flow 
model as shown in the following section. 

4. MODEL-FREE ADAPTIVE CONTROL OF TRAFFIC FLOW 
DENSITY 

For briefness in writing, we omit the subscript i in the flowing 
equations in the case of not causing confusion. 

4.1 Model-free Adaptive Controller Design 

Rewrite (12) as 

).()()(1)( krkkk ∆+=+ θρρ                     (15) 

Define an index function of control input as 

,)1()()1())(( 22 −−++= krkrkekrJ λ            (16) 

where λ  is a positive weighting factor. 

According to (15), a new expression of ))(( krJ  is given as 
follows 
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where kα  is a step-size constant series, which is added to 
make the generality of the algorithm (18) and will be used in 
analytical stability proof later. 

Since )(kθ  is unknown and not available, we present the 
learning control law as 

)),()1((
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)(ˆ

)1()( 2 kk
k

k
krkr d
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−+

+
+−=       (19) 

where )(ˆ kθ  is to learning parameter )(kθ  and updated in 
terms of the optimal solution of the following criterion index 
function 

,)1(ˆ)(ˆ)1()(ˆ)())(ˆ(
22

−−+−∆−∆= kkkrkkkJ θθµθρθ (20) 

where 0>µ  is a positive weighting factor. 

Using the optimal condition ,0
)(ˆ2

1
=

∂

∂

k
J

θ
 we can obtain the 

parameter updating law as follows 
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where 0>µ  is the positive weighting factor in (20), 
)20(∈kβ  is a step-size constant series added to make the 

generality of the algorithm (21), and )0(θ̂  can be chosen 
arbitrarily. 

In order to make the condition 0)( ≠∆ kr  be hold for any k 
and parameter estimation algorithm (21) have stronger ability 
in tracking variable parameter, we present a reset algorithm as 
follows 

),0(ˆ)(ˆ θθ =k   if  εθ ≤)(ˆ k   or  ,)1( ε≤−∆ kr        (22) 

where ε  is a small positive constant. 

Remark 5: For the proposed MFAC scheme, what we need is 
to tune the parameters kα  and kβ  in a small range with 
properly fixed values of λ  and µ , without requiring any 
other priori knowledge of the dynamic system. 

4.2 Convergence Analysis 

Assumption 3: The parameter )(kθ  satisfies that 0)( ≥kθ  
(or 0)( ≤kθ ) t∀ , and 0)( =kθ  holds only at finite time 
instant k. 

Remark 6: This assumption is similar to the limitation of 
control input direction. In fact, many practical systems can 
satisfy this assumption. For example, the traffic flow density 
will increase (or not decrease at least) when the on-ramp 
metering traffic volume increases in practice. 

Theorem 2: For freeway traffic control system (10) satisfying 
assumptions 1-3, when the desired density value dd k ρρ =)(  
is a constant, the presented model-free adaptive scheme, (19), 
(21), and (22), guarantees that 

(a) The parameter estimation value )(ˆ kθ  is bounded. 
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(b) The traffic flow density converges to the desired value as 
k approaches to infinity. 

(c) The control signals are bounded. 

Proof: The proof consists of three parts. Part 1 derives the 
boundedness of the parameter estimation value )(ˆ kθ . Part 2 
proves the exponential convergence. The boundedness of 
control signals is shown in part 3. 

Part 1. The Boundedness of )(ˆ kθ  

Case 1: When ε≤−∆ )1(kr , by (22), clearly )(ˆ kθ  is 
bounded.  

Case 2: When ε>−∆ )1(kr , subtracting )(kθ  from both 
sides of (21), we have  
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where ).()(ˆ)(~ kkk θθθ −=  

Let ).1()()( −−=∆ kkk k θθθ  Substituting (12) into (19), and 
taking absolute value, we have 
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Noting that for ε>−∆ )1(kr , 0>µ , and )2   ,0(∈kβ , 
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holds. So the boundedness of )(ˆ kθ  is a direct result of (24) 

and Theorem 1. 

Part 2: The exponential convergence 

Using (12) and (19), the tracking error gives 
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From Assumption 3 and reset algorithm (22), we know 
that .0)(ˆ)( >kk θθ  Thus we can choose kα  and λ  
appropriately such that 

1
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holds except for some finite sample instants k. Then the 
exponential convergence of tracking error is got immediately. 

Part 3. Boundedness of Control Signals 

From the learning law (19), we get that 

,)()( keΓkr ≤∆                               (28) 

where 2
1

δλ
α

+
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Γ
Γ k  with 1Γ  being the upper boundedness of 

)(ˆ kθ . 
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Clearly the values of initial input )0(r  and tracking error 
)0(e can be chosen bounded, so the control input )(kr  is 

bounded for all k. 

5. EXTENSION TO HIGHER-ORDER LEARNING LAW 

An adaptive controller differs from an ordinary controller in 
that the controller parameters are variable, and there is a 
mechanism for adjusting these parameters on-line based on 
signals in the system. It is true that the more past information 
is exploited, the better control performance can be achieved. 
However, simply using more past information does not 
necessarily mean a better performance. The performance is 
dependent not only on how much information is used but also 
on whether the information is crucial and how the information 
is fused together effectively. In this section, the optimality 
technology is applied to design the higher-order learning 
adaptive control law. 

Consider again a new index function of control input as 
follows 

,)()()1()),((
2

1
,

2 ∑
=

−−++=
l

i
ikk ikrwkrkekrJ λw  (31) 

where T
lkkkk www ),,,( ,2,1, L=w  is the vector of weighting 

coefficient for control input, and ∑
=

=
l

i
ikw

1
, 1 ; λ  is a positive 

weighting factor punishing the variation of control input; 
)(,),2(),1( lkrkrkr −−− L  are the inputs of the previous l  

sampling instants, which are known at the k-th sampling 
instant. 

Following the same steps that lead to (19) in Section 4, we 
give the control learning law as follows 
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Then the high-order model-free adaptive control scheme is 
constructed by (21), (22) and (32), and its validity is verified 
by the following theorem. 

Theorem 3: For freeway traffic control system (10) satisfying 
assumptions 1-3, when the desired density value 

dd k ρρ =+ )1(  is a constant, the presented higher-order 
model free adaptive control scheme, i.e., (21), (22) and (32), 
guarantees that the traffic flow density converges to the 
desired value as k approaches to infinity. 

Proof: The boundedness of the parameter estimation )(ˆ kθ  
can be obtained by the same analysis as previous section. 
Now, we show the convergence of the tracking error. 

Since )(kr  is the optimal control input and kw  is the optimal 
weight coefficient vector, so the following inequality is true 

),),1(()),(( 0Λw −≤ krJkrJ k                    (33) 

where .)0,,0,1(0
TL=Λ  

By (31), we have 

.)())0,,0,1(),1(()),1(( 2
0 kekrJkrJ T =−=− LΛ     (34) 

According to (31), (33), and (34), we have 

.)()),(()1( 22 kekrJke k ≤≤+ w                 (35) 

This implies that 2)(lim ke
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Because λ  is a positive constant, (37) results in 
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In terms of (38) and (39), we have 

.0)(
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)(ˆlim 2 =
+∞→
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k

k
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The boundedness of )(ˆ kθ  has been derived in Section 4. In 

terms of the reset algorithm (22), we have ,)(ˆ εθ >k  so 

2
2 )(ˆ

)(ˆ

t
t

k

k

θλ
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+

 is bounded and away from zero. By virtue of 

(40), we can obtain that .0)1(lim =+
∞→

tekk
 

6.  ILLUSTRATIVE EXAMPLE 

In order to verify the effectiveness of the MFAC approach, we 
simulate a freeway traffic flow process with the desired 
density kmvehd /30=ρ  per lane, in the presence of a large 
exogenous disturbance (modelled by an exiting flow in an off-
ramp).  

Consider a long segment of freeway that is subdivided into 12 
sections. The length of each section is 0.5km. The initial 
traffic volume, entering section 1, is time-varying with 

)10/sin(51500 kπ+  vehicles per hour. The initial density and 
mean speed of each section, and the parameters used in this 
model are listed in Table 1.  

Table 1: Initial values and parameters associated with the traffic model 

Section  
1 2 3 4 5 6 7 8 9 10 11 12

)0(iρ veh/ 
lane/km 

30 30 30 30 30 30 30 30 30 30 30 30

)0(iv km/h 50 50 50 50 50 50 50 50 50 50 50 50

Parameters freev  jamρ  l  m  κ  τ  T  γ  )(0 kq  )0(ir  α   
 80 km/h 80 veh/lane/km 1.8 1.7 13 veh/km 0.01h 0.00417h 35 km2/h 1500 veh/h 0 veh/h 0.95  
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There are one on-ramp and one off-ramp in the segment, 
located in section 7 and section 4, respectively. The traffic 
demand pattern (on-ramp) and the outflow pattern (off-ramp) 
are shown in Fig. 2. They were chosen to simulate a traffic 
scenario during rush hour.  

 
Fig. 2. Traffic demand in on-ramp 7 and the unknown existing 
flow in off-ramp 4. 

For the purpose of comparison, three cases are considered.  

Case I (one-order MFAC). The parameters of one-order 
MFAC are chosen to be ,20=kα 0001.0=kβ  ,01.0=µ  

,001.0=λ 00005.0=ε . 

Case II (two-order MFAC). The parameters of two-order 
MFAC are set to be 0001.0=kβ  ,01.0=µ  ,0001.0=λ  

,00005.0=ε  ,6.01 =w  4.02 =w . 

Case III (ALINEA).  

The compared result is shown in Fig. 3. Apparently, the 
density performance by means of the two-order MFAC is 
better than the one-order MFAC, and the one-order MFAC is 
better than ALINEA. 

 
Fig. 3. The comparison among ALINEA, one-order MFAC, 
and two-order MFAC.  

7. CONCLUSIONS 

Through this paper, we show that the MFAC provides a new 
ramp metering control method that is suited for the traffic 
density control problems. The main advantage of MFAC-
based ramp metering is that the design and analysis of the 
control system only depends on the I/O data of the freeway 
traffic system. Hence, the modelling uncertainties can be 
rejected completely and the traffic performance can be 
improved as a result. Also we provide an extension of MFAC, 
and a higher-order learning control law is presented and 
proved for improving the control performance further by 
using more control information in previous sampling instants. 
Convergence analysis and case studies with intensive 
simulations on a macroscopic level freeway model confirm 
the validity of the proposed approaches. 
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