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Abstract: Many system identification techniques have been proposed over the last few decades, 
including ordinary and recursive least squares. Recently, Partial Least Squares (PLS) has become a 
popular tool in the chemometric community and is beginning to be applied to solve complex 
industrial process control problems. These studies have tended to ignore the issue of bias with this 
form of model and it is this issue that is addressed in this article. The paper describes the 
development of an unbiased recursive PLS algorithm that is successfully applied to two simulated 
processes.  Copyright © 2008 IFAC 
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   1. INTRODUCTION 
 
In a model predictive control (MPC) system, the accuracy of 
the model embedded within the controller plays a crucial role 
in the performance of the system. The vast majority of MPC 
applications involve the identification of a process model 
using data collected from the plant. This model tends to be 
linear in its parameters and for time-varying and non-linear 
systems, the model is often designed so that it can adapt to 
the changing dynamics of the process. The identification of 
the model parameters can be achieved using the ordinary 
least squares (OLS) algorithm. OLS is an unbiased technique, 
which assumes that a linear relationship describes the system 
variables. However, the presence of unbiased regression 
coefficients does not imply minimal variance of the 
prediction errors (Frank 1987). 
 
The structure of the model that is used within the MPC 
system can take several forms. In industrial applications, 
finite impulse response (FIR), auto-regressive with 
exogeneous signals (ARX) or auto-regressive moving 
average with exogeneous signal (ARMAX) model structures 
are typically employed. To ensure that the models are 
accurate representations of the plant dynamics and are not 
biased, the identification algorithms tend to be applied using 
either the instrumental variable, output error (OE) or 
prediction error method (PEM) techniques. These techniques 
have been explored in detail by Astrom et al. (1971), Astrom 
(1980), Soderstrom et al. (1978, 1988), Ljung, (1987, 1995). 
In his work, Zhu (2001) concentrated on the dynamic 
properties of ARX models and their use within MPC systems. 
Zhu highlighted the importance of developing an unbiased 
model and described how OE methods provided a useful 
approach for identifying such models. In practical model 
predictive control applications, recursive least squares (RLS), 
utilising the OE method has been demonstrated to be a robust 

and accurate method for developing MPC applications 
(Sandoz, 2003).  
 
As MPC becomes an established tool in industry, it has 
begun to be applied to more complex processes. In particular, 
the application of MPC to processes where there exist 
significant amounts of correlation between the input variables 
to the model and where there is limited data available has 
recently been explored (see for example Dayal and 
MacGregor, 1997(b)). For these applications, an alternative 
identification algorithm, namely partial least squares (PLS), 
has emerged as an attractive modelling method. PLS is used 
routinely in the field of chemometrics, while its use in 
process control applications is a recent development. In the 
context of process control, model bias and other control 
specific issues related to PLS have tended to be ignored. In 
this paper, a recursive unbiased PLS algorithm is developed 
within the general framework of RLS modelling. The 
proposed algorithm addresses bias in terms of the regression 
coefficients. The suitability of the proposed technique is 
illustrated through application to two simulated systems. 
 

2.  MPC AND CONTROL LAW SYNTHESIS 
 

2.1 MPC Algorithm 
 
MPC operates by identifying future control action that 
minimises a particular cost or objective function. Based on 
the work of Cutler and Ramaker et al. (1980), Clarke et al. 
(1987) introduced the following objective function: 
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Where J  is the cost function to be minimized, k  is the 
sampling instant, p and m are the prediction and control 
horizons, respectively, ry and ŷ  are the reference (set-point) 
values and estimated future output values, respectively, 

jα and 
jβ  are the weighting parameters for the controlled 

and manipulated variables respectively. Finally, uΔ  is the 
change in manipulated variable (incremental control move) 
that is to be computed by the MPC algorithm. 
 
The target of the objective function in (1) is to force the 
future output to track the reference trajectory over the 
specified prediction window (p), while taking into account 
the balance between error energy and incremental control 
energy. In the case of the unconstrained control law, the 
optimal solution for a multivariate system can be shown to 
be: 
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Where uΔ  is the vector of manipulated variable moves, G is 
the step response matrix, A  and B are the weighting matrices 
for the controlled and manipulated variables respectively, 

ry is the reference vector for the controlled variables and 

uy is the unforced response of the process. 
 
The major advantage of MPC when compared to other 
advanced control techniques is its ability to systematically 
incorporate constraints on the manipulated and control 
variables. However, the incorporation of constraints results in 
the need to use numerical optimisation, namely quadratic 
programming, in order to solve the corresponding MPC 
control problem. 
 
2.2 Model Structure 
 
Clarke et al. (1987) derived the control law (2) using the 
CARIMA structure of the dynamic model (prediction model) 
in order to cope with non-stationary disturbance models. In 
industrial applications such disturbances may occur as a 
result of changes in material quality, or Brownian movement 
(thermal molecular motion in liquid environments). However, 
it is very difficult to accurately estimate the colouring 
polynomial )( 1−qC  in practical applications (Camacho et al. 
1999). Hence, in such situations the ARX model structure is 
preferred. The structure of this model is as follows: 
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which can be written compactly as 
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Where ty and tu  are the process output and input 

respectively. A and B  are polynomials in the backwards 
shift operator q  as follows: 
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tε is the residual between the actual and estimated outputs. 
 

3. IDENTIFICATION ALGORITHMS 
 

3.1 Recursive Least Squares 
 
In this work the RLS algorithm is applied using the UD 
factorization technique (Bierman, 1977). This algorithm has 
been recommended by Astrom and Wittenmark et al. (1997) 
and Sandoz (2003) and has been applied in many industrial 
applications of MPC.  
 
The recursive least squares algorithm can be derived from the 
ARX model structure as follows: 
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Where: 
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Now introduce the matrix P defined by: 
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Then the regression vector can be calculated from: 
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The P matrix can be updated at each sample point using the 
following expression: 
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and the regression vector can be updated as follows: 
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Where: 
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To avoid any matrix inversion problems which may occur as 
a result of collinearity, equation (10) can be re-cast as 
follows: 
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By using the estimated values of y in the formulation of tϕ  it 
is ensured that the resulting estimator is unbiased. This 
formulation of RLS has been studied in depth over the last 
few decades and reliable techniques exist for incorporating a 
forgetting factor into equation (12). Further improvements in 
the robustness of the algorithm are produced by using 
Bierman’s UD factorisation of P. When this method is used, 
adaptation of the model parameters is typically preceded by 
blowing-up the D matrix used in the factorisation (Astrom et 
al. 1997). 
 
3.2 Partial Least Squares 
 
PLS is a recently proposed technique that combines the 
features of Principle Component Analysis and regularised 
regression. It has been proposed as a regression tool for use 
in situations where there are significant levels of collinearity 
or when there are few observations. The technique was 
originally proposed for static systems where the NIPALS 
algorithm was employed (Lindgren, et. al., 1993). Geladi and 
Kowalski, (1986) introduced an overview of PLS which 
included a comparative discussion of OLS and PLS 
algorithms and showed the deficiency of the former in the 
case of correlated variables. To tackle such situations in the 
process industries, and also to provide accurate process 
models when observations are limited, the PLS algorithm is 
beginning to be applied within model predictive control 
schemes.  
 
To reduce the computational expense when identifying a PLS 
model, Dayal and MacGregor (1997a) proposed a modified 
kernel PLS method. The proposed method was based on the 
algorithm developed by Lindgren et al. (1993) but with the 
reduced deflation step in the algorithm. The kernel PLS 
algorithm is described in detail by Dayal and MacGregor 
(1997a) and only a simple overview is provided here.  
 
The kernel PLS algorithm estimates the values of the 
modelling parameters, θ̂  using the matrices ΦΦT and 

YTΦ . To introduce a recursive element into the model, 
Dayal and MacGregor (1997a), proposed re-calculating the 
PLS model at each sampling instant using updated ΦΦT and 

YTΦ matrices, as defined below: 
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Where λ is a forgetting factor that varies between 0 and 1.  
 
PLS models are typically biased estimators as the 
measurement noise is included in the measurements of y, 
which is then used to estimate the modelling parameters. 
However, as with the RLS algorithm described in section 3.1, 
if the model estimates for y are used in equation 14 rather 
than the measured values then an unbiased estimator results. 
In fact, there are potentially further benefits in using the P 

matrix determined in the UD RLS algorithm to determine the 
values for ΦΦT  and YTΦ , i.e.: 
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The benefit in using this approach is that the established 
mechanisms for adapting a RLS model can be applied to a 
PLS model. For example, the forgetting factor can be 
implemented within the parameter update equations and the 
diagonal matrix D used in the UD factorisation can be 
manipulated in the same way as with RLS models. A further 
advantage with this approach is that many other identification 
techniques, such as instrumental variables and the prediction 
error method, can be employed within PLS identification. It 
is also possible to use standard techniques (such as 
Himmelblau, 1970) to compute confidence limits on the 
predictions made by the PLS model. Calculation of 
confidence limits for PLS models is an area of active research 
(Martens and Martens, 2001). 
 
It is a well-known fact that while over-parameterized, i.e. 
over-fitted, models can satisfactorily characterize the training 
data set, they are unable to generalise to data sets which were 
not used in the model development (Kresta, Marlin et al. 
1994). In this sense, the unbiased PLS technique can achieve 
both the accuracy and precision, which characterize the two 
key elements of any identification algorithm (Frank 1987). In 
particular, the PLS technique can establish an accurate 
relationship between the predictor and response variables 
(accuracy) by efficiently estimating the regression 
coefficients, thereby minimizing the bias. At the same time, 
PLS can improve the predictive ability (precision) by 
minimizing the variance of the prediction errors.  
 
 
3.3 Real-Time Adaptation 
 
On-line model adaptation, or recursive identification is an 
important issue in process control problems. A serious issue 
associated with closed loop identification schemes is the 
correlation that exists between the non-stationary noise and 
the input signals under the feedback action (Ljung, 1987 and 
Soderstrom and Stoica, 1989). This correlation causes the 
estimated model coefficients to converge to incorrect values.  
Continuous adaptation of the process model is common in 
adaptive control techniques. However, such an approach can 
have a detrimental effect on model accuracy when the data is 
not rich, i.e. when there is no sufficient external excitation of 
the system.  
 
Ideally, external excitation, or a dither signal, should be 
applied to the output of the control system. This signal 
provides a rich collection of data which can then be used to 
update the model. Unfortunately, many situations exist, 
particularly in batch processing, where the introduction of 
such excitation is not possible. In this paper, two forms of 
adaptation are considered. The first is continuous adaptation, 
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which involves updating the covariance matrix using routine 
closed loop data and updating the model at each sampling 
instant. The second approach is short term adaptation. This 
method involves collecting a small sample of normal closed 
loop data and then updating the model using this data. This 
process of adaptation is repeated on a routine basis. These 
two techniques are described in more detail in (Sandoz, 
2003). 
 

4. CASE STUDIES 
 
In the following section the performance of four model 
predictive control systems are compared. The difference with 
each of these controllers is the model that is used within it. 
These models are biased RLS (BIRLS), unbiased RLS 
(URLS), biased recursive PLS (BIRPLS) and unbiased 
recursive PLS (URPLS). The difference between the biased 
and unbiased models is in the computation of the covariance 
matrices. For the biased models, the actual output 
measurements are used and for the unbiased models, the 
estimated output measurements are used to compute the 
covariance matrices. To compare the performance of the 
different models, two different processes have been 
investigated. The first is a two-input, two-output, first order 
linear system and the second is the non-isothermal CSTR 
investigated by Dayal and MacGregor (1997b).  
 
4.1 MIMO First Order Linear System 
 
This system has been taken from Huang et al. (1997) and the 
open-loop transfer function matrix G and disturbance transfer 
function matrix D are given as follows: 
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An MPC control system was designed for this system with a 
prediction horizon of 20 (based on the slowest settling time 
of the system), an output horizon of 1, a control move 
weighting of 0, a sample time of 1 second and with no 
process constraints. The structure of the model for each 
identification algorithm was chosen to be ARX. The order of 
both A and B polynomials was set to one. Hence, there were 
three coefficients in each model. For the PLS models, three 
latent variables were used. 
 
For identification purposes, a constant reference signal of 1.0 
was used for each output and a pseudo-random binary 
sequence (PRBS) was applied to the system. This signal 
varied between -0.25 and +0.25. A white noise signal was 
added to the output measurements to simulate the effect of 
measurement noise. The noise- to- signal ratio was 0.2 for 
each output. To test the performance of the developed 
controllers, a coloured noise disturbance was added to the 
output of the process. The parameters of the estimated model 
were initially assumed to be equal to one and the diagonal 
coefficients (D) are specified to be 106 (Astrom et. al., 1997).    

4.2 Results and Discussion 
 
Figure (1) compares the step response of the four models 
with that of the actual plant. This figure shows the step 
response between u1, u2 and y1. However similar results 
were obtained for all the step response functions. Figure (1) 
highlights the following: 
1. The response of the BIRLS and BIRPLS models is almost 

identical, as are the URLS and URPLS models. This is 
expected as the PLS models should tend towards the RLS 
models unless collinearity is a major problem. In this case 
study collinearity in the data was not an issue; hence all 
the latent variables were included in the PLS model. 

2. The unbiased models have a very similar step response to 
the actual system and hence provide a significant 
improvement in modelling accuracy over the biased 
models. 

 
Fig (1), Step response test for y1 

 
The importance of an accurate model is illustrated in figures 
(2) and (3), which compare the ability of the URPLS and 
BIRPLS MPC systems to maintain the set-point of y1 at 1.0. 
These figures clearly show the benefit that the proposed 
URPLS based MPC system has over the control system that 
utilises BIRPLS prediction model. 

 
Fig (2), Closed-loop response of y1 using URPLS 

 
Fig (3), Closed-loop response of y1 using BIRPLS.  

 
Table (1) summarises the results from this investigation. 
These results show the integral square error (ISE) statistic for 
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each of the model predictive controllers. The error in the ISE 
statistic is the difference between the output and set-point. 

 
Fig (4), Closed-loop response of y2 using URPLS 

 

 
Fig (5), Closed-loop response of y2 using BIRPLS 

 
From the results in table (1) it is possible to conclude that the 
unbiased models have performed significantly better than the 
biased models. This highlights the importance of using 
unbiased models in MPC systems, which is something that 
has been ignored in the past when using PLS models. As 
expected, the results for the RLS and PLS models are very 
similar since collinearity amongst predictor variables is not 
an issue in this particular case study. This is an important 
result as it suggests that PLS models do not cause any 
significant reduction in control performance.  
 
The reason for the higher error statistics for y2 is simply a 
phenomena associated with multivariate systems. It is quite 
common to find that one loop is faster or more tightly 
controlled than another. MPC has a systematic policy to cope 
with this problem by appropriately selecting the output 
weighting matrix A. 

 
Table (1), performance of designed MPCs 

Model ISE_y1 ISE_y2 
BIRLS 11.1989 68.4458 
URLS 02.2646 18.6745 

BIRPLS 11.1881 69.0225 
URPLS 02.2580 18.5913 

 
 
4.3 Non-isothermal CSTR 
This process is described in detail in Luyben (1995) and also 
in Dayal and MacGregor (1997b). Because of space 
limitations only a brief overview of this system is described 
here. The process is defined as irreversible with material A 
being transformed into B. This reaction is carried out in a 

perfectly mixed CSTR. The flow of component A into the 
system is AooCF  where AoC is the concentration of A in the 
inlet flow and the output flow is given by FCA, where CA is 
the concentration of A in the reactor. In this system the liquid 
height is assumed to be constant. The targets for the 
controller in this application are to maintain the reactor 
temperature T, at 305 K and to keep the residual conversion 
to a rate of 0.6. To control the heat of reaction, cooling water 
of constant volumetric flow JV  is added to the jacket that 
surrounds the reactor at flow rate JF and with an inlet 
temperature JoT .  

The manipulated variables in this process are the feed flow of 
material A and the inlet water coolant flow ),( 21 uFuF J == , 
and reactor temperature and conversion rate are the control 
variables ),( 21 yconvyT A == with dead times of two sample 
periods for the former and five for the latter. White noise 
with variances of 0.002 and 4e-6 are added to the system 
outputs y1 and y2 respectively, while a random walk 
fluctuation in the Arrhenius rate constant ( ok ) was also 
applied to represent a non-stationary disturbance to the 
system.  
 
In the work presented by Dayal and MacGregor (1997b), they 
compared the performance of biased RLS and PLS models. 
In this work, the potential benefit of using unbiased models 
was to be investigated. Similarly to the approach taken by 
Dayal and MacGregor (1997b), an initial model for each 
output is identified by exciting the open-loop system with a 
PRBS. 300 samples with a sampling period of 20 seconds are 
generated from this test. A sixth order ARX structure was 
identified for each output variable. This order of model was 
chosen to match that used by Dayal and MacGregor, (1997b). 
The models were subsequently updated by using continuous 
and short term methods by means of BIRLS, BIRPLS, 
URLS, and URPLS algorithms. Six latent variables were 
considered in the PLS methods. 
 
The short-term adaptation suggests updating the model 
parameters at regular intervals with a specific length of 
samples, in such a way to allow good tracking of the system 
dynamics and at the same time preventing a high 
computational load, and the consequences of discharging the 
essential covariance matrix information when no significant 
information has been added. 
 
4.4 Results and discussion 
 
Table (2) shows the performance of each controller using the 
ISE statistic. The main findings from this study were: 
1. When using the continuous adaptation method, the RLS 

models caused the process to go unstable. This is believed 
to be because there is no independent excitation in the 
manipulated variables and hence these variables are 
highly correlated. This correlation appears to be handled 
well by the BIRPLS model. However, the URPLS 
algorithm fails to produce a stable response with this 
method of adaptation. The reason for this is unclear and is 
the subject of continued research. 
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2. For the short adaptation approach the unbiased models 
produce better results than those obtained using the biased 
models.  

3. The URPLS model provides better control than the 
BIRPLS when the short adaptation method is used. 

4. The results suggest that unless continuous adaptation is to 
be used then there is little advantage in using a PLS 
model. This highlights that the RLS algorithm is itself 
very capable of coping with significant levels of 
collinearity in data sets. 

 
Table (2), the ISE factors 

Model ISE_T ISE_Conv comments 
Cont NA NA unstable 

BIRLS 
Short 11.3700 0.4650 – 
Cont. 06.3800 0.0333 – BIRPLS 
Short 06.0200 0.0317 – 
Cont. NA NA unstable URLS 
Short 05.0200 0.2401 – 
Cont. NA NA unstable URPLS 
Short 05.4400 0.0288 – 

 
During this study it was found that the BIRLS method 
required some caution in the selection of the control 
weighting factor to ensure stability. In contrast the BIRPLS 
and URPLS did not show high sensitivity to the controller 
weighting factor. This suggests that the resulting models 
using the PLS algorithm were more robust. 
 
The results from this work can be summarised as follows: 
• The upper diagonal factorization with RLS offers an 

effective tool against data collinearity.   
• Equivalent performance can be achieved by RLS and 

RPLS in the open-loop system estimation.  
• When the URPLS was applied in long-term fashion, the 

results were poor. The specific reasons for this, is the 
subject of future research.  

• The results show that URPLS is a reliable algorithm, and 
can provide good results for open and closed-loop data. 

 
 

5. CONCLUSIONS 
 
In this work, an unbiased recursive partial least squares 
algorithm has been developed for application within a model 
predictive control system. The proposed algorithm provides a 
direct link between the industrially accepted RLS algorithm 
and the more recently developed PLS routine. By using a 
kernel based algorithm to identify the PLS model, it is 
possible to utilise the covariance matrices that are formulated 
when using RLS. This means that techniques, such as the 
output error method, can be utilised when designing PLS 
models. This ability offers significant benefits when using 
PLS models in industrial control problems. The benefits of 
the proposed PLS algorithm were illustrated through its 
application to two simulated systems, where its performance 
was compared favourably with that of RLS when the plant 
variables were highly correlated. 
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