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Abstract: This paper proposes a non iterative algorithm for the identification of Hammerstein
model, using the sampled output data obtained from the step response, giving a continuous-
time model for the linear part and a point-wise estimation of the nonlinear one. Key in the
derivation of the results is the algebraic derivative method in the frequency domain yielding
exact formula in terms of multiple integrals of the output signal, when placed in the time
domain. By investigating the connection between such integrals and parameters to be estimated,
a set of three linear regression equations is proposed. The first equation is used to estimate the
structure of poles in the linear part, the second to estimate a point of the nonlinearity, the third
to estimate the structure of zeros in the linear part. No a priori knowledge of the structure of
the nonlinearity is required. The proposed algorithm is numerically robust, since it is based only
on least squares estimation. Simulation results validate the proposed algorithm.

1. INTRODUCTION

Mathematical modeling of real-life systems is a very com-
mon methodology in science and engineering. It is used
both as a means for achieving deeper knowledge about
a system and as an engineering tool, e.g., as a basis for
simulations or for design of controllers. Sometimes, it is
possible to construct a model of a system from physical
laws and principles. However, in other cases this is not
possible, either because of a lack of knowledge of the
studied system or because physical modeling is considered
too time consuming. In these cases, system identification
can be a way of solving the modeling problem. System
identification is concerned with characterizing an unknown
system using observations of the system’s input and output
signals. Most dynamical systems can be better represented
by nonlinear models, which are able to describe the global
behavior of the system over the whole operating range,
rather than by linear ones that are only able to approxi-
mate the system around a given operating point. There-
fore, in order to have more accurate characterization of the
system, even if it is more complicate, nonlinear models are
preferable to the linear one. The main reason that leads to
the identification of nonlinear systems is their widespread
application in many fields especially in control engineering.
One of the most frequently studied classes of nonlinear
models are the so called block-oriented nonlinear models,
which consist of the interconnection of Linear Time Invari-
ant (LTI) systems and static (memoryless) nonlinearities.
The more common model structures in this class are the
Hammerstein models and Wiener models composed of a
nonlinear static characteristic followed by a linear dynamic
transfer function, and vice versa. Identification of this
model is attractive because its structure is very simple
and it can describe a nonlinearity of dynamical system
efficiently, Dolanc et al. [2005]. For example, they are used
to describe the acoustic channel of a nonlinear system con-
catenated with a linear faded echo path (Ngia et al. [1998]),

to code speech signals (Turunen et al. [2003]), to control
the position of electrohydraulic servo systems (Knohl et al.
[2000]), to model the static and dynamic characteristics
of the solid oxide fuel cells (Jurado et al. [2006], Jurado
[2006], Jurado et al. [2005]), to identify chaotic dynamical
systems (Xu et al. [2001]), to model and control heart rate
modulation during treadmill exercise (Su et al. [2006]), to
identify marine thruster dynamics (Leonessa et al. [2001]),
to identify the human thermoregulatory system (Rollins
et al. [2006]), to identify nonlinear distortion models (Pi-
card et al. [2003]), to identify thermal systems (Chaari
et al. [2006]), to identify vestibulo-ocular reflex (Kukreja
et al. [2005]). Clearly the above list of applications is not
complete; for a more exhaustive one, the reader is referred
to Giannakis et al. [2001] and the references therein. As
noted, this system structure is common in many real-life
applications and it is thus natural that identification of
Hammerstein systems has been an active research field for
quite some time. Many techniques have been proposed in
the literature for the black-box estimation of Hammerstein
systems from given input/output data. These techniques
mainly distinguish themselves in the way the static non-
linearity is represented and in the type of optimization
problem that is finally obtained. The already existent
methods can be roughly divided into seven categories: iter-
ative methods, non iterative methods, stochastic methods,
nonlinear least squares methods, separable least squares
methods, blind methods, over-parameterization methods,
(see Bai [2003] and the references therein). In this paper,
an attempt to approximate a nonlinear system, in the form
of Hammerstein model, by devising a novel systematic
algorithm that works directly with the step response data,
to produce a continuous-time transfer function model of
the process and a point-wise estimation of the nonlinearity,
is proposed. In contrast to classical parametric approaches,
no specific model structure is imposed on the nonlinearity.
Hence, the presented technique combines a nonparamet-
ric approach for the identification of the nonlinear static
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Fig. 1. Hammerstein system.

characteristic and a parametric approach for the linear
dynamical part. In our approach we propose to identify
in a unique experiment the structure of poles in the linear
system G(s), one point of the nonlinearity f(·) and finally
the structure of zeros in G(s). By applying a set of step
inputs of different amplitude A, it is possible to point-
wise estimate the nonlinear function f(·). Our approach,
based on algebraic derivatives in frequency domain, allows
to obtain a relation which involves only the elementary
symmetric functions on the poles of the linear system G(s),
decoupling from the nonlinearity and zeros of G(s). The
identification scheme is designed to determine exactly the
model of the plant dynamics and a set of N different
couples (u, f(u)), where N is arbitrarily chosen by the
user. Given the previous couples, one can build up an
(N − 1)th degree polynomial or polygonal approximation
of the static gain characteristic. The aim of the proposed
method is to identify, without iterative procedures, the
unknown parameters of G(s), having in mind an its end-
use for controller design, and to point-wise reconstruct
the nonlinearity by using the response of step inputs with
different amplitudes. Although good parameter identifica-
tion requires the application of a frequency-rich input and
the standard solution in practice is provided by the use
of pseudo-random binary sequences (Landau [1990]), we
however design a method based on the measurement of
the process step response because of the simple physical
interpretation, and its easy implementation in industrial
environments. The effectiveness of the proposed method is
demonstrated by numerical examples.

2. MAIN RESULTS

Let consider the Hammerstein model depicted in Fig.
1, where the block f(·) represents the nonlinear static
element and G(s) is the linear part of the process. The
linear dynamic block G(s) is assumed a np-order plant

G(s) =
N(s)

D(s)
=

m
∑

i=0

γis
i

np
∑

i=0

σ(np, i)snp−i

, m ≤ np − 1 (1)

where






σ(np, k) = (−1)k
∑

1≤π1<...<πk≤np

pπ1
pπ2

...pπk
, k = 1, ..., np,

σ(np, 0) = 1,
(2)

is the kth order elementary symmetric function associated
with the system poles

{

p1, p2, ..., pnp

}

.

Let

U(s) =
A

s
, (3)

be the Laplace transform of the input u(t), then

X(s) =
f(A)

s
(4)

and

Y (s) = G(s)
f(A)

s
=

ξ0

s
+

np
∑

k=1

ξk

s − pk

. (5)

Since any pair (αf(u), G(s)/α) , α 6= 0, would produce
identical input and output measurements, then the gain
of G(s) can be fixed to be unit, i.e.

γ0 = σ(np, np). (6)

It is straightforward to note that f(A) = ξ0.

We propose a three-step identification algorithm. In the
first step, the denominator D(s) of the linear part is iden-
tified. With the help of the algebraic derivative method in
the frequency domain (Fliess et al. [2003]), we show that
the identification of D(s) is decoupled from the numerator
N(s). Moreover, this decoupling is independent of the
nonlinearity which could be discontinuous and unknown.
In the second step, the value of ξ0 is estimated. Finally
the numerator of G(s) is identified by using a linear
least-squares method. An analogous approach has already
been utilized for nonlinear parametric identification in
(Fliess et al. [2005]), and for nonparametric identification
in (Fliess et al. [2006]).

By gaining an advantage from the algebraic derivative
method in the frequency domain the following result can
be easily obtained (Coluccio et al. [2007]):

np
∑

i=0

np+1
∑

j=i

(

np + 1 − i

j − i

) (

np + 1

j

)

(np + 1 − j)!sj−i

×
djY (s)

dsj
σ(np, i) = 0. (7)

It is worth to note, that the application of any filter,
H(s), in eq. (7) does not change the result. Although
the division by snp+1 is sufficient to eliminate all the
derivations implicit in the multiplication by power of s, we
use the division by snp+2 because it allows to introduce at
least an integral effect on each term which contains the
signal y(t), then by taking the inverse Laplace transform
one has:

np
∑

i=0

β(np, i, t)σ(np, i) = 0 (8)

with

β(np, i, t) =

np+1
∑

j=i

(

np + 1 − i

j − i

) (

np + 1

j

)

(np + 1 − j)!

×

[

∫ (np+2+i−j)

(−1)jtjy(t)

]

,

(9)
where we denote by

∫ (j)

φ(t)

the multiple integrals expression
∫ t

0

∫ x1

0

...

∫ xj−1

0

φ(xj)dxj ...dx1,

with the definition
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∫ (1)

φ(t) =

∫ t

0

φ(x1)dx1.

It is interesting to observe that high frequency zero
mean disturbances on the process output are filtered by
the integration operations, so that their contribution to
β(np, i, t), i = 0, ..., np is negligible. The excellent robust-
ness with respect to noises is explained in (Fliess [2006]).
Nevertheless, low-frequency noise and offset errors could
cause estimation errors in the proposed method. This is
a common problem to any identification method which
uses step tests. In fact, the test signal should enable us to
inject as much energy as possible, or the experiment needs
a high signal-to-noise ratio, but sometimes, in industrial
processes, it is not possible to inject frequency-rich input.
This implies that offsets should be small. If there exist
inherent offsets, they may cause significant estimation
error in the unknown parameters.

Once σ(np, i), i = 1, ..., np are successfully computed by
eq. (8), we can tackle the problem of computing the value
of ξ0. By eq. (5) it is effortless to derive the following
expressions for ξ0:

(−1)npnp!σ(np, np)

snp+1
ξ0 =

np
∑

i=0

np
∑

j=i

(

np

j

) (

np − i

j − i

)

(np − j)!sj−i d
jY (s)

dsj
σ(np, i).

(10)

When the inverse Laplace transform, after the division by
snp+1, is applied to eq. (10), one has:

ξ0 =
(−1)npΓ(2np + 2)

Γ(np + 1)σ(np, np)t2np+1

np
∑

i=0

np
∑

j=i

(

np

j

)(

np − i

j − i

)

(np − j)!

×

∫ (np+1+i−j)

(−1)jtjy(t)σ(np, i).

(11)

Equations (11) can be viewed as a time varying dynamic
filter and they must be valid for every t. Although the
right estimation of the unknown parameter takes place in
a fraction of time, in a noisy environment is preferable to
estimate the value of ξ0 as the filter value in the last time
instant of the observation window, namely Tobs (Fliess
et al. [2005]). Finally, in order to estimate parameters
γi, i = 0, ...,m, we consider the equality

np
∑

k=0

σ(np, k)
Y (s)

sk+1
= ξ0

m
∑

k=0

γk

1

snp+2−k
, (12)

easily obtained by eqs. (1) and (5). Taking the inverse
Laplace transform of eq. (12), the following expression is
obtained

np
∑

k=0

σ(np, k)

∫ (k+1)

y(t) = ξ0

m
∑

k=0

γ̄ktnp+1−k (13)

with γ̄k = γk

(np+1−k)! .

Note that the estimation based on eqs. (8) and (11)
could be biased for long observation windows. Indeed in
the integrals the noise will be multiplied by powers of t
before integration, and the noise induced by that process
is likely to increase with the length of the time window.
To overcome such drawback is convenient to express eqs.

(9) and (11) in terms of multiple integrals of the measured
signal. The following result is useful to this aim:

Proposition 1. Let y(t) a function which can be expanded
in Mc-Laurin series, then:

∫ (q)

tky(t) =

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i

×

∫ (i+q)

y(t), q ≥ 1, k ≥ 0 (14)

Proof. By considering the s-th term of the Mc-Laurin serie
of y(t), it follows that

∫ (q)

tk+s =

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

)(

k

i

)

i! tk−i

∫ (i+q)

ts. (15)

Since
∫ (q)

tk+s =
(k + s)!

(k + s + q)!
tk+s+q,

then eq. (15) becomes

(k + s)!

(k + s + q)!
tk+s+q =

k
∑

i=0

(−1)i

(

i + q − 1

q − 1

) (

k

i

)

i!

×tk−i s!

(s + i + q)!
ts+i+q. (16)

By standard arguments (Knuth [1973]), eq. (14) follows.

Therefore eqs. (9) and (11) becomes respectively:

β(np, i, t) =

np+1
∑

z=0

(−1)z Γ(2np + 3 − z)

Γ(z + 1)Γ(np + 2 − z)
tz

∫ (np+2+i−z)

y(t),

(17)

ξ0 =
(−1)npΓ(2np + 2)

Γ(np + 1)σ(np, np)

np
∑

i=0

np
∑

z=0

(−1)z Γ(2np + 1 − z)

Γ(z + 1)Γ(np + 1 − z)

× σ(np, i)tz−2np−1

∫ (np+1+i−z)

y(t).

(18)

Remark 1. Note that since an algebraic derivative method
in the frequency domain is used, an advantage of this
approach is that it can be used for irregular sampling.

3. COMPUTATIONAL ASPECTS

In this section, some computational aspects will be ana-
lyzed. In order to get an estimation in the least-squares
sense for {σ(np, k)}

np

k=1, {γk}
m

k=0, and ξ0, note that eqs.

(8), (13), (18) holds for all t. Let t̂ = {t1, t2, ..., tn} be
a set of time instants where eqs. (8), (13), (18) will be
evaluated. Eq. (8) can be expressed in matrix form as:

V1σ = u1 (19)

where

V1(i, j) = β(np, j, ti), i = 1, ..., n, j = 1, ..., np, (20)

σ = {σ(np, k), k = 1, ..., np} , (21)

and
u1(i) = β(np, 0, ti), i = 1, ..., n. (22)

An estimation σ̂ in the least-squares sense is given by

σ̂ =
(

V T
1 V1

)−1
V T

1 u1. (23)
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As far as the eq. (18) is concerned, it can be expressed as:

ξ0 = α
[

1 σT
]

V2u2, (24)

where

α = (−1)np
Γ(2np + 2)

Γ(np + 1)σ(np, np)
, (25)

V2(i, j) =

∫ (np+1+i−j)

y(t), i, j = 1, ..., np + 1, (26)

and

u2(i) = (−1)i+1 Γ(2np + 2 − i)

Γ(i)Γ(np + 2 − i)
ti−2np−2, i = 1, ..., np+1.

(27)

Since the static gain of G(s) is fixed to be unit, then γ0

must be equal to σ(np, np) and eq. (13) becomes
np
∑

k=0

σ(np, k)

∫ (k+1)

y(t) − ξ0
σ(np, np)

Γ(np + 2)
tnp+1 =

= ξ0

m
∑

k=1

γ̄ktnp+1−k (28)

which can be expressed in matrix form as:

U3γ̄ =
1

ξ0
V3[1 σT ]T −

σ(np, np)

Γ(np + 2)
z3 (29)

where

U3(i, j) = t
np+1−j

i , i = 1, ..., n, j = 1, ...,m, (30)

γ̄ = {γ̄k, k = 1, ...,m} , (31)

V3(i, j) = lim
t→ti

∫ (j+1)

y(t), i = 1, ..., n, j = 0, ..., np,

(32)
and

z3(i) = t
np+1
i , i = 1, ..., n. (33)

An estimation ˆ̄γ in the least-squares sense is given by

ˆ̄γ = (UT
3 U3)

−1UT
3

(

1

ξ0
V3[1 σT ]T −

σ(np, np)

Γ(np + 2)
z3

)

. (34)

We would like to suggest that the multiple integrals of the
signal could be accomplished by means of time-varying
linear filter:

ẋ(t) = Fx(t) + gy(t),

z(t) = Hx(t), (35)

where x(t) ∈ R
2np+2 is the state vector

x(t) =

[

∫ (2np+2)

y(t),

∫ (2np+1)

y(t), ...,

∫ (1)

y(t)

]T

(36)
which contains the multiple integrals of the input sig-
nal y(t), z(t) ∈ R

2np+2 is the output vector which co-
incides exactly with the state vector and the matrices
F ∈ R

(2np+2)×(2np+2), g ∈ R
(2np+2) have the following

expressions:

F =

[

02np+1 I2np+1

0 0T

2np+1

]

, (37)

g =

[

02np+1

1

]

(38)

with 0n a (n × 1) vector of zeros, and the output matrix
H is a (2np + 2) × (2np + 2) identity matrix.

Moreover, such numerical integrations could be avoided by
considering a polynomial p(t) of degree l−1 which fits y(t)
in the least-squares sense:

p(t) =

l
∑

k=1

aktk−1. (39)

In this case, by taking into account eq. (39) and standard
properties of gamma functions (Gatteschi [1973]), eq. (8)
can be rewritten as

np
∑

i=0

β̃(np, i, t)σ(np, i) = 0, (40)

where

β̃(np, i, t) =

l+i−np−1
∑

k=1

(−1)np+1 Γ(np + 1 + k − i)Γ(np + 1 + k)

Γ(2np + 3 + k)Γ(k)

×ak+np+1−it
2np+2+k.

(41)

The estimation, ξ̃0, of ξ0, in terms of the coefficients of the
polynomial p(t) is

ξ̃0 =
Γ(2np + 3)

2Γ(np + 2)σ(np, np)

×

np
∑

i=0

l+i−np
∑

k=1

Γ(np + k − i)Γ(np + k)anp+k−it
k−1

Γ(2np + 1 + k)Γ(k)
σ(np, i).

(42)

When numerical integrals are solved by using the integra-
tions on the polynomial p(t), eq. (13) can be rewritten as:

np
∑

i=0

l
∑

k=1

ak

Γ(k)tk+i

Γ(k + i + 1)
σ(np, i) = ξ0

m
∑

k=0

γ̄ktnp+1−k. (43)

By imposing γ0 = σ(np, np), eq. (43) becomes:

np+1
∑

i=1

l
∑

k=1

ak

Γ(k)tk+i−1

Γ(k + i)
σ(np, i − 1)

−
ξ0σ(np, np)t

np+1

Γ(np + 2)
= ξ0

m
∑

k=1

γ̄ktnp+1−k.

(44)

4. SIMULATION EXPERIMENTS

In this section, in order to investigate the effectiveness
of the proposed method, some simulation results are pre-
sented. Our algorithm was tested on two different nonlin-
ear systems. For each simulation a zero mean white noise
r(t) with a signal-to-noise ratio

SNR =

√

√

√

√

√

√

√

n
∑

i=1

y(ti)2

n
∑

i=1

r(ti)2
= 20 (45)

was added to the signal measurements.

4.1 Example 1

In the first example we propose a comparison between
the proposed approach and that one proposed in Bai
[2003]. The choice of comparing our method and the Bai’s
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one is due to the fact that it is among the fews which
perform on continuous time. Bai discusses Hammerstein
model identification in frequency domain by exploring
the fundamental frequency and harmonics generated by
the unknown nonlinearity. The unknown true linear part
considered is given by:

G(s) =
6(s + 1)

s2 + 5s + 6
, (46)

and the nonlinear one has the following polynomial expres-
sion:

f(u) = u2 + u. (47)

Although the two algorithms perform both on continuous
time, they are deeply different, then in order to make
the comparison possible a different parameters setting is
necessary. As far as the parameters setting for our algo-
rithm is concerned, we chosen the total number of samples
n = 1000, the observation window Tobs = 2, the sampling
time Ts = 0.2e − 2, m = 1 and np = 2. To identify the
Hammerstein model, N = 20 experiments were conducted
with different step amplitude Ai ∈ [−3, 3], i = 1, ..., N .
In order to have an accurate estimation of {σ(np, k)}

np

k=1
we generalized eq. (19) to the case of N experiments, i.e.
the matrix V1 and the vector u1 are constructed so that to
contain the information of all experiments conducted. In
each experiment the parameter ξ0 = f(Ai) is estimated.
Finally, the estimation of the structure of zeros in G(s) is
obtained by using eq. (34) with {σ̄(np, i)}

np

i=1, also general-
ized to the case of N experiments. As far as the parameters
setting for Bai’s algorithm is concerned, we referred to Bai
[2003]; in particular N = 20 experiments were conducted
with different sinusoidal input u(t) = cos(ωkt), ωk ∈
[0.1, 5], k = 1, ..., N ; in each experiment the total number
of samples considered is n = 1000, the observation time is
Tobs = 2πL/ωk, k = 1, ..., N , L = 100, the sampling time
is Ts = Tobs/n. Note that our method, to the contrary of
the Bai’s one, in each experiment does not need to have a
long observation time and variable in each experiment as
well as a variable sampling time.

Remark 2. Note that the observation time Tobs, in Bai’s
approach, varies in the interval [125.7, 6283.2] while in the
proposed approach it is fixed to 2.

In order to validate each method, 1000 iterations have been
performed, and the global input/output behavior of the
estimated models has been investigated by giving in input,
to each estimated plant, a white noise with zero mean and
variance σ2 = 1, so that to consider approximately all
amplitude used and a wide range of frequencies. Finally,
the goodness of the two approaches was measured in
terms of minimum, mean, maximum and variance of the
following index:

J =

√

√

√

√

1

n

n
∑

k=1

(y(kTs) − ŷ(kTs))
2

(48)

where {y(kTs)}
n

k=1 is the true output data sequence of the
system and {ŷ(kTs)}

n

k=1 is the estimated one. From Table
1 it is possible to observe the obtained results from both
methods.

min(J) µ(J) max(J) σ2(J)

CF 4.98e − 4 2.81e − 3 8.53e − 3 1.91e − 6

Bai 5.44e − 2 7.28e − 2 9.51e − 2 4.30e − 5

Table 1. Min, mean, max and variance of J
over 1000 tests.

Fig. 2. Example 2: Basic scheme of the Boost converter.

4.2 Example 2

In this example, a Hammerstein model is proposed for
describing the behavior of switching converters with par-
ticular reference to a DC/DC Boost converter. A basic
scheme of the DC/DC Boost converter is given in Fig.
2. The output voltage of the converter Vout, is greater
than the input voltage Vin; the static gain, i.e. the output
to input voltage ratio, depends on the duty cycle of the
signal supplying the switch. The values of the electrical
components of the Boost converter are: R = 10Ω, L =
0.67mH,C = 200µF. Two different simulations have been
performed. In the first simulation, in order to determine
the static characteristic and the linear part of the Hammer-
stein model, N = 20 experiments where conducted with
Vin ∈ [3, 5] Volts and duty cycle fixed to 70%. For both
simulations, the switching frequency is fixed to 15kHz,
the sampling time Ts = 6.67e − 6, m = 0 and np = 2.
As far as the observation window is concerned, in the first
simulation is Tobs = 0.2e − 1 and in the second one is
Tobs = 0.7e − 2. In the first simulation, the estimated
nonlinear and linear part are respectively:

f(u) = 0.0016u2 + 3.3157u − 0.7883, (49)

and

G(s) =
6.66 e 5

s2 + 551.17s + 6.66 e 5
. (50)

In order to validate the identified Hammerstein model, a
signal with amplitude uniformly distributed in [5, 10] was
applied to the Boost converter, obtaining the results shown
in Fig. 3. The proposed approach gives good results as it
can be verified from the comparison between the behavior
of the Boost converter and that of its Hammerstein model.
In the second simulation, N = 50 experiments where
conducted with Vin = 5 Volt and duty cycle variable in
[0.45, 0.55]. In this case, the estimated nonlinear and linear
part are given, respectively, by:

f(u) = 0.0075u2 − 0.5409u + 17.5155, (51)

and

G(s) =
1.88 e 6

s2 + 450.84s + 1.88 e 6
. (52)
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Fig. 3. Validation of the identified Hammerstein models.

The validation of the identified Hammerstein model has
been done by varying the duty cycle from δ = 0.45 to
δ = 50, obtaining the results shown in Fig. 3.

5. CONCLUDING REMARKS

In this paper, we have proposed a non-iterative method
for the identification of Hammerstein models by using step
tests. The approach is based on three regression equations
which involve multiple integrals of the output signal. By
using the derivative method in frequency domain, it has
been possible to decouple the structure of poles in the
linear part from the structure of zeros and the nonlinear
part. No information on the form of the nonlinearity is
assumed. By performing several experiments, with differ-
ent amplitudes of step input, it is possible to point-wise
reconstruct the static characteristic of the nonlinear block.
The method does not require complex calculations and to
wait that the output response reaches its steady state.
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