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Abstract:  A Current Output Observer is presented and its estimation error performance is compared to 
that of the Extended Kalman Filter. It is shown that performance improvement can be obtained by this new 
scheme with minor increase in computational load. In order to obtain stronger results, scalar nonlinear 
stochastic systems are focused on. These systems are categorized based on the derivatives of their 
nonlinear functions. It is shown that different state estimation performance is achieved when the Current 
Output Observer is applied to scalar nonlinear systems in these different categories, which allows the 
convergence property to be known before its implementation. This provides insight into what is going to 
happen in applications, e.g. for a nonlinear estimator used in chaotic synchronization. Simulation studies 
involving nonlinear estimation - based chaotic synchronization complement the theory presented.   

 

1. INTRODUCTION 

Extended Kalman Filter (EKF) has been well developed and 
extensively applied in the area of nonlinear state estimation 
(Anderson and Moore, 1979; Lewis, 1986; Gustafsson, 2000; 
Kailath, et al., 2000). This extension of the Kalman filter 
involves successive linearization of the nonlinear dynamics 
about the current state estimate. It has been proved that this 
extension of linear optimal estimators is useful and always 
has bounded estimation error (in a stochastic sense) when the 
nonlinearities are not severe and noise effects are additive 
and small (Reif, et al., 1999). This characteristic of EKF 
provides the motivation for its application to chaotic 
synchronization in chaotic secure communication systems 
(Pecora and Carroll, 1990; Sobiski and Thorp, 1998; Cruz 
and Nijmeijer, 2000; Amirazodi, 2001; Leung and Zhu, 2001; 
Ruan, et al., 2003a, b; Hounkpevi and Yaz, 2006a, b), which, 
currently, is our main research interest.  
 
In this work, we present a current output approach to 
nonlinear stochastic system state estimation, which we call 
the Current Output Observer (COO). The estimator error 
performance of COO is shown to be superior to that of EKF. 
Then, we analyze the scalar case thoroughly to conclude that 
the steady error variance of COO is determined by whether 
the upper bound of the derivative of the nonlinear function is 
greater or less than 1. This theoretical conclusion establishes 
a simple connection between a characteristic of the nonlinear 
function in the dynamic system and the performance of its 
COO as was established in our previous work (Zhai, et al., 
2003) for EKF. This provides great convenience in the a-
priori analysis of nonlinear state estimation performance and 
facilitates the design of COO in many applications including 
chaotic synchronization. 
This paper is organized as follows: section 2 presents a 
derivation of the equations of COO in the n-dimensional case, 
as well as the derivation of an upper bound on the estimation 
error variance with respect to the categorization in (Zhai, et 
al., 2003). Involving an upper bound on the derivative of the 

nonlinear function in the scalar case. Behavior of COO 
according to this categorization scheme is discussed. Section 
3 gives the Monte-Carlo simulation results for various 
nonlinear chaotic dynamic systems as the numerical 
verification of the theoretical ones. Section 4 draws 
conclusions for this paper regarding the performance of COO. 

2. MAIN RESULTS 

2.1 Signal Model and Derivation of n-Dimensional COO 

Consider the following nth order nonlinear stochastic system 
with a nonlinear measurement equation: 

1 ( )
( )

n n n

n n n

x f x v
y h x w

+ = +
= +

                                                      (2.1)                   

where nx  is the state, 0x  is of mean E{ 0x } = 0x  and  

covariance 0P  , and is uncorrelated with other sources. ny  is 

the measured output, nv and nw  are the mutually 
uncorrelated zero-mean white noises with covariances V and 
W, respectively. f  and h  are smooth nonlinearities.  

This model can be rewritten in the following form: 
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                                            (2. 2) 

for use in construction of the COO. 

)( nxf  and )( nxh  can be expanded into Taylor series at 
∧

nx  as follows: 
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. Similar to in EKF, 

first order linear approximations for )( nxf  and )( nxh  are 
used, so that: 
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                                                  (2.3) 

where 
^

nn ne x x= − . 

The EKF-based state estimation for the model (2.2) is 
described as follows: 
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               (2.4) 

where c
nx

∧

 is the current output estimate of nx
∧

 after 

receiving the measurement ny . 

When applying the first order linear approximation as (2.3), 
the estimation error can be evaluated to first order as follows: 
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    (2.5) 

The gains 21 , nn KK  are updated at each step as follows:  
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                     (2.6) 

Recall that 1
nK  is the regular EKF gain for the original 

system (2.1), 11
nP  is the solution to the Riccati difference 

equation for the original system (2.1) as well. 

Let 11
nn PP =  for notational simplicity, so 

1 1( )T T
n n n n n n nK A P C C P C W −= +                                   (2.7) 

where  

1
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For current output observation, the estimation error 
covariance is 
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where 2
nK  is the observer gain for the current output 

estimation, which can be obtained from (2.6). 

Substituting from (2.6) into (2.9) yields  
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where the result is obtained by using the matrix inversion 
lemma (Horn and Johnson, 1991). Since the subtracted term 
in (2.10) is positive semi-definite, we have, 

c
n nP P≤                                                                         (2.11) 

where this inequality is to be interpreted in terms of the 
partial (Loewner) ordering of matrices such that BA ≤  
means AB −  is a positive semi-definite matrix (Horn and 
Johnson, 1991).                                                              

Equation (2.11) is an important result in that it demonstrates 
that the linearized estimation error covariance of the COO is 
bounded above by that of the EKF. 

Let us summarize the results: 

Theorem 1, For the model (2.1), the COO update equation is 
given by (2.4) and the gains are given by (2.6), where nP  is 
the solution to the Riccati difference equation for (2.8), the 
estimation error covariance of the current output observer is 
given by (2.10) and is bounded above by that of the EKF as 
given in (2.11). 

Note that the only additional quantity to be computed by the 
COO is 2

nK  and in implementation, the dimension of the 
Riccati equation does not change.               

2.2 Upper Bound on the Estimation Error Covariance for 
Scalar systems  

Let us consider the first order system model (2.1) with the 
linear output measurement equation: 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9835



 
 

     

 

1 ( )n n

n n n

x f x
y x w

+ =
= +

                                                               (2.12) 

to obtain more concrete results. 

This system and measurement scheme is widely used in 
chaotic synchronization applications (Pecora and Carroll, 
1990; Sobiski and Thorp, 1998; Cruz and Nijmeijer, 2000; 
Amirazodi, 2001; Leung and Zhu, 2001; Ruan, et al., 2003a, 
b; Hounkpevi and Yaz, 2006a, b).  

In this case, EKF gain 1
nK  and nP  are given as, 
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COO gain 2
nK  and c

nP  are given as  
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                                (2.16) 

Let us assume that there is a φ  such that 2
nA φ≤ < ∞ . An 

upper bound on estimation error variance for EKF was found 
to be (Zhai, et al., 2003) : 
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Similarly, assuming 20 nA< Γ ≤ . A lower bound on 
estimation error variance was found to be (Zhai, et al., 2003) : 
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Thus, applying these to our new results in (2.16) for the COO, 
the following is obtained: 
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                                      (2.19) 
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Following the analysis results for the EKF in (Zhai, et al., 
2003), based on the value of φ , we categorize nonlinear 
systems into three different types: 

1) Type I system with 0 1φ< < : 

If 0 1φ< < , then (2.17) and ( 2.20) yield 

lim 0nn
P

→∞
=                                                                    (2.21) 

lim 0c
nn

P
→∞

=                                                                    (2.22) 

Note that in this situation, no matter how large the 
measurement noise variance is, the covariance nP  will go to 
zero. Moreover, the manner of approach to 0 has a geometric 
rate. Because 0nP > , from (2.22) the transient values of c

nP  

will be smaller than nP  and the value of c
nP  will go to zero 

in a geometric manner as well. 

Type II system with 1φ > : 

If 1φ > , then from (2.18) 

lim sup ( 1)nn
P W Pφ

→∞
≤ − =                                         (2.23) 

and from (2.20) 

1 1lim sup 1 1
( 1)

cc
nn

P W P

W W

φ
φ

φ
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−
≤ = =

+
−

        (2.24) 

Based on (2.16), a steady state lower bound on c
nP can be 

found as  

       
1lim inf c

nn
P W P

→∞

Γ −
≥ =

Γ
                                   (2.25) 

Note that 1>φ , so the right hand side of (2.24) is positive.       

So, in this case, the upper bound on nP  for EKF will go to a 
constant value which is determined only by the variance of 
measurement noise W  and φ . The upper bound c

nP  also 
approaches a constant value which is only determined by the 
variance of measurement noise W and φ . This steady state 

value is less than that of nP  since 1>φ  and also is less than 

the variance of measurement noise W , which cannot be 
guaranteed by the EKF. 
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Type III system with 1φ = : 

If 1φ = , then 

lim 0nn
P

→∞
=                                                                      (2.26) 

lim 0c
nn

P
→∞

=                                                                     (2.27)                     

Note that in this case, though, nP  approaches 0 much slower, 

at a rate proportional to 
1
n

 according to (2.17). Because 

0nP > , the transient values of c
nP will be smaller than nP  

and the steady state value of c
nP will go to zero at a rate 

proportional to 
1
n

 as well. 

3. SIMULATION RESULTS 

Although types I, II and III systems considered above have 
been studied in our simulations, only the type II system 
simulation results will be shown in this section for 
verification of theoretical results, because all chaotic systems 
that we have considered are of this type. In this paper, four 
different first order chaotic maps are investigated. 
 
A.  Tent Map 
This tent map is defined as 

 1

(1 | 2 1|) 0 1
0

n n
n

a x x
x

elsewhere+

− − ≤ ≤⎧
= ⎨

⎩
  

When a  is between 0.5 and 1, the trajectory of this map 
exhibits chaotic behavior. We select 1a = , W=1, randomly 

generating initial value 0x  and 0x
∧

. 

In this work, we assume that )(xf  is differentiable as many 
times as needed over its domain of definition as is done in 
EKF applications. Obviously, this is not true for piecewise 
linear systems that potentially exhibit chaotic behavior and, 
therefore, are of interest in chaotic synchronization. 
However, as we frequently do in practice in applying EKF to 
non-differentiable nonlinearities, the derivatives will be 
assigned numerical values at points of discontinuity of the 
derivatives.  
Figure 1 shows the EKF and COO simulation results for 
variance nP  vs. iteration time n. For EKF, as ∞→n , 

→nP PPW ===− 24.2)1(φ , where P and P are 

defined in (2.23) and (2.25). For COO, as ∞→n , c
nP →  

1 0.69
c

W Pϕ
ϕ
−

= = . The theory predicts that the supremum 

and infimum are the same, giving us the limiting value as are 
validated for both cases by Figure 1. At the same time, it 
shows that COO performs better than EKF in the sense of 
error variance. 

 

 
Figure 1. Variance P comparison between EKF and COO vs. 

iteration time n for type II system-Tent Map 
 
Figure 2 shows the EKF and COO simulation results for 
sample mean square error vs. iteration time n. The mean 
square error for EKF is bounded above by 2.24, whereas the 
mean square error of COO is bounded above by 0.65, which 
is much smaller than that of EKF. So, COO outperforms EKF 
also in the sense of sample mean square error. 

 
Figure 2. Mean square error comparison between EKF and 

COO vs. iteration time n of type II system-Tent Map 
 
B. Skew Tent Map 
The Skew Tent map is defined (Pecora et al.,1990) by  

1

/ , 0
(1 ) /(1 ), 1

n n
n

n n

x a x a
x

x a a x+

≤ ≤⎧
= ⎨ − − < ≤⎩

 

In our work, we assign 0.6a =  , W=1, randomly generate 

initial value 0x  and 0x
∧

. 
Figure 3 shows the EKF and COO simulation results for 
variance nP  vs iteration time n. For EKF, as ∞→n , nP  is 

bounded above by .25.51))1/(1()1( 2 =−−=− aWφ  
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COO,  as ∞→n , the upper bound on c
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Figure 3. Variance P comparison between EKF and COO vs. 

iteration time n for type II system-Skew Tent Map 
 
Figure 4 shows the EKF and COO simulation results for 
sample mean square error vs. iteration time n. For EKF, we 
can see that the mean square error is bounded above by 3.3. 
In this case, however, the bound is not tight. For COO, we 
can see that the mean square error is bounded above by 0.8, 
which is much smaller than that of EKF. 

 
Figure 4. Mean square error comparison between EKF and 
COO vs. iteration time n of type II system-Skew Tent Map 

 
C. Quadratic Map 
The Quadratic map is defined (Devaney, 1989) by  

2
1n nx x a+ = −  

In our work, we assign 2a =  for which the orbit exhibits 
chaotic behavior, W=0.1, and randomly generate initial value 

0x  and 0x
∧

. 

For variance nP  vs. iteration time n, EKF diverges very fast 
because the second derivative of quadratic map is not small 
which is an important assumption of the result in (Zhai, et al., 
2003), so we do not include the graph of the variance. 
However, for COO, although the second derivative is not 
small and therefore our condition (2.3) is not satisfied, as 
n → ∞ , c

nP remains bounded and the graph of variance is 
given in figure 5.  

 
Figure 5. Variance P of COO vs. iteration time n for type II 

system-Quadratic Map 
 
For sample mean square error vs. iteration time n, EKF 
diverges very fast because the important assumption in (Zhai, 
et al., 2003) is not met, so we do not show the graph of mean 
square error. However, for COO, although again for a large 
second derivative, we can see that the mean square error is 
bounded and smaller than the noise variance, which is shown 
in figure 6. 

 
Figure 6. Mean square error of COO vs. iteration time n of 

type II system-Quadratic Map 
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D. Cubic Map 
The Cubic is defined (Devaney, 1989) by  

2
1 (1 )n n nx ax x+ = −  

In our work, we assign 2.3a = −  to have in the chaotic 
regime, W=0.1, and randomly generate initial value 0x  and 

0x
∧

. 

For variance nP  vs. iteration time n, EKF, for the same 
reason given before, diverges very fast, so we do not show its 
graph. However, for COO, even the second derivative is not 
small, as ∞→n , c

nP   is bounded and is shown in figure 7. 

 
Figure 7. Variance P of COO vs. iteration time n for type II 

system-Cubic Map 
 
For mean square error vs. iteration time n, EKF again 
diverges, so that we do not show the graph. However, for 
COO, we can see that the sample mean square error is 
bounded and smaller than the noise variance, which is shown 
in figure 8. 

 
Figure 8. Mean square error of COO vs. iteration time n of 

type II system-Cubic Map 

4. CONCLUSION 

A current output type observer is presented in this paper for 
estimating the state of nonlinear stochastic systems and its 

performance is evaluated both theoretically and in 
simulations. It is shown that performance improvement can 
be obtained by this new scheme over the extended Kalman 
filter with minor increase in computational load. A 
categorization of nonlinear systems according to the value of 
the upper bound on the derivative of the nonlinear function 
that was formally introduced in (Zhai, et al., 2003) by the 
authors is considered and comparative performance of the 
present estimation scheme with respect to EKF is shown. 
This categorization provides a quantitative method to 
evaluate the state estimation performance of the new 
estimator for scalar nonlinear systems, thus potentially 
facilitating, e.g. the design of chaotic synchronization 
systems. The simulation results involving state estimation of 
four different chaotic maps complement the theoretical ones.  
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