
     

Fuzzy Modeling of Signal Transduction Networks 
 

Zuyi Huang and Juergen Hahn  
 

*Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 
USA (Tel: 979-845-3568; e-mail: hahn@tamu.edu). 

Abstract: This work proposes a fuzzy modeling–based approach for describing signal transduction 
networks. Many key steps in signal transduction mechanisms have been investigated qualitatively in the 
literature, however, only little quantitative information is available. Fuzzy models can make use of this 
situation as fuzzy rules can be based upon the qualitative information that is found in the literature whereas 
training of the model can be performed with data that is available. This combination of a fuzzy rule set 
based upon qualitative information with parameters to be determined from data can result in models where 
fewer parameters need to be estimated than if fundamental or black-box models were used. This work 
investigates the use of fuzzy modeling to describe an IL-6 signal transduction mechanism as it plays a key 
role in the body’s response to inflammation. The resulting model is capable of capturing the dynamics of 
key components of the IL-6 signal transduction pathway.  

 

1. INTRODUCTION 

Many systems investigated in systems biology are 
characterized by a lack of quantitative data, yet a significant 
amount of qualitative knowledge is available. This is a 
situation which seems ideally suited for fuzzy modeling as 
the qualitative information can be incorporated into the 
model building process in the form of linguistic rules, while 
only parameters of membership functions need to be 
estimated from (the limited amount of) available data. This 
situation forms the motivation behind this work as the 
structure of some signal transduction networks, e.g., the JAK-
STAT and the MAPK pathway, is relatively well-known and 
a significant amount of qualitative information exists, 
however, very little quantitative data is available. While it is 
now possible to generate a limited amount of quantitative 
data using techniques like GFP reporter systems, the amount 
of information is insufficient to develop or verify a detailed 
dynamic model of all aspects of the signal transduction 
pathways. This situation is further exacerbated by the fact 
that a certain level of measurement error is not avoidable for 
these experiments (Tahera et al., 2007).  The use of fuzzy 
models for describing signal transduction pathways provides 
an avenue to address the points mentioned above. 

Fuzzy logic is used in this paper to develop a model for IL-6 
signal transduction in liver cells. The reasons for choosing 
this target system are that IL-6 signal transduction plays an 
important role in the body’s response to burn injury or 
inflammation  involving the Acute Phase Response (APR) as 
well as that mechanisms of IL-6 signal transduction have 
been extensively studied and the key components of the 
signal transduction pathway are known. A significant amount 
of information has been presented in the literature on the 
structure of IL-6 signal transduction pathways including 
qualitative information in the form of Western blots 
(Heinrich et al., 2003; Fasshauer et al., 2004; Lang et al., 
2003). However, only a limited number of fundamental 

models (Schoeberl et al., 2002; Yamada et al., 2003; Singh et 
al., 2006; Huang et al., 2007) exist due to the limited amount 
of quantitative data. Additionally, these models contain a 
large number of parameters which require estimation. This 
knowledge about the structure of the IL-6 signal transduction 
pathway will be used for developing the fuzzy model in this 
work. Furthermore, data provided by the model by Huang et 
al. (2007) are used for deriving the fuzzy model as (a) it 
indicates which effect a low/high concentrations of certain 
proteins and cytokines have on other proteins of the system; 
and (b) it can be used for training the fuzzy model which has 
a significantly smaller set of parameters than the original 
model, and thereby will be easier to adapt to additional 
experimental data that is collected. 

2. PRELIMINARIES 

2.1  Fuzzy modeling 

Neuro-fuzzy models have found application for describing 
many different systems over the last few decades. The 
reasons for this are that fuzzy logic models can be easily 
interpreted while they also include the learning capabilities of 
neural networks (Jang, 1995; Kim et al., 1999).  

Fuzzy models describing dynamic processes compute the 
states x(k+1), at a time k+1, from the information of the 
states x(k) and inputs u(k), at time k,:  

))(),(()1( kukxfkx =+  (1) 

where )(⋅f is a fuzzy model with the structure shown in Fig. 
1. The values of the inputs, x(k) and u(k), and of the outputs, 
x(k+1), can be assigned linguistic labels, e.g., ‘Very Small’ 
(VS), ‘Small’ (S), ‘Medium’ (M), ‘Large’ (L), and ‘Very 
Large’ (VL). Linguistic rules can be formulated that connect 
the linguistic labels for x(k) and u(k) via an “IF” condition 
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with a “THEN” part that which determines the resulting 
linguistic label for x(k+1).  

M

 

Fig. 1. The fuzzy layer structure 

The premise membership functions are the membership 
functions appearing in the IF-part of the rule in Layer 2 and 
the consequent membership functions are the membership 
functions appearing in the THEN-part in Layer 4. These 
membership functions are of the following form  

))(exp()(
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where Aµ refers to the degree to which x belongs to the 
linguistic label A,  c represents the center of the membership 
functions and σ determines the width of the membership 
functions. The output of each node in layer 2 is the output 
from the corresponding membership function as given by 
equation (2). The output of each the nodes in layer 3 is the 
smallest value of the inputs to that node.  The output of layer 
4 is the largest value of the inputs to that node. The output of 
layer 5 is calculated by: 
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where )4(
, jiO refers to the output of the node in layer 4, which 

connects to node i in layer 5 and represent linguistic label j; 
j=1,2,…,5 represents the five linguistic labels; )4(

, jiσ , )4(
, jic  

represent the parameters of the membership function of node 
)4(

, jiO .  

2.2  K-means clustering to obtain parameters c of the 
membership functions 

K-means clustering (Kaufman et al., 1990) can group data 
points into several disjoint clusters. The reason for using K-
means clustering for determining the center parameter, c, of 
the membership functions is that the centers of the clusters 
can be used to represent the dynamic characteristics of the 
data. Taking the normalized data for the concentration of 
activated transcription factor STAT3 in the nucleus, denoted 
as (STAT3N*)2, in Fig. 2.(a) as an example, the data points 

representing the second peak cannot be distinguished from 
the data points taken after the 8th hour, i.e., these points 
would be assigned the same linguistic label. However, if K-
means clustering is used to determine the centers, as 
illustrated in Fig. 2.(b), then different dynamic patterns 
represented by the second peak and the points after the 8th 
hour can be described by two different linguistic labels ‘B’ 
and ‘A’ as shown in the figure. Therefore, K-means 
clustering plays an important role in fuzzy linguistic 
modeling procedures.   
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Fig. 2. (a) Dynamics of nuclear STAT3 dimer for stimulation 
with 0.1 nM of IL-6 and (b) the clusters obtained by K-means 

clustering  

2.3  Algorithm determining linguistic rules 

A significant amount of research has been conducted on 
determining fuzzy rules from data. Sugeno et al. (1993) and 
Tikk et al. (2002) provide a general procedure to build a 
linguistic model by clustering data from the system output. 
Gaweda et al. (2003) proposed to include a linear 
transformation of the input variables into the model building 
procedure in order to account for correlation among the 
inputs. Earlier approaches for minimizing fuzzy rule sets 
include the work by Wang et al. (1992) who proposed to 
remove redundant rules.   

In addition to linguistic rules which can be determined from a 
qualitative understanding of the process, input and output 
data is also required to determine parameters of the 
membership functions of a fuzzy model. If dynamic behavior 
is to be described then the states and the inputs at one point in 
time can serve as input data and the states at the next point in 
time are the outputs. Accordingly each data point used for 
determining the model parameters consists of the following 
triplet (x(k), u(k), x(k+1)).  

The fuzzy rules are of the form: 

IF ( x(k) is )(kxA ) AND ( u(k) is )(kuA ),  

THEN ( x(k+1) is )1( +kxA ),  

where )(kxA ,  )(kuA and )1( +kxA are the linguistic labels for x(k), 
u(k), and x(k+1), respectively, generated for the data points. 
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In order to reduce the number of parameters, a procedure 
involving the membership functions is used as follows: 
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where )(ca
bµ is the output of the membership function of a 

for linguistic label b when a=c. In other words, the linguistic 
label with the largest value for the degree among the five 
linguistic membership functions is selected.  

 3. FUZZY MODELING OF IL-6 SIGNAL 
TRANSDUCTION 

In this section a fuzzy model representing the IL-6 signal 
transduction pathway is developed. In a first step a set of key 
variables for the signal transduction pathway has to be 
identified. In a second step, a set of fuzzy rules describing 
how the inputs and values of these key variables at one point 
in time affect the system at the next time is developed. 
Finally, parameters of the membership functions are 
estimated from data and the model’s predictions are 
evaluated.  

3.1  Selection of Input and Output Variables for the  Fuzzy 
Model 

The quality of a model is strongly dependent upon the states 
used to describe a system. In the case of the IL-6 signal 
transduction model, the state is described by the 
concentration of several of the key proteins in the signal 
transduction pathway. Specifically, the concentrations of the 
following five components (IL-6-gp80-gp130-JAK*)2, SHP2, 
SOCS3, PP2, and (STAT3N*)2 are chosen as states of the 
system due to the following reasons: (IL-6-gp80-gp130-
JAK*)2 is required for initiating signaling through either 
JAK-STAT or MAPK. SHP2 is not only one of the main 
components for initiating the MAPK pathway, but it also acts 
as an inhibitor for the JAK-STAT pathway. SHP2 
dephosphorylates the (IL-6-gp80-gp130-JAK*)2 complex and 
thereby inhibits phosphorylation of STAT3C and signal 
transduction through the JAK-STAT part of the pathway. 
SOCS3 also inhibits signal transduction in the JAK-STAT 
pathway by inhibiting the phosphorylation of STAT3 in the 
cytosol. At the same time, SOCS3 is one of the products of 
the JAK-STAT signaling pathway and acts as a signaling 
inhibitor. The nuclear phosphatase PP2 causes deactivation of 
the phosphorylated STAT3 dimer in the nucleus. This 
deactivation is an important step for returning STAT3 to the 
cytosol for another phosphorylation-dephosphorylation cycle 
(Singh et al., 2006). (STAT3N*)2 is a transcription factor, 
which can be measured by Western blots or by analysis of 
fluorescence images taken from GFP reporter experiments 
(Huang et al., 2007) and is indicative of 
transcription/translation of important proteins as a result of 
IL-6 signal transduction.  

A summary of the components of x and u from equation (1) is 
shown in Table 1. The outputs (IL-6-gp80-gp130-JAK*)2, 
SHP2, SOCS3, PP2, and (STAT3N*)2 at time k+1 will be 
computed from the input information of IL-6, (IL-6-gp80-
gp130-JAK*)2, SHP2, SOCS3, PP2, and (STAT3N*)2 at time 
k. 

Table 1.  Description of states and input 
Component Protein/Cytokine 

x1 (IL-6-gp80-gp130-JAK*)2 
x2 SHP2 
x3 SOCS3 
x4 PP2 
x5 (STAT3N*)2 
u IL-6 

3.2  Linguistic Modeling for IL-6 Signal Transduction 

Data for developing the linguistic structure are taken from 
information provided in the literature and from simulation 
results of the model developed by Huang et al. (2007). The 
generated model can then be further refined with additional 
experimental data. However, one of the advantages of 
developing this fuzzy model instead of using the model 
presented by Huang et al. (2007) is that the fuzzy model 
contains a significantly smaller number of parameters that 
may need to be validated. 

A data set is created by hourly recording the values of the 
states x from simulations of model presented by Huang et al., 
2007 for six different IL-6 concentrations: 0.001 nM, 0.005 
nM, 0.04 nM, 0.1 nM, 0.25 nM, and 0.5 nM. The dynamics 
of (STAT3N*)2  for stimulation with different IL-6 
concentrations ranging from 0.001 nM to 5 nM is shown in 
Fig. 3. It can be seen that the dynamic profile of the 
(STAT3N*)2 concentration can vary significantly with the 
amount of stimulation. For example, for IL-6 concentrations  
larger than 0.04 nM, the largest value of the concentration 
appears earlier, the stronger the increase in IL-6. However, 
for IL-6 concentrations larger than 0.5 nM, the system 
dynamics shows very little variation due to the fact that the 
receptors at the cell surface are saturated with IL-6 at this 
concentration.  
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Fig. 3. (STAT3*)2 profile for different IL-6 concentrations 

K-means clustering is used to obtain the value of the 
parameters c of the membership functions. This requires that 
the data is normalized such that all data points have values 
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between zero and one. A summary of the results is shown in 
Table 2. The parameters σ of all membership functions are set 
to a value of 0.16.  

Table 2.  Parameters c of membership functions  

 

The linguistic modeling algorithm discussed in Section 2 is 
used to determine the linguistic rules. The linguistic rules 
shown in Table 3 are derived from data taken from the 
literature (Fasshauer et al., 2004; Lang et al., 2003) as well as 
from data generated by the fundamental model (e.g., see 
Figure 4 for part of the data set). A description of how the 
linguistic rules are derived from this information is illustrated 
for the special case of a stimulation with 0.25 nM of IL-6 in 
the following.  
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Fig. 4. System behavior for a stimulation with 0.25 nM of IL-
6.  

The normalized value for IL-6 being equal to 0.25 nM is 
computed by (0.25 nM - 0.001 nM)/(0.5 nM - 0.001 nM) 
resulting in a value of 0.5; in this calculation 0.001 nM is the 
smallest value of the IL-6 concentrations in the data set and 
0.5 nM is the largest value. It can be concluded from Table 2 
that 0.5 is the center of the linguistic label ‘L’, i.e., the 
linguistic label ‘L’ is assigned to an IL-6 concentration of 
0.25 nM. It can be seen in Fig.4 that the normalized values 
for the (IL-6-gp80-gp130-JAK*)2, SHP2, SOCS3, PP2, and 
(STAT3N*)2 concentrations at time zero are 0, 1, 0, 1, and 0, 
respectively. From Table 2, the center of the linguistic label 
‘VS’ is the closest to the normalized value of the (IL-6-gp80-
gp130-JAK*)2 concentration of zero and, therefore, the 
linguistic label ‘VS’ is assigned to this concentration. 
Similarly, ‘VL’ is assigned to the normalized concentration 
of SHP2 equal to 1, ‘VS’ is assigned to SOCS3 being equal 
to 0, ‘VL’ is assigned to PP2 equal to 1, and ‘VS’ is assigned 
to (STAT3N*)2 being equal to 0. This description illustrates 
how the IF-part for Rule 29 in Table 3 was derived. The 
THEN-part of Rule 29 is constructed by the same procedure 
applied to the values of the states shown in Fig. 4 at 1 hr. 

Thus, the entire Rule 29 is constructed from data at 0 hr and 1 
hr for an IL-6 concentration of 0.25 nM. The other rules 
shown in Table 3 are generated by the same procedure for 
data at different points in time and/or for different stimulation 
profiles. When several rules have the same IF-part but 
different THEN-parts, then the rule, whose THEN-part 
results in the largest change in the states is selected.  

Table 3.  Linguistic model for IL-6 signal transduction 
IF THEN 

X(k) X(k+1) 
Rule 

number u(k)
x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 

1 VS VS VL VS VL VS VS L VS VL VS
2 VS VS L VS VL VS VS L VS VL VS
3 VS S L VS L S L M VS M M 
4 VS L M VS M M M M S S L 
5 VS M M S S L S M M M M 
6 VS S M M M M M M M M M 
7 VS M M M M M M M S M M 
8 VS M M S M M M S S M M 
9 VS M S S M M M S S M M 

10 S VS VL VS VL VS VL VS M VS VL
11 S VL VS M VS VL S VS VL S L 
12 S S VS VL S L S VS VL M S 
13 S S VS VL M S M VS L M M 
14 S M VS L M M L VS M S L 
15 S L VS M S L M VS M S L 
16 S M VS M S L M VS M M M 
17 S M VS M M M M VS M M M 
18 S S VS S M M S VS S M M 
19 M VS VL VS VL VS L VS L VS VL
20 M L VS L VS VL S VS VL S L 
21 M S VS VL S L S VS L L S 
22 M S VS L L S M VS M M M 
23 M M VS M M M M VS M S L 
24 M M VS M S L M VS M M M 
25 M S VS M M M S VS S M M 
26 M S VS S M M S VS S M S 
27 M S VS S M S S VS S L S 
28 M S VS S L S S VS S L S 
29 L VS VL VS VL VS L VS L VS VL
30 L L VS L VS VL S VS VL M M 
31 L S VS VL M M S VS L L S 
32 L S VS L L S M VS M M M 
33 L M VS M M M M VS S M M 
34 L M VS S M M S VS M M M 
35 L S VS M M M S VS S L S 
36 L S VS S L S S VS S L S 
37 VL VS VL VS VL VS L VS L VS VL
38 VL L VS L VS VL S VS VL M M 
39 VL S VS VL M M S VS L L S 
40 VL S VS L L S M VS M M M 
41 VL M VS M M M M VS S M M 
42 VL M VS S M M S VS S M M 
43 VL S VS S M M S VS S L S 
44 VL S VS S L S S VS S L S 

It can be inferred from Table 3, that the fuzzy rules for very 
small IL-6 concentrations are quite different than those for 
higher concentrations. This is consistent with the results 
shown in Fig. 3, as the dynamic behavior of the states for 
stimulation with IL-6 concentrations below 0.04 nM is 
significantly different from those for higher IL-6 
concentrations.  

The parameters of the membership functions of the linguistic 
model are estimated using a back propagation algorithm 
(Kim et al., 1999; Jang, 1993).  Only the parameters σ of the 
premise membership functions are estimated, and the 
parameters σ of the consequent membership functions as well 
as parameters c are kept constant. The parameters σ of the 
consequent membership functions are all set to a value of 
0.16. Therefore, only 30 parameters need to be estimated 
which is a significant reduction of the parameters in the 
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model when compared to the fundamental model presented 
by Huang et al. (2007) which contained 124 parameters.  

During the parameter estimation procedure, the parameter 
vector σ is updated by the following equation: 

∑ ∂
∂

−=
p

pE
σ

ησσ  (4)  

where η refers to a step-size and pE is the square of the error 
between the model output and the actual output for the pth 
data set. η is updated by the following strategy to increase the 
rate of convergence:  

(1) if ∑
p

E continuously decreases in four epochs, then adjust 

η  by setting ηη 001.1= ;  

(2) if ∑
p

E increases and decreases twice in a row then adjust 

η  by  setting ηη 99.0= .  

The determined values of σ of the premise membership 
functions are shown in Table 4.  

Table 4.  The parameter σ of the premise membership 
functions 

IF-part 
X(k) 

Linguistic 
label  

σ(u(k)) σ(x1) σ(x2) σ(x3) σ(x4) σ(x5) 

VS 0.05 0.35 0.13 0.29 0.19 0.18 
S 0.05 0.05 0.07 0.05 0.17 0.08 
M 0.05 0.05 0.06 0.05 0.16 0.14 
L 0.13 0.05 0.25 0.13 0.16 0.10 

VL 0.16 0.19 0.05 0.06 0.19 0.18 

The fuzzy model is comprised of the linguistic model shown 
in Table 3, with values of the centers of the membership 
functions from Table 2, and the determined values of the 
parameters σ of the premise membership functions shown in 
Table 4. This model can be used to compute the dynamic 
behavior of the model.  

A comparison of the dynamic behavior of the fuzzy model 
with the original training data at different IL-6 concentrations 
is shown in Fig. 5. Only the results for the profile of 
(STAT3N*)2 are shown in this work due to space constraints, 
however, the profiles of all the components are predicted well 
by the model. It can be seen in Fig. 5 that the model can 
correctly reproduce the large peak of the (STAT3N*)2 
concentrations after 1 hr as well as the much smaller peak 
around 5 hrs. It can also be concluded that the model 
accuracy at low IL-6 concentrations is not as good as the 
accuracy at high IL-6 concentrations.  
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Fig. 5. Comparison of the fuzzy model predictions with the 
original data set 

In addition to being able to reproduce the training data well, 
the model has to be able to predict the dynamics of the states 
for values of the states and inputs that were not contained in 
the training data set. A comparison of some results is shown 
in Fig. 6 where the model can accurately reproduce the 
dynamics of the (STAT3N*)2 concentration.  
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Fig. 6. Comparison of the fuzzy model predictions with a 
newly generated data set 

4. SIMULATION RESULTS AND DISCUSSION 

While predicting the dynamic behavior of the (STAT3N*)2 
concentration is one of the key aspects of IL-6 signal 
transduction, there are other important insights that can be 
gained by investigating the dynamics of the activated 
receptor complex (IL-6-gp80-gp130-JAK*)2 concentration, 
and the dynamics of the SOCS3, SHP-2 and PP2 
concentrations. In order to investigate these, the simulation 
results for a stimulation with 0.25 nM of IL-6 are shown in 
Fig. 7.  

It can be concluded that the model is able to describe the 
main characteristics of the dynamics of IL-6 signaling. These 
characteristics include the height and location of the two 
peaks of the receptor complex (IL-6-gp80-gp130-JAK*)2 
concentration which is caused by the cycling of (STAT3N*)2 
between the cytosol and the nucleus as seen in Fig. 7(a).  The 
magnitude of the decrease in SHP2 as seen in Fig. 7 (b) is 
also correctly described by the fuzzy model. The correct 
description of the SHP2 dynamics is important insofar as 
SHP2 is involved in activating signaling through the MAPK 
pathway, which then results in reduced signaling through the 
JAK/STAT pathway. The fuzzy model can also correctly 
reproduce the peaks of SOCS3 (Fig. 7(c)) and PP2 (Fig. 7(d)), 
respectively. The SOCS3 dynamics is especially important as 
SOCS3 acts as a feedback inhibitor for signaling through the 
JAK/STAT pathway. Another important mechanism is 
facilitated by the nuclear phosphatase PP2 as it is required for 
the cycling of STAT3 between the cytosol and the nucleus. 
The initial drop in the PP2 concentration is a result of the 
large peak value of nuclear STAT3 that enters the nucleus 
and reacts with PP2 before it can cycle back to the cytosol. It 
can be concluded that the fuzzy model is able to capture the 
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initial changes very well, whereas the model predictions have 
a small offset after approximately 6 hours. The reason for this 
is that only slow changes occur at that time and that the 
chosen set of fuzzy rules is not able to accurately describe 
small and slow changes. It would be possible to capture this 
behavior in the model if additional linguistic rules and more 
model parameters were used, however, the presented model 
provides a good trade-off between model accuracy and model 
complexity. This is especially true if it is considered that the 
initial response of IL-6 signal transduction is more important 
than small changes in the signaling pathway occurring after 
prolonged exposure to IL-6.  
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Fig. 7. Simulation results of the fuzzy model for stimulation 
with 0.25 nM of IL-6 

5. CONCLUSION 

This paper presented the application of fuzzy modeling to 
signal transduction pathways. The motivation for using fuzzy 
models is that a significant amount of qualitative information 
about signal transduction pathways can be found in the 
literature, however, a more limited amount of quantitative 
knowledge exists. The approach presented in this work uses a 
linguistic model to describe the dynamic behavior of the 
system as a function of the previous states and current inputs. 
A K-means clustering algorithm computes the parameter c 
referring to the center of the membership functions and a 
back propagation algorithm is used for determining the width 
parameter σ of the premise membership functions. The 
technique is illustrated by modeling the dynamics of an IL-6 
signal transduction pathway and the results are found to be in 
good agreement with available data.  
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