
     

Production Control and Steady-State Performance Analysis for A Two-stage 

Manufacturing System with Finite Buffer Sizes 
 

Dong-Ping Song* 
 

* Business School, University of Plymouth, PL4 8AA, UK  

 (Tel: 0044 1752 232442, e-mail: Dongping.Song@plymouth.ac.uk). 

 

Abstract: A two-station tandem manufacturing system with limited buffer sizes and production capacity is 

considered. The problem is to examine the stability of the system and to control the service rates to meet 

an exogenous Poisson demand. A sufficient and necessary condition for the system stability is provided. It 

is shown that the optimal control policy for this finite buffer capacity problem has the similar structural 

properties to that of the infinite buffer capacity problem. Three threshold-type control policies are 

presented and their stability conditions are shown to be the same. The stationary distributions under two 

threshold policies are obtained, which can then be used to compute steady-state performance measures and 

find the optimal threshold values. Numerical examples are given to demonstrate the results. 

 

1. INTRODUCTION 

Production control in discrete manufacturing systems with 

uncertain customer demands and processing times has 

attracted much attention. Research has been carried out in the 

following two aspects: (i) finding the optimal control policy 

and its structural properties; (ii) evaluating the performance 

of specific control mechanisms. In the first aspect, a base-

stock policy was shown to be optimal for a single stage 

system (Gavish and Graves 1980, Li 1992). Switching 

structure of the optimal policy in a two-station tandem 

system was addressed in Veatch and Wein (1994). Monotonic 

and asymptotic characteristics of the optimal feedback 

control policy in a stochastic serial production line with 

failure-prone machines were established in Song and Sun 

(1998, 1999). The structural properties are useful to construct 

simple sub-optimal policies, particularly in situations where 

the optimal policies are too complicated. 

In the second aspect, extensive studies have been performed. 

Well-known specific control mechanisms include kanban 

control (Mitra and Mitrani 1991), base-stock control (Lee and 

Zipkin 1992), CONWIP control (Spearman et al 1990), 

buffer control (Conway et al 1988), extended kanban control 

(Dallery and Liberopoulos 2000), control point policy 

(Gershwin 2000, Véricourt & Gershwin 2004). Comparative 

research for some of the above control mechanisms was 

reported in (Veatch and Wein 1994, Karaesmen and Dallery 

2000, Bollon et al 2004). These specific control mechanisms 

are attractive because they are relatively easy to implement 

and perform very well in certain settings. 

This paper analyses a two-workstation tandem manufacturing 

system with Poisson demand arrivals and exponential service 

times. However, unlike the most research in the above 

literature, we consider the finite buffer spaces for storing 

work-in-progress (WIP) and finished goods (FG). Once the 

WIP/FG buffer is full, the first/second workstation will be 

blocked. Exogenous demand that cannot be met from the FG 

inventory is backordered and met by the next available 

finished item. Because the system has limited production 

capacity and limited buffer space, a more fundamental 

question than optimality of a policy is the stability, e.g. does 

a given policy allow the system to meet demands or become 

increasingly backordered? Another interesting issue is to find 

the stationary distribution of the inventories and backlogs 

under a stable control policy. Our contributions include: (i) a 

sufficient and necessary condition for the stability of the 

system is provided; (ii) it is shown that the optimal policy has 

the similar structural properties to that of infinite buffer 

capacity problem, i.e. characterized by two monotonic 

switching curves. However, in our situations the asymptotic 

convergence of the switching curves is guaranteed; (iii) three 

threshold control policies are presented and their stability 

conditions are established; (iv) the stationary distribution 

under two threshold policies are derived. An analytical 

optimisation procedure is presented to determine the optimal 

threshold values. 

2. PROBLEM FORMULATION 

Consider a manufacturing system consisting of two tandem 

workstations (Fig. 1). Production time at workstation (WS) i 

follows an exponential distribution with rate λi, which is 

controllable in [0, ri]. The system has finite buffer sizes with 

the WIP buffer size M and the FG buffer size N. Here the 

WIP buffer size includes one unit at WS two, e.g. M≥1. The 

objective is to control the production rates in order to meet an 

exogenous Poisson demand process with rate d as close as 

possible. The unmet demands are backordered. 
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Fig. 1. A two-station tandem manufacturing system 
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Let x1(t) be the number of WIPs and x2(t) be the inventory-

on-hand of FGs. When x2(t) is negative, it represents the 

backordered demands. We have 0 ≤ x1(t) ≤ M and x2(t) ≤ N. 

Define x(t) := (x1(t), x2(t)). The system state space X = {(x1, 

x2) | 0 ≤ x1 ≤ M and x2 ≤ N}.  

Let Ω = {u(t) = (λ1(x(t)), λ2(x(t))| 0 ≤ λ1(x(t)) ≤ r1; 0 ≤ 

λ2(x(t)) ≤ r2; λ1(x(t))=0 if x1(t) = M; λ2(x(t)) = 0 if x1(t) = 0 or 

x2(t) = N) be the set of state-feedback admissible controls. 

The state transition map of the induced Markov chain under a 

control policy u ∈ Ω is shown in Fig. 2. 

 

Fig. 2. State transition map 

The problem is to find an optimal control policy u ∈ Ω to 

minimise the expected long-run average cost, i.e. 
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where g(x(t)) is a cost function consisting of WIP holding 

costs, FG holding costs, and demand backlog costs.  

3. SYSTEM STABILITY CONDITION 

It is fundamental to determine whether a given policy allow 

the system to meet demands without increasingly 

backordered. This is about the system stability issue.  

Definition 1. A system is stable if there exists a stable 

admissible control policy u ∈ Ω, under which the induced 

Markov chain has steady-state probability distribution. 

Clearly, the maximum production capacity can be achieved 

by allowing two workstations to produce whenever possible, 

namely, let λ1(x) = r1 if x1 < M and λ2(x) = r2 if x1 > 0 and x2 

< N. Such policy is determined by two buffer sizes M and N, 

denoted by uM,N. We will provide a sufficient and necessary 

condition to ensure that the induced Markov chain under uM,N  

is positive recurrent, and therefore has a unique stationary 

distribution. 

Sequence the system state as follows: (0, N), (1, N), …, (M, 

N), (0, N-1), (1, N-1), …, (M, N-1), …, in which the WIP 

state (i.e. x1) is treated as different phases from 0 to M and x2 

is treated as different stages from N to -∞. This is a quasi-

birth-death (QBD) Markov chain. Using the matrix analytic 

method (Latouche and Ramaswami 1999), the following 

result can be derived (Song 2006). 

Proposition 1. The sufficient and necessary condition for the 

stability of the system is: ρ(M, r1, r2) < 1, where ρ(M, r1, r2) = 

d⋅(1+ρ+…+ρM
) / (r1⋅(1+ρ+…+ρM-1

)) and ρ=r1/r2. 

The following insights can be obtained: (i) The stability 

condition is related to the WIP buffer size M, but does not 

depend on the FG buffer size N. (ii) If the system with the 

WIP buffer size M is stable, it is also stable with any WIP 

buffer size that is greater than M. (iii) As M tends to infinity, 

the system stability condition becomes d/min{r1, r2} < 1, 

which is intuitively true by queuing theory. 

4. AVERAGE COST OPTIMAL CONTROL POLICY 

This section investigates the optimal control policy to 

minimize the average cost. Define mappings R1, R2 and R3 

from X to X as follows: 

 R1x := (x1+1, x2) if x1 < M; R1x := x, otherwise. 

 R2x := (x1-1, x2+1) if x1 > 0 and x2 < N; R2x := x, otherwise. 

 R3x := (x1, x2-1), x∈X. 

We uniformise the process by defining the potential event 

rate v = r1 + r2 + d. Since it has been shown that the induced 

Markov chain under the policy uM,N is positive recurrent and 

covers the whole state space X. The average optimality 

equation holds and can be expressed by (Sennott 1999): 

w(x) + J
*
 / v = [g(x) + d⋅w(R3x) + r1min{w(R1x), w(x)} + 

r2min{w(R2x), w(x)}] / v (2) 

Where J
*
 is the optimal average cost and w(x) is a finite 

function. 

Lemma 1. If g(Rlx) - g(x) ≥ g(RjRlx) - g(Rjx) holds for any l, j 

∈ {1, 2, 3} and l≠j, then w(Rlx) - w(x) ≥ w(RjRlx) - w(Rjx) 

holds for ∀ l≠j ∈ {1, 2, 3}. 

This can be proved by replacing the average cost problem 

with a discounted cost one for the same Markov chain, then 

following the procedures in Song and Sun (1998). However, 

here we have to consider the additional boundary constraints 

caused by the finite buffer capacities for WIP and FG. These 

constraints incur extensive additional checking work in the 

proof. 

Proposition 2. If g(Rlx) - g(x) ≥ g(RjRlx) - g(Rjx) holds for 

any l≠ j ∈ {1, 2, 3}, then the optimal average cost control 

policy can be determined by two switching curves S1(x2) and 

S2(x1): 

(i)  S1(x2) is non-increasing and S2(x1) is non-decreasing. 

(ii) )(lim 21
2

xS
x −∞→

= x11
*
, where x11

*∈(0, M). 

(iii) The optimal control policy is: λ1
*
(x) = r1 if x ∈ B1; λ1

*
(x) 

= 0 otherwise; λ2
*
(x) = r2 if x ∈ B2; λ2

*
(x) = 0 otherwise; 

where B1 = {x | 0 ≤ x1 ≤ S1(x2) < x11
*
, x2 ≤ x2

*
} and B2  = {x | 

x2 ≤ S2(x1) < N, 0 < x1 ≤ x12
*
} with x2

* 
< N, x11

* 
< M, and x12

* 
< 

M, as shown in Fig. 3. 
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Fig. 3. Optimal control structure 

The assertions can be proved using Lemma 1 and following 

the similar arguments in Song and Sun (1998, 1999). A 

commonly used cost structure is a linear form, e.g., g(x1, x2) = 

c1x1 + c2
+
max(0, x2) + c2

-
max(0, -x2), where c1, c2

+
 and c2

-
 are 

non-negative constants. In this case, it is easy to show that 

the condition in Lemma 1 and Proposition 2 holds.  

Proposition 2 indicates that the optimal control policy for the 

finite buffer capacity situation has the similar structural 

properties to that for the infinite buffer capacity (Veatch and 

Wein 1994, Song and Sun, 1998). The key difference is that 

both B1 and B2 in our situations (see Fig. 3) are limited into a 

finite band in terms of x1 (i.e. 0≤ x1 < x11
*
 for B1 and 0< x1 ≤ 

x12
*
 for B2). Therefore, the asymptotic convergence of the 

switching curves is guaranteed. 

It is difficult to find the closed-form solution to this control 

problem. However, Proposition 2 provides good insights into 

the structure of the optimal policy. This can be used to derive 

the sub-optimal threshold-type control policies analogous to 

those in the literature (Veatch and Wein 1994, Gershwin 

2000, Véricourt and Gershwin 2004). As pointed out by 

Gershwin (2000), although there are no assurances of 

optimality of such decentralized policies, experience suggests 

that these policies have desirable characteristics. 

5. THRESHOLD TYPE CONTROL POLICIES AND 

STABILITY CONDITION 

By approximating the control regions B1 and B2, simple 

threshold-type policies can be constructed. 

5.1 Buffer Threshold Control 

A buffer threshold control is characterised by two parameters 

m and n, which are used to impose the inventory levels for 

WIP and FG respectively. More specifically, BTCm,n := 

(λ1(x), λ2(x)) for m≤M and n≤N is defined as:  
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Corollary 1. The system under a buffer threshold control 

BTCm,n is stable if and only if ρ(m, r1, r2) < 1. 

5.2 Buffer Basestock Control 

The sum of x1 and x2 can be defined as the basestock of WS1, 

which is the difference between the cumulative production of 

WS1 and the cumulative demands. Combining the buffer 

threshold parameter with the basestock level yields a buffer 

basestock threshold policy, BBCm,n for m≤M and n≤N: 
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Comparing the induced Markov chain under BBCM,N with the 

induced Markov chain under BTCM,N, a one-to-one mapping 

can be established, which leads to (Song 2006): 

Corollary 2. The system under a buffer basestock control 

BBCm,n is stable if and only if ρ(m, r1, r2) < 1. 

From Corollary 1 and 2, it can be seen that the sufficient and 

necessary conditions for the stability of the system under 

BTCm,n and BBCm,n are the same. This may be intuitively 

explained by the fact that when x2 is sufficient negative, 

x1+x2≤n is always satisfied and the production of WS1 is 

actually controlled by the single parameter m, which is the 

same as BTCm,n. 

5.3 Multiple Threshold Control 

By introducing control parameters to WIP inventory, FG 

inventory, and basestock WIP+FG, a multiple threshold 

control MTCm,n,h for m≤M and n≤N can be defined: 
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Without loss of the generality, we assume n≤h≤n+m. The 

system state-space under MTCm,n,h is given by {(x1, x2) | 

0≤x1≤m, x2≤n, x1+x2≤h}. It is clear that when h≥n, we have 

{(x1, x2) | 0≤x1≤m, x2≤n, x1+x2≤h} ⊇ {(x1, x2) | 0≤x1≤m, 

x1+x2≤n}. In other words, the state-space under MTCm,n,h 

includes the state-space under BBCm,n. This implies that 

MTCm,n,h allows both workstations to operate with more 

opportunities than BBCm,n. Therefore, the effective 

production capacity of the system under MTCm,n,h is not less 

than the effective production capacity under BBCm,n. With the 

similar argument, when h≤n+m, the effective production 

capacity under MTCm,n,h is not greater than the effective 

production capacity under BTCm,n. From Corollaries 1 and 2, 

both BTCm,n and BBCm,n have the same stability condition, 

which yields that MTCm,n,h must have the same stability 

condition. 

Corollary 3. The system under a multiple threshold control 

MTCm,n,h for n≤h≤n+m is stable if and only if ρ(m, r1, r2) < 1. 

To implement these threshold-type policies, an important 

issue arising is how to determine the optimal threshold 

parameters. One way to solve this problem is to use the value 

iteration algorithm to numerically find the optimal average 

costs and the optimal control parameters. The disadvantage of 

this approach is that it cannot provide information on other 

interesting steady-state performance measures such as service 

level and stock-out probability. We present an alternative 

approach consisting of three steps: i) deriving the steady-state 

distribution of the induced Markov chain under a threshold 

policy; ii) obtaining the explicit forms of interesting 

performance measures; iii) optimising the threshold 

parameters. This analysis will only be performed on BTCm,n 

and BBCm,n because it appears difficult to derive the 

stationary distribution for the induced Markov chain under 

MTCm,n,h due to its complex structure.  
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6. STEADY-STATE PERFORMANCE MEASURES 

UNDER BTCM,N AND BBCM,N  

If the system stability condition is satisfied, the induced 

Markov chains under BTCM,N or BBCM,N are positive 

recurrent, irreducible and therefore ergodic.  

6.1 Stationary distribution under BTCM,N 

Let {pi
M,N

(j) | i=0, 1, …, M and j=N, N-1, …} be the 

stationary distribution under control policy BTCM,N. From the 

state transition map (Fig. 1), it is clear that pi
M,N

(j) ≡ pi
M,0

(j-N) 

for any i and j, where pi
M,0

(j) is the stationary distribution 

under BTCM,0. To simplify the narrative, we drop the 

superscript from pi
M,0

(j), i.e. pi(j) := pi
M,0

(j). Their balance 

equations can be easily established (Song 2006). 

To find the stationary distribution of the recurrent QBD 

process, we use spectral expansion approach (Mitrani and 

Chakka 1995). Let Q(x) be the associated characteristic 

matrix polynomial. The eigenvalues of the characteristic 

equation can be found by solve the scalar polynomial 

det(Q(x)) = 0, where det(Q(x)) is the determinant of matrix 

Q(x). The following result can be derived based on Mitrani 

and Chakka (1995) and Grassmann (2002). 

Proposition 3. det(Q(x)) = 0 is a polynomial of order M+2, 

i.e. degree(det(Q(x))) = M+2. It has M+2 distinct real roots: 

x0, x1, …, xM+1, such that 0 < x0 < x1 < … < xM < xM+1 = 1. 

From Proposition 3, a general solution to the balance 

equations can be expressed as 

pi(j) = a0ix0
-j
 + a1ix1

-j
 + … + aMixM

-j
 for i=0, 1, …, M; j≤0. (3) 

Where aik for i,k = 0, 1, …, M are undetermined coefficients. 

Using the balance equations and the normalisation condition, 

the M+1 unknown variables {a00, a10, …, aM0} can be 

determined uniquely (Song 2006). This gives the explicit 

form of the stationary distribution of the induced Markov 

chain under the buffer threshold control BTCM,0. 

Proposition 4. The stationary distribution under the buffer 

threshold policy BTCM,N is given by pi
M,N

(j) ≡ pi
M,0

(j-N) = pi(j-

N) for i=0, …, M and j ≤ N, where pi(.) is given in (3).  

6.2 Steady-state performance measures under BTCm,n 

In terms of the steady-state performance, the system under 

control by BTCm,n is equivalent to a system with WIP buffer 

size m and FG buffer size n. The stationary distribution 

{pi
m,n

(j) | i=0, 1, …, m and j≤n} can be obtained by replacing 

M and N with m and n respectively in Section 6.1. Due to the 

ergodicity of the induced Markov chain, the long-run average 

cost function under the buffer threshold control BTCm,n can 

be rewritten as 

∑∑∑∑
−∞

= =

−∞

= =

+==
0 0
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0

,
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j
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m
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inm njigjpjigjpBTCJ  

Apart from the long-run average cost, other steady-state 

performance measures may also be interesting, e.g. the stock-

out probability Pso (that may be defined as the fraction of 

time that there exist unmet demands), the service level (that 

may be defined as the fraction of time that customer demands 

can be met immediately from inventory), the average WIP 

buffer utilisation UWIP, the average FG buffer utilisation UFG, 

the expected backordering or FG inventory level LFG These 

performance measures can be easily calculated from the 

stationary distribution. For example, 

∑ ∑
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6.3 Optimal threshold values for BTCm,n 

This section addresses the optimisation of the threshold 

parameters and discusses some structural properties of the 

optimal BTC.  

Proposition 5. The optimal buffer threshold control **
,nm

u  

can be determined by (m
*
, n

*
) = argmin J(BTCm,n) subject to 

ρ(m, r1, r2) < 1. 

However, the two-variable optimisation problem in 

Proposition 5 may not be trivial. We aim at providing more 

insights into the structural properties of the optimal BTC. 

Proposition 6. For a fixed WIP threshold value m, if g(i, j) is 

convex in j and g(i, j) - g(i, j-1) ≤ 0 for any j≤0,  then  

(i) The cost function J(BTCm,n) is convex in n; 

(ii) The optimal threshold value n
*
 is non-negative; 

(iii) The optimal threshold value n
*
 is the maximum non-

negative integer such that 

∑∑
−∞

= =

≤−+−+
0 0

0, 0))1,(),()((
j

m

i

m

i njignjigjp  

The assumption g(i, j) - g(i, j-1) ≤ 0 for any j≤0 is reasonable. 

This represents the fact that more backlogs incur higher cost. 

E.g. a commonly used cost structure, g(i, j) = c1i + c2
+
max(0, 

j) + c2
-
max(0, -j), satisfies the conditions in Proposition 6.  

Proposition 7. Assuming g(i, j) is convex in j and g(i, j) - g(i, 

j-1) ≤ 0 for any j≤0. The optimal buffer threshold policy can 

be determined in two steps:  

(i) Step 1: for any fixed m, the stationary distribution pi
m,0

(j) 

is calculated by Proposition 4 and the optimal n
*
(m) is 

obtained from Proposition 6;  

(ii) Step 2: the optimal WIP inventory level m
*
 is determined 

by:  

}1),,(,0|)({minarg 21)(,

*
* <≤≤= rrmMmBTCJm

mnm
m

ρ . 

In Proposition 7, the determination of n
*
(m) is relatively 

simple since the stationary distribution {pi
m,0

(j)} is 

independent of n. However, the determination of m
*
 is much 

more involving since the stationary distribution must be 
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recalculated for different m. A straightforward approach is to 

start with the minimum m that satisfies the stability condition 

ρ(m, r1, r2)<1, then calculate the cost until it is no longer 

decreasing in m. 

6.4 Steady-state performance measures and optimal 

threshold values for BBCm,n 

Now consider the buffer basestock control policy. Let 

{qi
m,n

(j) | i=0, 1, …, m and i+j≤n} be the stationary 

distribution of the induced Markov chain under BBCm,n. Note 

that this Markov chain can be transformed into the exact 

same Markov chain under BTCm,n by the state-mapping ϕ(x1, 

x2) := (M-x1, x2+x1) and swapping the transition rates r1 and 

r2. Therefore, we can establish a relationship between two 

stationary distributions for BTCm,n and BBCm,n. 

To reflect the dependence of the stationary distribution on 

transition rates r1 and r2, we rename the symbols pi
m,n

(j) to be 

pi
m,n

(j, r1, r2) and qi
m,n

(j) to be qi
m,n

(j, r1, r2). 

Proposition 8. The stationary distribution under BBCm,n is 

given by qi
m,n

(j, r1, r2) = pm-i
m,n

(i+j, r2, r1) for i=0, 1, …, m and 

i+j≤n, where pm-i
m,n

(i+j, r2, r1) is the stationary distribution 

under BTCm,n, in which the production rate of the first WS is 

r2 and the production rate of the second WS is r1. 

Since we have obtained the stationary distribution, it is 

straightforward to compute the stead-state performance 

measures under BBCm,n. Similar results to Propositions 6 and 

7 can also be established. 

7. NUMERICAL EXAMPLES  

We first briefly examine the sensitivity of the system stability 

to the buffer size, then compare the performance of the 

threshold policies and the optimal policy. 

Assume that both WSs have the same production rate 0.8. Let 

demand take three levels: 0.4, 0.6 and 0.7. For different 

buffer size M, the stability index ρ(M, r1, r2) can be 

calculated easily. It is found that the system is stable when 

d=0.4 with M≥2, d=0.6 with M≥4, and d=0.7 with M≥8. The 

stability index is much more sensitive to the buffer size when 

the actual buffer size is smaller. Moreover, as the demand 

rate is increasingly approaching to the production rate, the 

system tends to be less stable and therefore bigger buffer 

sizes are required.  

Now, take the cost function g(x1, x2) = c1x1 + c2
+
max{0, x2} + 

c2
-
max{0, -x2}, where c1=1, c2

+
=2 and c2

-
=10. Consider a case 

with balanced WSs: r1=0.8, r2=0.8, d=0.4. Different 

combinations of the buffer sizes M and N will be tested. Both 

the dynamic programming value iteration algorithm and the 

analytical optimisation method (in Section 6) are performed. 

In the value iteration algorithm we limit the state space into a 

finite region with 0≤x1≤M and -100≤x2≤N and take the 

maximum iteration number to be 8000. The value iteration 

algorithm can numerically compute the optimal long-run 

average costs under the optimal policy, and the optimal 

threshold parameters and costs under threshold policies such 

as BTCm,n, BBCm,n and MTCm,n,h. The analytical optimisation 

method can yield the various steady-state performance 

measures, and the optimal threshold parameters and costs for 

BTCm,n and BBCm,n. 

For each scenario, the system stability condition is checked 

first. If it is stable, the above two methods are applied. It was 

found that two methods produce the same optimal threshold 

values m
*
and n

*
 for BTCm,n and BBCm,n respectively in all 

scenarios. They also produce the same costs for BTCm,n and 

BBCm,n respectively in all scenarios. This verifies the results 

given in Section 6. Table 1 gives the results. 

Table 1. Performance measures and optimal threshold values 

(M, N) (1,2) (2,2) (2,10) (5,10) (10,10) 

Stability No Yes Yes Yes Yes 

J(BTC) - 13.05 10.85 8.90 8.90 

(m
*
, n

*
) - (2, 2) (2, 4) (3, 3) (3, 3) 

Pso - 0.3057 0.1463 0.1154 0.1154 

UWIP - 0.6500 0.6500 0.4349 0.2175 

UFG - 0.4481 0.2379 0.1910 0.1910 

LFG - -0.1000 1.9000 1.6202 1.6202 

J(BBC) - 16.00 10.84 8.05 8.00 

(m
*
, n

*
) - (2, 2) (2, 5) (5, 4) (7, 4) 

Pso - 0.4233 0.1455 0.1126 0.1068 

UWIP - 0.3500 0.3500 0.1891 0.0962 

UFG - 0.3042 0.2678 0.2238 0.2289 

LFG - -0.8000 2.2000 1.9761 2.0438 

J(MTC) - 13.05 10.80 7.86 7.81 

(m
*
,n

*
,h

*
) - (2,2,4) (2,4,5) (5,3,4) (7,3,4) 

J
*
 - 13.05 10.80 7.86 7.80 

In Table 1, the first block includes the stability, optimal cost 

under BTCm,n, optimal threshold values m
*
 and n

*
, various 

steady-state performance measures (e.g. stock-out probability 

Pso, the WIP buffer utilisation UWIP, the FG buffer utilisation 

UFG, and the average backlog or FG inventory level LFG) 

under the optimal buffer threshold control. The second block 

includes the results for BBCm,n. The third block includes the 

optimal threshold parameters and costs for MTCm,n,h, and the 

optimal average cost J
*
 under the optimal policy. 

When M=1, we have ρ=1, which indicates the system is 

unstable. For all other scenarios, the system is stable. The 

following points can be observed and interpreted:  

When buffer sizes are very small (e.g. ≤2), the optimal 

threshold values tend to be the buffer sizes M and N. The 

performance of the BTC (i.e. J(BTC)) is close to the optimal 

cost J
*
.  

As M and N increase, the costs J(BTC), J(BBC), J(MTC) and 

J
*
 are decreasing and converging to finite numbers, which are 

essentially approaching to the case with infinite buffer 

capacity. For BTC policy, as both buffer sizes increase, the 

optimal threshold values m
*
and n

*
 tend to be constants (e.g. 

m
*→ 3 and n

*
 → 3). For BBC policy, the optimal value n

*
 →  

4; whereas m
*
 is increasing as M increases. Similar properties 

can be found for the MTC policy. These observations reveal 

that sufficiently large WIP buffer sizes do not affect the 

optimal BTC, but may affect the optimal BBC and MTC. 
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In terms of the long-run average cost, MTC achieves almost 

the same performance as the optimal policy in those 

scenarios. Comparing BTC with BBC, it appears that BTC is 

better than BBC when M is very small, while BBC is better 

than BTC when M becomes large. 

The stock-out probability (Pso) is much more sensitive to the 

buffer sizes when they are smaller, particularly to the FG 

buffer size N. This is in agreement with intuition that very 

small FG buffer size has low ability to meet demands 

immediately. On the whole, the buffer utilisation (i.e. UWIP 

and UFG) is decreasing as buffer sizes increase.  

8. CONCLUSIONS 

This paper considers the optimal production control in a two-

station manufacturing system with random service times and 

demand arrivals. Limited production capacity and limited 

buffer spaces give rise to not only the production control 

problem but also the system stability problem. A sufficient 

and necessary condition for the system stability is provided. 

It is shown that the optimal production policy has the similar 

structural properties to those with infinite buffer capacities. 

The key difference is that the asymptotic convergence of the 

switching curves is guaranteed for the systems with finite 

buffer capacity. 

A few threshold-type control policies, e.g. BTC, BBC, MTC, 

are presented. It is shown that the stability condition of the 

system under these threshold policies is the same. The 

stationary distributions under BTC and BBC are obtained, 

which are used to derive the explicit forms of stead-state 

performance measures. The optimal threshold values can then 

be found by an analytical optimisation procedure based on 

the analysis of the explicit performance measures.  

Numerical examples using the value iteration algorithm and 

the analytical optimisation method confirm the results. It is 

found that the system stability does not depend on the FG 

buffer size and is more sensitive to the WIP buffer size when 

it is small. It also reveals that the optimal MTC achieves 

almost the same performance as the optimal policy. 

Comparing BTC with BBC, it appears that BTC is better than 

BBC when M is very small, while BBC is better than BTC 

when M becomes large. It is also observed that the stock-out 

probability is much more sensitive to the buffer sizes when 

they are smaller, particularly to the FG buffer size N. 

Further work includes extending the model to more 

complicated systems with multistage and multiple part types. 
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