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1. INTRODUCTION 

Method of dynamic programming introduced by Bellman is 
traditionally used for synthesis of optimal control system. 
The result of this method is differential equation in partial 
derivatives. The solution of the equation leads to functional 
dependence of control vector from problem space vector. In 
most cases the Bellman equation has no analytical solution. 
One of the famous solutions is obtained using quadratic 
functional, linear object and absence of restrictions on a 
control (DeRusso P.M. et al., 1998). Then functional 
dependence of control from the state of the object is 
expressed by linear matrix transformation.  

In this paper, the functional dependence search of control 
vector from problem space vector is realized with the help 
of genetic programming (GP) (Koza J.R., 1992). GP is used 
for the search of algorithms. Also GP is known to be 
successfully applied for synthesis of control systems (Koza 
J.R. et al., 2002, Pohlheim H. and Marenbach P., 1996, 
Rodriguez-Vazquez K. et al., 2004, Xiaofang Chen et al., 
2004, Keane M.A. et al., 2002).  

To present one of possible solutions GP uses Polish notation 
that is not effective in terms of calculation. Polish notation is 
a string of symbols that describes operations and arguments. 
Symbol of operation should be followed by a definite 
number of symbols of arguments. Some operations can be 
arguments for other ones as well. To calculate the equation 
lexical analysis is used. It helps to differ operations and 
arguments. In cases when the argument is an operation the 
recursion should be used that requires stacks. Both lexical 
analysis and stacks slow down calculations using Polish 
notations. 

In this paper, an integer matrix is used as a basic item for 
genetic operations. The matrix defines the directed graph, 
which we call network operator. The matrix contains 
information about the structure of network operator and 
types of its edges and nodes. Directed graph, network 
operator, as well as the tree can represent any mathematical 
expression. If some argument is used in certain expression 

several times then we should add the same number of leaves 
to the tree. In network operator one node corresponds to one 
argument no matter how many times this argument is used 
in the expression. Moreover, integer matrix has some 
advantages on Polish notation. Evaluation of upper 
triangular matrix is a single-pass operation and neither 
analysis of lines nor stacks are needed. 

2. PROBLEM STATEMENT 

The following problem of optimal control is considered. The 
system of differential equations which describes the 
dynamics of the object is given 

( )uxfx ,=& ,             (1) 

where [ ]Tnxx K1=x  - problem space vector, [ ]Tmuu K1=u  

- control vector, ∈x ℝn, ⊆∈Uu  ℝm, , nm ≤ U  - limited 
set. 

Given performance functional 

( ) ( )(∫=
ft

dtttfJ
0

0 ux , ) .          (2) 

Given boundary conditions 

( ) [ ]Tf
n

ff
f xxt K1== xx .          (3) 

Synthesize a control system in the following form 

( )cxhu ,= ,           (4) 

where [ ]TQcc K1=c  - vector of parameters. 

Equality (4) in combination with (1) should present a system 
of differential equations such that its solution for given 

initial value  ( ) [ ]Tnxx 00
1

00 K== xx  would reach the 
boundary conditions (3) in finite interval of time ∞<ft , 

[ ]ftt ,0∈∀ , ( ) ( )( ) U, ∈= cxhu tt , and minimize the 
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(performance functional (2). The desired function )cxh ,  can 
be nondifferentiable and discontinuous, but it is a single-
valued transformation,  ℝn ∈∀x ( )∈∃ cxh , ℝm. 

To solve the problem (1) – (4) we use algorithm that 
automatically gets equations in the form of .  ( )cxhu ,=

Algorithm uses genetic selection and out of the range of 
equations finds (4) that satisfies (1) – (3) most of all. 

We present the equations in PC memory as a special data 
structure that is based on description of equation in the form 
of directed graph or network operator. 

2. NETWORK OPERATOR 

Define some bounded ordered sets. Variable set is a set in 
which items can change their values in the 
computation process 

( )Pvv ,,V K1= ∈iv, ℝ1, Pi ,1= .         (5) 

Parameter set is a set in which items cannot change their 
values in the computation process 

( )Qсс ,,С K1= ,  ℝ1, ∈iс Qi ,1= .            (6) 

Unary operations set is a set of functions or single-
valued transformations defined over a certain number set 

( ) ( ) ( )( )zzz Wρρρ= ,,,O K211 ,         (7) 

where ℝ1 ℝ1, ( )  :ziρ → ∈∀z ℝ1,    

∈∃y  ℝ1 , ( )zy iρ=⇒ Wi ,1= . 

Commutative binary operations with unit element set is a set 
of single-valued transformations of two equal number sets in 
one the same number set 

( ) ( ) (( zzzzzz V ′′ ))′χ′′′χ′′′χ= ,,,,,,O K212 ,                     (8) 

where ℝ1
×ℝ1 =ℝ2 ℝ1,  

ℝ1, ℝ1
( )  :zzi ′′′χ , →

∈′′′∀ zz , ∈∃y ( )zzy i ′′′χ ,=⇒ , Vi ,1= . 

( ) ( )zzzz ii ′′′χ=′′′χ ,, , Vi ,1= ,                      (9) 

∈∃ ie ℝ1 ,( ) ( ) zezze iiii =χ=χ⇒ ,, Vi ,1= .                  (10) 

Definition 1. Network operator is a directed graph with 
following properties: 

0) graph should be circuit-free; 
1) there should be at least one edge from the source node to 
any nonsource node; 
2) there should be at least one edge from any nonsource 
node to sink node; 
3) every source node corresponds to the item of variable set 
or parameter set; 
4) every nonsource node corresponds to the item of binary 
operations set; 
5) every edge corresponds to the item of unary operations 
set. 

Definition 2. The correct notation of expression is notation 
with unary and binary operations. Binary operation is the 
external operation. The arguments of binary operation are 
unary operations or its unit element. The arguments of unary 
operation are binary operations, variables or parameters. 

Theorem 1. The calculation of network operator for any 
correct notation of expression will get the same results as 
calculation of the expression itself. 

Proof. Given a correct notation of expression. According to 
definition 2 only variables and parameters can be placed in 
the most internal parentheses. Each internal parenthesis 
corresponds to source node of network operator and 
appropriate variable or parameter. 

Since internal parentheses of expression correspond to some 
unary operation then we can create outcoming edges from 
these nodes and set appropriate unary operations to these 
edges. At the ends of edges we place nodes that correspond 
to binary operations. If a binary operation has two unary 
operations as arguments then the node should be placed at 
the end of both edges. If the second argument is a unit 
element then we place a node with only one incoming edge 
that corresponds to unary operation. If a unary operation has 
a binary operations as its argument then the node will have 
an outcoming edge. 

Perform the actions mentioned above for all elements in the 
expression and we get a directed graph. Graph is circuit free 
since every new binary operation corresponds to a new node  

Since every following node is placed at the end of the edges 
there is at least one way from source node to nonsource 
node. 

Since the edges come out of the nonsource nodes only if the 
binary operation that corresponds to that node is the 
argument for unary operation then we get a sink node for 
every external binary operation. This sink node has no 
outcoming edges. 

Prove that according to steps of calculations the value in 
internal parentheses is calculated before the value in 
external ones. Assume a binary operation has two unary 
operations as arguments. Then according to creation of 
network operator it matches the node with two incoming 
edges. According to the second step the final result of 
calculation of binary operation cannot be obtained while 
unary operations are performed.  

Suppose a unary operation has a binary operations as its 
argument. It corresponds to the node with one outcoming 
edge. The calculation of unary operation can be performed if 
we get the results of binary operation in the node. Removal 
of parentheses corresponds to deletion of edges and nodes of 
the graph. 

Since calculation of network operator does not invert the 
order of removal of parentheses, the result obtained is equal 
to the calculation of expression. ■ 

Suppose mathematical expression is of the form 
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32 byaxu += .         (11) 

The sets are defined as 

( )yx ,V = ,                       (12) 
( )ba ,С = ,                       (13) 

( ) ( ) ( )( )3
3

2
211 zzzzzz =ρ=ρ=ρ= ,,O ,                   (14) 

( ) ( )( zzzzzzzz ′′′ )=′′′χ′′+′=′′′χ= ,,,O 212 .                   (15) 

Then mathematical expression may be written as 

( ) ( )( )⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛= ybxau 32221 ρχρχχ ,,, .                   (16) 

Fig. 1 shows network operator for (16). 

 

 

 

 

 

 

 

Fig. 1 Network operator for (16) 

As we can see on the network operator graph variables and 
parameters are used in the source nodes, binary operations 
are used in the nonsource nodes and unary operations are 
presented on the edges. 

Suppose mathematical expression contains noncommutative 
binary operation 

yxu = .                       (17) 
Then (17) may be written using additional unary operations 

( )( )xyu lnexp= .                      (18) 

Let us add some new operations such as ( ) zez =ρ4 , 

 to unary operations set (14). Then (18) may be 
written as 

( ) ( )zz ln5 =ρ

( )( )( )xyu 524 ρχρ= ,                       (19) 

If we try to create a network operator for (19) we will get an 
edge that corresponds to unary operation  and does not 
have an incoming node. So we will get incorrect network 
operator. To avoid this we have to add a binary operation 

 and use 0 as a second argument. This 
action will not change the result but will guarantee the 

correctness of network operator. Expression (18) should be 
written as 

( )z4ρ

( ) zzzz ′′+′=′′′χ ,1

( ) ( )( )( )( )051241 ,, xyu ρρχρχ= .                    (20) 

It must be emphasized that the first operation in the 
expression must be a binary operation having unary 
operations as arguments. Again unary operations must have 
variables or/and parameters as their arguments. 

Consider an example. Suppose mathematical expression 
contains some embedded unary operations 

2xeu = .                      (21) 
Then the correct notation for (21) may be written as  

( )( )( )( )002141 ,,xu ρχρχ=                      (22) 

and presented as a graph in Fig. 2. There is no need to depict 
unit elements for binary operations. 

If a binary operation operates on more than two arguments 
then in mathematical expression these arguments can be 
grouped in pairs and in network operator this binary 
operation can be presented as a single node with an 
operation number in it. 

 

 

 

Fig. 2 Network operator for (22) 

Consider an example.  Suppose we have the following 
mathematical expression 

32 ayxu ++= ,                       (23) 

If we group in pairs the arguments of binary operation 
“sum”, we shall have the following notation 

( ) ( ) ( )( )( )( )ayxu 321111 ρρχρρχ= ,, .                    (24) 

Fig. 3 shows two equivalent network operators for (24). 

According to property (0) of network operator it is a circuit-
free directed graph. This statement means that there can be 
several edges coming out of one node. Consider the 
following mathematical expression 

( )axaeu x += .                      (25) 

The correct notation for (25) may be written as  

( ) ( ) ( ) ( )( )( )( )( )( )axxau 111142112 ρρχρρχρρχ= ,,,                (26) 

and presented as a graph  in Fig. 4. 

If we present notation (26) as a tree in terms of GP (Koza 
J.R., 1992), then we have to use two leaves for each of two 
arguments x  and . a

Network operator can simultaneously include several 
mathematical expressions. For example we have 

1 

1 
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( ) yaxu += 2
1 ,                       (27) 

( )2

2
axyeu = .                      (28) 

The correct notations for (27) and (28) are  

( ) ( )( )( ) ( )( )yxau 1112211 ρρρχρχ= ,, ,                     (29) 

( ) ( ) ( )( )( )( )( )( )0112214122 ,,, xayu ρρχρχρρχ= .                  (30) 

Fig. 5 shows network operator for (29) and (30).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Network operators for (24) 

 

 

 

 

 

Fig. 4 Network operator for (26) 

 

 

 

 

 

 

Fig. 5 Network operator for (29), (30) 

The numbers of nodes are given in the bottom of each node. 

3. NETWORK OPERATOR MATRIX  

Since network operator is a circuit-free directed graph we 
can number all node so that the number of source node 
would be smaller then the number of incoming node. Then 
the incident matrix of such network operator is 
upper triangular. 

The incident matrix consists of 0 and 1, where 1 indicates 
the edge between nodes, 0 indicates the absence of the edge. 
All unary operations are numbered. According to operation 
on certain argument these numbers are used instead of ones 
in superdiagonal elements. Binary operations are also 
numbered, but these numbers are used instead of zeros on 
the diagonal elements. So we get a network operator matrix 
(NOM). 

Let us examine network operator shown in Fig.5. All nodes 
are numbered as described above. NOM for (27) and (28) is 
the following 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

200000
010000
422000
110000
001000
001000

Ψ .                     (31) 

NOM [ ]ijψ=Ψ , Lji ,1, = , of size LL × , where L  is the 
number of nodes in network operator. 

Let us introduce the node vector 

( ) ( ) ( )[ ]Tk
L

kk zz K1=z ,                      (32) 

where  is the number of iteration, k 1,1 −= Lk . 

If i -node is a source node then initial values of node vector 
elements ( )0

iz , Li ,1= , are set equal to appropriate elements 

of parameter or variable sets. For binary operations  the 
value is set equal to unit element . 

iiψ

ii
eψ

( )
⎩
⎨
⎧ ∪∈

=
ψ node nonsource a is node -   if  

node source a is node -   if  ,0
ie

iz
ii

i ,
CV , Li ,1= .     (33) 

To obtain an expression of matrix  the following 
algorithm was worked out:  

Ψ

Algorithm 1 Algorithm for obtaining the expression from 
matrix  Ψ

Step 0. Given NOM [ ]ijψ=Ψ , Lji ,1, = .  

Step 1. Given initial values of node vector elements ( )0
iz , 

Li ,1= , according to (33). . 1=i

Step 2. 1+= ij . 

Step 3. If 0≠ψ ij , then ( ) ( ) ( )( )( )11 −
ψ

−
ψ ρχ= i

i
i
j

i
j zzz

ijjj
, . 

Step 4. 1+= jj . If Lj ≤ , then go to step 4. 

4 
2 

3 

1 2 

a 

1 

y 
1 

1 

x 

1 

3 

2 

a 

y 1 

x 

1 

1 4 1 

1 1 

2 

a x 1 

2 

1 1 
a x 2 

1 

2 1 y 

1 

1 2 4 

5 
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Step 5. . If , then go to step 2, else exit. 1+= ii Li <

The elements of vector  that correspond to sink nodes 
of network operator are the results of computation. 

( )1−Lz

Theorem 2. Assume given the expression in the form of 
correct notation. Assume network operator for the correct 
notation is described by NOM , [ ]ijψ=Ψ Lji ,, 1= . Then 
algorithm 1 guarantees the correct calculation of the 
expression.  

Proof. To prove the theorem we should prove that algorithm 
calculates all operations in expression and keeps the order of 
parentheses.  

Since matrix  is upper triangular the numbers of unary 
and binary operations are in elements , . Algorithm 
goes through rows from  to 

Ψ

ijψ ij ≥

1=i 1−= Li  and columns from 
 to .  1+= ij Lj =

For nonzero element  of NOM Ψ  unary operation that 

corresponds to the edge (  and binary operation that 
corresponds to node  are performed. Thus all operations 
will be performed but for node 1. Node 1 is a source node 
that is parameter or variable.  

ijψ

)ji ,
j

Let unary operations be arguments for some binary 
operation ( ) ( )( )zz nmk ′′ρ′ρχ , . According to topological sort 
number of the node , that corresponds to binary operation 

, should be more than the numbers of nodes, whose 

outcoming edges go to node . Let , , , 

and . Thus unary operations  and 

j

jjk ψ=

j ij > lj > ijm ψ=

ljn ψ= ( )zm ′ρ ( )zn ′′ρ will 
be performed earlier than binary one.  

Let binary operation be arguments for some unary operation 
, , , . Thus binary 

operation  be performed earlier than unary one.  

( )( )zzmk ′′′χρ , ijk ψ= iim ψ= ji <

( zzm ′′χ ,' )

)According to the algorithm binary operation ( zz
ii

′′χψ ,'  will 

be performed for all nonzero elements  in column  
and rows above , . 

0≠ψki i
i ik <

Since algorithm goes to next row only if all operations in 
rows above are performed. Operation will be 

performed only if all unary operations 

(( )zzmij
′′′χρψ , )

( )( )zz
kkki

′′′χρ ψψ , , 

 are performed. Thus the algorithm 1 keeps the order of 
calculation for unary operations.  

ik <

To sum, the algorithm 1 calculates all operations in 
expression and keeps the order of parentheses.□ 

4. SMALL VARIATIONS OF NETWORK OPERATOR 

For network operator the following variations are defined: 

a. replacement of unary operation on the edge; 
b. replacement of binary operation in the node; 
c. addition of an edge with a unary operation; 
d. addition of a node with a binary operation; 
e. deletion of the edge; 
f. deletion of the node. 

Variations (a)-(c) do not change the properties of network 
operator and thus do not influence on its correctness. If we 
perform variations (d)-(f) the properties should be taken into 
consideration. The deletion of an edge can occur only if 
there is at least one more edge that has the same source node 
and the sink node for deleted edge has at least one more 
incoming edge.  

Addition of a node requires the addition of at least one 
incoming and one outgoing edges. 

Incoming edge should outcome from the node that is before 
the new node and the outcoming edge should come into the 
next node on the way.  

Deletion of the node should come together with deletion of 
in and outcoming edges. 

All variations on the network operator can be presented as 
an integer variation vector that consists of four elements: 

[ ]Twwww 4321       =w ,                     (34) 

where  - number of variation,  - number of row in 
NOM,  - number of column in NOM,  - number of 
unary or binary operation. Element  depends on .  

1w 2w

3w 4w

4w 1w

Let us consider network operator at Fig. 5, NOM (31) and 
two vectors [ ]T3  6  4  01 =w , . Vector  

replaces unary operation ,  adds unary 

operation .  

[ T3  5  2  22 =w ] 1w

364 =ψ ,
2w

352 =ψ ,

As a result of application of vectors  and  we get a 
new network operator matrix 

1w 2w

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

200000
010000
322000
110000
031000
001000

12 Ψww oo                     (35) 

NOM (35) corresponds to new mathematical expressions 

( ) 32
1 xyaxu ++= ,                      (36) 

( )32 axyu = .                      (37) 

5. PRINCIPLE OF BASIS STRUCTURE 

The search of optimal structure often faces the problem of 
checking its properties. The checking of structure properties 
complicates the algorithm and slows down the search. So we 
use integer matrix of special form to solve the problem.  
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NOM is upper triangular. It describes the graph of network 
operator and shows the relations of nodes and edges with 
elements of the sets. But not all upper triangular matrices are 
NOMs. For the matrix to be NOM it must has properties 
mentioned in definition 1.  

The checking of structure properties for each matrix is time 
consuming. For time-saving in the problems of optimal 
structure search we use principle of basis structure. 

Principle of basis structure. For the problem of optimal 
structure search we set a basis structure and define its 
permissible variations. To generate another structures we 
use permissible variations of basis structure. The search of 
optimal solution is done over the variation space. The 
ordered set of variations that transforms the basis structure 
to optimal structure is the solution.  

In our case we set a basis structure of network operator 
on the assumption of common sense. Permissible variations 
are (a)-(e) that do not change the size of NOM.  

To reduce the number of variations we can replace basis 
structure by the current best structure in the search process. 
Principle of basis structure can be effectively used in GP.  

6. GENETIC ALGORITHM 

To solve the problem (1) – (4) we use genetic algorithm. 
The set of possible solutions to a problem of the form (4) is 
defined by a set of network operator matrices. To generate 
the set of network operator matrices we use a principle of 
basis structure.  

Basis structure is one of possible solutions of given problem 
(4). Ordered set of variation vectors is used as a 
chromosome 

( )Mww ,,W K1= ,                     (38) 

where M  is a given length of a chromosome.  

The length of chromosome is one of adjustable parameters 
of algorithm.  

Any chromosome influences basis structure and guarantees 
emergence of new structure 

010ΨΨ Ψww ooKoo llMll ,,W == ,                   (39) 

where  is a number of a chromosome in population,  is 
a NOM of basis structure.  

l 0Ψ

First define the basis structure of possible solution . 
Then generate the set of chromosomes , 

0Ψ
lW Hl ,1= , out of 

variation vectors. Estimate the fitness function for each 
chromosome. The fitness function depends on (2) and error 
for boundary conditions (3) 

( ) ( )( ) ( )( )∫ ∑
=

−α+=
ft n

i
f

f
i txxdtttfF

0 1

2
0 ux , , 

where  - weight coefficient. α

While estimating fitness function for each chromosome 
using nonlinear programming we find optimal parameters 
out of set (6).  

All traditional GA operations are made on chromosomes in 
the process of evolution. These operations are selection, 
crossover, mutation and inversion. The probability of 
crossover depends on relation of fitness function values of 
chosen chromosomes to fitness of the best chromosome in 
population 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
<ξ∨⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
<ξ

+

−−

122 ii F
F

F
F

, Ri ,1= , 

where ξ  - random value between 0 and 1, −F  - fitness 
function value for the best current chromosome in 
population, ,  - fitness function value for i  couple 
of chromosomes,  - number of chosen couples. 

iF2 12 +iF
R

After some number of generations called epoch we perform 
a digenesis with previous basis structure replaced by the best 
one found at last generation. To introduce a new basis 
structure it is necessary to save one chromosome identical to 
this basis structure. The number of epochs is also one of 
adjustable parameters. 

7. PARAMETRIC OPTIMIZATION 

While estimating the value of fitness function for each 
chromosome we perform the search of optimal parameters 

, iс Qi ,1=  with a Hooke-Jeeves algorithm. For 
optimization we use fitness function as object function, 

( )cFmin . 

We set random initial values of parameters in given 
restrictions , +− ≤≤ iii ccс 0 Qi ,1= . Estimate the object 

function ( )0cFF =
~ . 

Perform the research near initial value 

( ) ( )
( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

<−
<+

=
otherwise 

 if 
  if ,

0

010

010

1

,
,

i

i

i

i
c

FFcc
FFcc

с сc
сc

Δ
Δ

, 

where cΔ  - the step of research. 

If after research the condition ( ) ( )01 сc FF =  is not satisfied, 
then we increment the step of research. The algorithm is 
over, when cс ε<Δ , where  is a given small value. cε

If ( ) ( )01 сc FF < , then we perform one-dimensional search of 
slenderness with method of golden section in the found 
direction from  to  on criterion 0c 1c ( )2min cF

λ
, where 

( ) 102 1 ccc λ+λ−= , λ  - slenderness, . Then we 

substitute initial value  and repeat the research. 

+λ≤λ≤0
20 сc =
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8. EXAMPLE 

We have considered the problem of structure-parametric 
synthesis of satellite angular movement stabilization system 

132
1 100

3
1 uxx

dt
dx

+= ,                     (40) 

231
2 25uxx

dt
dx

+−= ,                     (41) 

321
3 100uxx

dt
dx

+= ,                     (42) 

where , ,  - angular velocity of satellite, , ,  
- control variables generated by jet engines.  

1x 2x 3x 1u 2u 3u

The control should stabilize satellite location near the origin 

( ) 0== f
ifi xtx , and fuel consumption should be 

minimized  
,,, 321=i

( ) min
0

3

1

→= ∫∑
=

ft

i
i dttuJ . 

Given initial values of variables 

( ) 20001 =x , , . ( ) 3002 =x ( ) 4003 =x

Given restrictions for control  

22 ≤≤− iu ,  .3,2,1=i

Having used GA to solve the given problem we obtained the 
network operator. While estimating fitness function for each 
possible solution we found optimal parameters with a 
Hooke-Jeeves algorithm. 

To solve the problem the following sets were used 

( )321 xxx ,,V = , ;  ( )321 сcс ,,С =

( ) ( )( )zz 811 ρρ= ,,O K ; 
( ) (( )zzzz ′′′χ′′′χ= ,,,O 102 ) , 

where  

( ) zz =ρ1 ,  

( ) ( ) zzz sign2 =ρ ,  

( ) 3
3 zz =ρ ,  

( ) 2
4 zz =ρ ,  

( )
⎩
⎨
⎧ ≥=ρ otherwise 0

0 if 1
5 ,

, zz ,  

( ) zez =ρ6 ,  

( ) zz −=ρ7 ,  

( ) z

z

e
ez

−

−

+

−
=ρ

1
1

8 ,  

( ) zzzz ′′+′=′′′χ ,0 ,  

( ) zzzz ′′′=′′′χ ,1 . 

One of possible solutions found is the following 

( )
⎩
⎨
⎧ ≥=

otherwise ,
2 if ,2sign

i

ii
i y

yyu , , 321 ,,=i

where 

( ) +−+−−= 331111211 sign xcxcxcxxy  

    ( )( ) ( ) 3333
3

33113
3

22 sign xcxcxcxccxc −+−−−−+ , 

( )
22

22

1

13
222 xc

xc

e

excy
+

−
+−= ,  with optimal 

parameters 

333 xcy −=

0,11 =c , 054402 ,=c , . While 
parametric optimization the following restrictions were 
applied to parameters 

153903 ,=c

10 ≤≤ iс , , step of research 321 ,,=i

050.=сΔ , maximal slenderness , and accuracy 10=λ+

0010.=εc . 
Fitness function was of the form 

( )∫∑
=

=
ft

i
i dttuF

0

3

1

( )∑
=

+
3

1

2

i
fi txα . 

For equation obtained the value of fitness function F  was 
equal to 2424013. . Fig. 6 shows NOM as the result 
performed by the program written on Delphi 7. Fig. 7 shows 
graphics of angular velocity of satellite with obtained 
control , , and . 1u 2u 3u

We used the following parameters of genetic algorithm: 
number of chromosomes in population – 50, number of 
generations – 50, number of couples – 20, number of 
generations in one epoch – 10, length of chromosome – 8, 
mutation probability – 0.5, inversion probability – 0.25, 
number of elitist chromosomes – 8. 
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Fig. 6 NOM for control of system (40) - (42) 
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To compare the results we simulated the system with linear 
dependence of control from state space iii xcy −= , 

. 321 ,,=i

The optimal parameters were 1=ic , . 321 ,,=i

The value of fitness function F  was equal to 051084. . 

 

 

 

 

 

 

Fig. 7 Angular data of satellite with obtained control 

On fig.7 we see that satellite stabilizes on coordinate  in 
less than 1 second. Transient processes on coordinates  
and  are oscillating and the system stabilizes in less than 
0,5 seconds. The obtained control that depends on the 
problem space vector is robust to initial values. 

1x

2x

3x

 

CONCLUSION 

A new data structure, network operator, is introduced. 
Network operator is an integer upper triangular matrix and is 
used to describe mathematical expressions. The algorithm 
for obtaining the expression from NOM is given and its 
correctness is proved. Genetic algorithm for synthesis is 
based on the principle of basis structure. This algorithm was 
applied to the problem of structure-parametric synthesis of 
satellite angular movement stabilization system. The system 
obtained is nonlinear and time independent and provides 
stabilization in about 1 sec. 
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