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Abstract: Considered is the control synthesis problem for planar motion of a wheeled robot.
The mathematical model of the robot is based on kinematic relationships between the velocity of
a given point of a robot platform, referred to as the target point, orientation of the platform, and
control. It is supposed that all four wheels move without a lateral slippage. The front wheels
are responsible for steering. The control goal is to drive the target point to the prespecified
trajectory and to stabilize the motion of the target point along the prespecified trajectory. The
trajectory consists of line segments and circular arcs. The current curvature of the trajectory
of the target point is taken as control; it is related to the steering angle of the front wheels by
a simple algebraic expression. The control is subject to two-sided constraints due to limitations
on the steering angle of the front wheels. For the control law proposed, the attraction domain in
the space “distance to the trajectory - orientation” is analyzed. For the initial conditions from
this domain, the system is guaranteed to hit a trajectory with given exponent of stability. The
numerical method based on LMIs approach is proposed to approximate the attraction domain.

Keywords: Asymptotic stabilization; Tracking; LMIs; Lyapunov methods; Mobile robots;
Guidance navigation and control

1. INTRODUCTION

There are many applications like a road construction and
agriculture where a vehicle must be automatically driven
along a target trajectory with high level of accuracy.
These and other tasks are performed by wheeled robots
equipped with satellite and inertial navigation tools, see
Cordesses et al. (2000), Thuilot et al. (2002), and Rapoport
et al. (2006). On the other hand, automatic control does
not exclude manual steering. Presence of an operator is
necessary from safety considerations and on the case if
unexpected disturbances in the sensors’ measurements,
satellites shading, or signal multipath errors throw the
system out of the stability region.

In general, the control system does not posses global
stability. Automatic driving to the target path is not
guaranteed if the system starts from the initial state not
belonging to the attraction domain in the state space.
The vehicle must be equipped with a special indicator
on the control panel to let the operator know whether it
is safe to operate in the automatic mode. If the system
estimates itself as belonging to the attraction domain,
the indicator lights green, otherwise it lights red. The
problem of numerical estimation of the attraction domain
is addressed in the paper.

The problem, similar to the one considered in this paper
is not new. In many papers (e.g., see Cordesses et al.
(2000), Thuilot et al. (2002), Samson (1995), Kolmanovsky
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and McClamroch (1995), Guldner and Utkin (1994) and
the references therein), a control law is designed which
stabilizes the motion along a line segment or stabilizes the
motion towards a given point in the plane; the control may
be either continuous or discontinuous (Guldner and Utkin
(1994). Here, we consider the control design problem
which accounts for the boundedness of controls. Under
this condition, it is impossible to attain the guaranteed
rate of convergence from arbitrary initial position and
orientation of the platform (Rapoport (2006)). Instead, for
a given norm of deviation, the domain of initial conditions
is estimated such that the synthesized control provides
the specified rate of its exponential decay. In the paper
(Rapoport (2006)) this problem has been considered for
the case of the straight line and the circular trajectory
separately. In the present paper the trajectory is supposed
to consist of line segments and circular arcs of the finite
length. This way of parametrization corresponds to the
motion of a tractor along parallel swaths or furrows across
a work field, the one which is most often the case in
agricultural applications. Circular arcs correspond to U-
turns of the tractor at the ends of the furrows. The control
law and attraction domain guaranteeing the specified rate
of the exponential convergence is constructed for the
composite trajectory consisting of arbitrary number of
segments.

2. KINEMATIC SCHEME

The model of a wheeled robot is represented in Fig. 1. The
motion is assumed to be two-dimensional, the orientation
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of the robot platform is defined by a single angle. The sym-
bol T denotes the matrix transpose, vectors are supposed
to be columns, X = (x, y)T denotes the point of the plane.
The target point is located at the middle of the rear axle
of the platform and is denoted by Xc = (xc, yc)T. For the
planar case the orientation is defined by an angle θ between
the centre line of the platform and the x-axis. Every point
X of the platform has its own instantaneous velocity vector
V . Vectors, orthogonal to the instant velocities, all inter-
sect in a single point X0 known as instantaneous center
of velocity. Let θ̇ be an instantaneous angular rate of the
rotation of the platform. Then the following relationship
holds:

|θ̇| = ‖V ‖/‖X − X0‖. (1)

Hereinafter, ‖ · ‖ denotes the Eucledian vector norm.
Moreover, the condition that each of the four wheels
move without lateral slippage means that the vectors
of instantaneous velocities of the axles’ endpoints are
collinear to the planes of the wheels; the normals to each
of these vectors intersect at the point X0.

2
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Fig. 1. The kinematics scheme of the wheeled robot.

The two rear wheels are driving and the front wheels
are responsible for turning the platform. For the case
of the movement along a straight line, the point X0 is
located at infinity and expression (1) yields zero angular
rate. For points of the rear axle the instantaneous center
of velocity coincides with the instantaneous center of
curvature. Particularly, for the target point the value
‖Xc − X0‖ is the instantaneous radius of curvature of the
trajectory (dashed line in Fig. 1) circumscribed by the
target point Xc. The value 1/‖Xc −X0‖ reciprocal to the
radius is the instantaneous curvature; denote this value by
u, then ‖Xc − X0‖ = 1/u. Let L and H be dimensions of
the platform as shown in Fig. 1. Then relationships

uL

1 − uH/2
= tan α1,

uL

1 + uH/2
= tan α2 (2)

relate the curvature u of the target point to the steering
angles of the front wheels. Relationships (2) are obtained
from Fig. 1 where the platform is turning left. These same
relationships are valid for the case of right turn. Note that

the counterclockwise direction is taken as positive, a left
turn associates with a positive value of curvature u. This
value has opposite sign for right turn. The relation (2)
allows to simplify the model, and the value u is further
taken as control. Denoting vc = ‖Vc‖ in the forward
motion and vc = −‖Vc‖ while in the reverse motion, arrive
at the following well known model:

ẋc = vc cos θ,
ẏc = vc sin θ,

θ̇ = vcu.
(3)

The limitations on the steering angle impose two-sided
constraints on the value of curvature:

−ū ≤ u ≤ ū. (4)

The expression for the quantity ū is easily derived from
the value of the maximum steering angle. Taking (4) into
account, the equations (3) take the form

ẋc = vc cos θ,
ẏc = vc sin θ,

θ̇ = vcsū(u),
(5)

where sū(u) is the saturation function:

sū(u) =

{−ū for u ≤ −ū,
u for |u| < ū,
ū for u ≥ ū.

(6)

3. TARGET TRAJECTORY PARAMETRIZATION

For brevity, the line segments and circular arcs will be
referred to as trajectory segments and denoted by si,
i = 1, . . . , n. The number of segments can be as large
as pleased. Every segment has its curvature ci; the line
segments have zero curvature. The following feasibility
condition is supposed to be satisfied

‖ci‖ < ū. (7)

Let ξ be the length parameter and li be the length of the
segment si. A sample trajectory is depicted in Fig. 2. The
segments s1, s3, and s5 are linear. The segments s2, s4,
s6, and s7 are circular. In the course of motion in the
neighborhood of the trajectory, one of the segments is
considered current. The motion equations (5) are further
rewritten in the form where the parameter ξ is taken as
an independent variable. The motion along the current
segment si is considered started if the parameters ξ exceeds
the value bi

b1 = 0, bi = bi−1 + li−1 for i = 2, · · · , n, (8)

and it is considered terminated as soon as ξ exceeds the
value bi+1. After the segment si is over, the segment si+1

becomes current. The following assumption is supposed to
be satisfied
Assumption 1. Adjacent segments have a common tan-
gent at the connection point

The passage to the successive segment is accompanied
by abrupt change of the desired curvature ci, which, in
turn, necessitates the abrupt change of the control u or,
according to formulas (2), that of the steering angle of
the front wheels. In the situations where the dynamics of
the front wheel drive cannot be neglected (in contrast to
what was assumed further), the passage from segment to
segment is accompanied by transition processes.
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Fig. 2. A target trajectory composed of linear and circular
segments.

4. CHANGE OF VARIABLES

Below, the the change of variables is considered separately
for the two cases where the segment of the target trajectory
is a line segment or a circular segment.

4.1 Motion along Line Segments

A current line segment si is specified by its initial point Xb

and the terminal point Xe �= Xb. The direction vector is
given by the expression l = (Xe − Xb)/(‖Xe − Xb‖) =
(lx, ly)T, and the normal vector pointing to the left is given
by n = (−ly, lx)T. By changing the variables

Xc = Xb + (ξ − bi)l + ηn, θ = ψ + arctan ly/lx (9)

problem (3) reduces to the following problem:

ξ̇ = vc cos ψ,
η̇ = vc sinψ,

ψ̇ = vcu.
(10)

In the new variables, the control goal is to ensure η → 0.
The following assumptions are supposed to be satisfied.
Assumption 2. The linear velocity of the platform vc(t) is
positive, separated from zero

vc(t) ≥ v0 > 0 (11)

and satisfies the existence conditions for absolutely con-
tinuous solutions of the system of differential Eqs. (10).
Assumption 3. Along the trajectories of the controlled
system (10), the following relation holds:

cos ψ(t) ≥ ε > 0. (12)

Assumption 3 will be further removed. As will be shown, if
this assumption is satisfied at the initial state it will hold
along the whole trajectory.

Further let us perform the change of variables z0 = ξ,
z1 = η, z2 = tan ψ and substitute the time derivative
with the derivative in the variable ξ. The variable z0 = ξ
corresponds to the projection of the target point on the
linear segment and will be taken as a parameter of the
segment length. In this case ci = 0 and li = ‖Xe − Xb‖.
The variable z1 = η corresponds to the side deviation from
target trajectory.

By the first equation in (10) and Assumptions 2 and 3,
the variable ξ changes monotonically. Let ′ denotes the
derivative with respect to the variable ξ; then (10) re-
writes in the form

z′0 = 1,
z′1 = z2,

z′2 = u(1 + z2
2)

3
2 .

(13)

First differential equation in (13) is trivial and separates
from two others. Finally arrive at the system

z′1 = z2,

z′2 = u(1 + z2
2)

3
2 .

(14)

Let z = (z1, z2)T. Starting from the initial value of
the parameter ξ = bi and the initial state z(bi), the
current linear segment is terminated when the independent
variable ξ exceeds the value bi + li.

4.2 Motion along Circular Arcs

A current circular segment si is specified by the center X0,
initial point Xb, radius R, and angular size ρ. In this case
ci = 1/R and li = ρR. We start with the case where the
motion is performed in the negative direction, see Fig. 3.
The case of the positive direction of motion is analyzed in
a similar way.

Fig. 3. Motion along a circular segment.

In the figure,

τ = arctan
(xc − x0

yc − y0

)
denotes the angle between the x–axis and the normal to
the radius-vector Xc−X0 directed towards the decrease of
the angle (or the angle between the y–axis and the vector
Xc − X0 which is the same);

τb = arctan
(xb − x0

yb − y0

)
denotes the angle between the y–axis and the vector
Xb − X0; ψ denotes the angle between the centroidal
axis of the platform and the normal to the radius-vector
Xc − X0. By the change of variables

η =
√

(xc − x0)2 + (yc − y0)2,
ξ = bi + (τ − τb)R,
ψ = θ + τ,

(15)
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re-write (3) in the form

ξ̇ = vc
R

η
cos ψ,

η̇ = vc sinψ,

ψ̇ = vcu +
vc

η
cos ψ.

(16)

Assumptions 2 and 3 of the previous section are assumed
valid. Denote z0 = ξ, z1 = η − R, z2 = tan ψ. Also, let ′
denote the derivative with respect to the variable ξ. Then
the following relations hold:

z′0 = 1,

z′1 =
(z1

R
+ 1

)
z2,

z′2 = u
(z1

R
+ 1

)
(1 + z2

2)
3
2 +

1
R

(
1 + z2

2

)
.

(17)

Using the reasoning similar to that used in the previous
subsection, arrive at the system

z′1 =
(z1

R
+ 1

)
z2,

z′2 = u
(z1

R
+ 1

)
(1 + z2

2)
3
2 +

1
R

(
1 + z2

2

)
.

(18)

Starting from the initial value of the parameter ξ = bi

and the initial state z(bi), the current circular segment is
terminated when the independent variable ξ exceeds the
value bi + li.

Summing up results of subsections 4.1 and 4.2 and taking
into account Assumption 1, arrive at the following system
describing motion along the target trajectory:

z′1 = (c(ξ)z1 + 1)z2,

z′2 = u(c(ξ)z1 + 1)(1 + z2
2)

3
2 + c(ξ)(1 + z2

2),
(19)

where the quantity c(ξ) takes values ci when the current
segment becomes si according to the condition

bi ≤ ξ ≤ bi+1.

The value ξ is easily calculated for the current segment
using relationships (9) or (15) and measurements of the
position. Solution of the system of differental equations
(19) with a discontinuous right hand side is considered in
the Filippov sense, see Filippov (1988).

5. CONTROL LAW DESIGN

The choice of control u in (19) in the form

u = − σ + c(ξ)(1 + z2
2)

(c(ξ)z1 + 1)(1 + z2
2)

3
2
, (20)

for some λ > 0 and
σ = 2λz2 + λ2z1 (21)

leads to differential equations of the closed loop system

z
′
1 = (c(ξ)z1 + 1)z2,

z
′
2 = −σ.

(22)

Control law of the form (20), based on the feedback
linearization approach, was earlier considered in the papers
Cordesses et al. (2000), Thuilot et al. (2002), and others. In
the present paper we extend it on the case of the control
with saturation. If c(ξ) = 0 this system is equivalent to

z′′2 + 2λz′2 + λ2z2 = 0 which implies the exponential decay
rate of z1 and z2. In the small enough neighbourhood of the
zero the term c(ξ)z1z2 is negligible and the zero solution
of the system (22) is also exponentially stable with the
exponent of stability −μ where 0 < μ < λ. However,
in general, control (20) does not satisfy the two-sided
constraints (4). On the other hand, taking control in the
form

u = −sū

(
σ + c(ξ)(1 + z2

2)
(c(ξ)z1 + 1)(1 + z2

2)
3
2

)
, (23)

may not guarantee that z1 and z2 decrease exponentially.
We introduce the following definition. Definition. A vector
function z(ξ) is said to be decreasing exponentially at
rate −μ for ξ ≥ 0 if there exists a quadratic form

V (z) = zTPz (24)

with P > 0, PT = P such that the following inequality
holds:

dV (z(ξ))
dξ

+ 2μV (z(ξ)) ≤ 0, ξ ≥ 0. (25)

Rewrite the last equation in (19) taking the control u as
(23)

z′2 = −sū

(
σ + c(ξ)(1 + z2

2)
(c(ξ)z1 + 1)(1 + z2

2)
3
2

)(
c(ξ)z1 + 1

)
(1 + z2

2)
3
2

+ c(ξ)(1 + z2
2) .= −Φ(z, σ).

Then
Φ(z, σ) = s

ū(c(ξ)z1+1)(1+z2
2)

3
2

(
σ + c(ξ)(1 + z2

2)
)

− c(ξ)(1 + z2
2)

(26)

and the system (19) takes the form

z
′
1 = (c(ξ)z1 + 1)z2,

z
′
2 = −Φ(z, σ).

(27)

6. ESTIMATION OF THE ATTRACTION DOMAIN

We are aimed at characterizing the initial conditions
z0 having the property that along the trajectories of
system (19) z(ξ) decreases exponential at rate −μ, where
0 < μ ≤ λ. To estimate this domain of initial conditions,
which will be denoted by Ω(μ), the Lyapunov function (24)
will be used in the framework of the absolute stability
approach for time-varying systems, see Pyatnitskii (1970),
Rapoport (1999). Let

Ω0(P ) = {z : V (z) ≤ 1}. (28)

Given positive values α1 and α2 the matrix P will be
sought in the class of matrices satisfying the matrix
inequalities

P ≥
[ 1

α2
1

0

0 0

]
, P ≥

[ 0 0

0
1
α2

2

]
, (29)

meaning that the desired domain Ω0(P ) is inscribed in the
rectangle

Π(α1, α2) = {z : −α1 ≤ z1 ≤ α1, −α2 ≤ z2 ≤ α2} (30)
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We now characterize the values of μ, α1, and α2 that
guarantee

Ω0(P ) ⊆ Ω(μ), Ω0(P ) ⊆ Π(α1, α2) (31)

for some matrix P > 0. Denote d = (λ2, 2λ)T and
c̄ = max

i=1,2,···
|ci|. (32)

The following auxiliary assertion holds:

Lemma 1. Assume that for a matrix P satisfying (29) and
a number α1 satisfying the inequality

u0
.= ū(1 − c̄α1) − c̄ > 0, (33)

the inclusion
z ∈ Ω0(P ) (34)

is valid. Then the following inequalities hold
−σ0 ≤ σ ≤ σ0, (35)

su0(σ) ≤ Φ(z, σ) ≤ σ for σ ≥ 0,
σ ≤ Φ(z, σ) ≤ su0(σ) for σ ≤ 0,

(36)

where
σ0 =

√
dT P−1d, (37)

Proof. From conditions (34) and (29) it follows that

z2
1 ≤ α2

1, z2
2 ≤ α2

2. (38)

From (26) we have

Φ(z, σ) =

{−σ1 for σ ≤ −σ1,
σ for −σ1 < σ < σ2,
σ2 for σ ≥ σ2,

(39)

where
σ1 = ū(1 + c(ξ)z1)(1 + z2

2)
3
2 + c(ξ)(1 + z2

2), (40)

σ2 = ū(1 + c(ξ)z1)(1 + z2
2)

3
2 − c(ξ)(1 + z2

2). (41)

Keeping (38), (32), and (33) in mind, we obtain for j = 1, 2
σj ≥ u0. (42)

Combination (39) and (42) gives (36). Next, consider
the convex optimization problem σ → max subject to
constraints (34). Necessary and sufficient conditions for
the extremum have the form

2νPz = d, (43)

where ν > 0 is the Lagrange multiplier. Premultiplying
the last equation by zT and accounting for the fact that
the extremum in this case is attained at the boundary of
the domain (34), we obtain

ν =
1
2
σ∗, (44)

where σ∗ is the solution of the optimization problem.
Multiplying (43) by dTP−1, we arrive at

νσ∗ =
1
2
dT P−1d. (45)

Combining (44) with (45), we obtain σ∗ = ±
√

dTP−1d, so
that at the maximum, the equality σ∗ = σ0 =

√
dTP−1d

holds. Now, formulating the minimization problem and
using similar reasonings, we obtain that at the minimum
point, the equality σ∗ = −σ0 holds, which yields (35).
Proof of Lemma 1 is complete.

Along with the function Φ(z, σ) in the formulation of
system (27), introduce the function

φ(ξ, σ) = β(ξ)σ, (46)

where β(ξ) satisfies the conditions

k0 ≤ β(ξ) ≤ 1, k0 = min{u0

σ0
, 1}. (47)

The graph of the function Φ(z, σ), satisfying the conditions
(36), is inscribed into a ’sector’ on the plane σ–Φ for values
σ satisfying conditions (35). Conditions (47) define the
size of the sector. Further, introduce the function γ(ξ)
satisfying the conditions

(1 − c̄α1) ≤ γ(ξ) ≤ (1 + c̄α1). (48)

We next expand the class of systems (27) by considering
systems of the form

z′1 = γ(ξ)z2,
z′2 = −β(ξ)σ.

(49)

We now require that the functions β(ξ), γ(ξ) satisfy the
existence conditions of absolutely continuous solution of
system (49). If system (49) possesses property

V ′(z) + 2μV (z) ≤ 0 (50)

for all functions β(ξ) and γ(ξ) satisfying conditions (47)
and (48), then property (50) also holds along the trajec-
tories of system (27) satisfying (34).

Consider the matrices

Aβγ =

[
0 γ

−βλ2 −2βλ

]
. (51)

Theorem 1. Assume that given numbers μ > 0 and α1 > 0,
α2 > 0 satisfying (33) there exists numbers μ > 0 and
0 < β ≤ 1 such that the following linear matrix inequalities
in the variable P are feasible:

PAβ(1−c̄α1) + AT
β(1−c̄α1)

P + 2μP ≤ 0,

PAβ(1+c̄α1) + AT
β(1+c̄α1)

P + 2μP ≤ 0,

PA1(1−c̄α1) + AT
1(1−c̄α1)

P + 2μP ≤ 0,

PA1(1+c̄α1) + AT
1(1+c̄α1)

P + 2μP ≤ 0,

(52)

⎡
⎢⎣ P

... d

dT
...

(ū (1 − c̄α1) − c̄)2

β2

⎤
⎥⎦ > 0, (53)

P ≥
[ 1

α2
1

0

0 0

]
, P ≥

[ 0 0

0
1
α2

2

]
, (54)

Then the domain Ω0(P ) is an attraction domain of system
(19) under control (23); moreover, the condition (31)
holds.

Proof. The stability of the zero solution of system (49) for
all possible functions β(ξ)) and γ(ξ) satisfying (47) and

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5907



(48) implies the stability of the zero solution of system (23)
and hence, the stability of the zero solution of system (19)
under control (23) and initial conditions satisfying (34).
Moreover, the existence of the Lyapunov function of the
form (24) satisfying condition (50) ensures the exponential
decay of z with rate μ. In order that condition (50) be
fulfilled for all functions β(ξ), γ(ξ) satisfying (47) and (48),
it is necessary and sufficient that the conditions

PAk0(1−c̄α1) + AT
k0(1−c̄α1)

P + 2μP ≤ 0,

PAk0(1+c̄α1) + AT
k0(1+c̄α1)

P + 2μP ≤ 0,

PA1(1−c̄α1) + AT
1(1−c̄α1)

P + 2μP ≤ 0,

PA1(1+c̄α1) + AT
1(1+c̄α1)

P + 2μP ≤ 0,

(55)

be satisfied, where k0 is defined by the second condition
in (47). For a given value of k0, conditions (55) are fulfilled
for a certain matrix P > 0, provided that for some
0 < β ≤ k0, the linear matrix inequalities (52) in P > 0
are feasible. By (37) and (47), the condition 0 < β ≤ k0

writes

β2 ≤ u2
0

σ2
0

or, equivalently,

dTP−1d ≤ u2
0

β2
. (56)

Together with the condition P > 0 and (33), the last
inequality means that matrix (53) is positive semi-definite.
In combination with Lemma 1, this assertion leads to the
following result. Under condition (34) and the conditions
of Theorem 1 , the solution of system (27) is exponentially
decaying with rate −μ. Moreover, condition (34) holds
along the whole trajectory of system (27). This completes
the proof of Theorem 1.

Numerical methods (Boyd et al. (1994)) for testing the
feasibility of LMI can be used. Under the conditions of
Theorem 1, the set Ω0(P ) is invariant, since the function
V (z(ξ)) is exponentially decreasing. It therefore follows
that over the trajectories of system (19) subjected to
control (23), the quantity z2

2 = tan2 ψ(ξ) is bounded by α2
2.

Hence,

cos2 ψ(ξ) ≥ 1
1 + α2

2

and the quantity cosψ(ξ) does not change sign. If the
condition

cos ψ(0) ≥ 1
(1 + α2

2)
1
2

> 0,

is satisfied at the initial time instant, then it remains valid
for all ξ ≥ 0. Hence, the condition of Assumption 3 holds.

7. EXAMPLE

Using LMI Lab Matlab the attraction domain has been
constructed for ū = 0.2, c̄ = 0.185, λ = 0.5, α1 = 0.9,
α2 = 0.9, β = 0.23.

In Fig. 4 the attraction domain is presented for μ = 0.01.
Also trajectories of the system (27) are presented for
initial conditions from the attraction domains for the
case of the target trajectory, consisting of circular arcs:
li = π/5, i = 1, ..., 10, c(ξ) = c̄ sign(2(li − ξ)). As easily
seen, the ellipsoid is invariant.

Ω

Fig. 4. Attraction domain for μ = 0.01
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