
Robust H2 filtering for continuous time

systems with linear fractional

representation ⋆

R. H. Korogui and J. C. Geromel ∗

∗ DSCE / School of Electrical and Computer Engineering, UNICAMP,
CP 6101, 13083-970, Campinas, SP, Brazil
email: korogui,geromel@dsce.fee.unicamp.br

Abstract: This paper introduces a new approach to H2 robust filtering design for continuous-
time LTI systems subject to linear fractional parameter uncertainty representation. The novelty
consists on the determination of a performance certificate, in terms of the gap between lower and
upper bounds of a minimax programming problem which defines the optimal robust equilibrium
cost. The calculations are performed through convex programming methods, applying slack
variables, known as multipliers, to handle the fractional dependence of the plant transfer function
with respect to the parameter uncertainty. The theory is illustrated by means of a practical
application involving an induction motor with uncertain leakage inductance.
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1. INTRODUCTION

Over the past years great attention has been devoted to
the problem of robust filter design for systems subject to
parameters uncertainty. The main difficulty stems from
the necessity to design an unique linear filter able to
cope with different models generated by a set of uncertain
parameters, keeping the estimation error norm below some
guaranteed level. For more details on this subject, see
Jain [1975], Martin and Mintz [1983], Xie and Soh [1994],
Geromel [1999], Souza and Trofino [1999], Li et al. [2002],
Barbosa et al. [2005], Geromel and Regis [2006] and
Scherer and Köse [2006] among others.

For systems with known parameters, the minimization of
the H2 norm yields the celebrated Kalman filter, which is
linear and has the same order of the plant, see Anderson
and Moore [1979]. To deal with parameters uncertainty,
the optimal filter is characterized by the equilibrium so-
lution of a minimax optimization problem, which can be
interpreted as a Man-Nature game (see Martin and Mintz
[1983]), and its equilibrium solution (if any) provides the
best filter for the worst parameter uncertainty. Unfortu-
nately, in the general case, the equilibrium solution is very
hard to calculate and only recently, for a particular class
of polytopic parameter uncertainty, its existence has been
proven in Geromel and Regis [2006]. Due to this fact, in the
general case, it is not yet known the order of the optimal
filter and it is not even known if it is finite; but the results
of Geromel and Regis [2006] suggest that the order of the
optimal filter is, in general, greater than the order of the
plant.

⋆ This work was supported by Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP) and by Conselho Nacional de
Pesquisa e Desenvolvimento (CNPq)

In this paper we deal with continuous-time LTI systems
in linear fractional representation with parameter uncer-
tainty of polytopic type which enables us to take into
account nonlinear dependence of the state space matrices
with respect to the parameter uncertainty, a situation
that often occurs in practice. We do not calculate the
equilibrium solution of the already mentioned Man-Nature
game. Instead, we determine lower and upper bounds to
the equilibrium H2 cost as a way to certify the optimality
gap and, by consequence, the distance from a particular
filter to the optimal robust filter. The lower bound of the
cost is minimized and provides a filter of order, prior of
eventual poles and zeros cancellations, equal to the order
of the plant times the number of vertices of the convex
polytopic domain. Based on the result of this first step, we
determine a robust filter with order equal to the order of
the filter associated to the lower bound of the equilibrium
cost. The greater order of the filter compared to the order
of the plant appears to be essential to reduce conservatism,
yielding more accurate results, when compared to the
previous robust filter design procedures. See Geromel and
Korogui [2007] for a quite complete comparison with other
methods available in the literature for the case of polytopic
systems. The present paper extends the recent results
of Geromel and Korogui [2007] to cope with parameter
uncertainty of linear fractional type, see Iwasaki and Hara
[1998].

The paper is organized as follows. In the next section
we state the H2 robust filtering problem and the model
for the uncertain system to be dealt in the sequel. In
Section 3 we proceed by the calculation of a lower bound
to the equilibrium solution of the Man-Nature game, as
well its determination by means of LMIs is discussed.
Section 4 is devoted to determine the robust filter and an
associated upper bound to the equilibrium cost and some
implications of the results are remarked. In Section 5 we
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analyze the application of the results to the estimation
of rotor flux in an induction motor with uncertain leakage
inductance. Finally, Section 6 contains the conclusions and
final remarks.

The notation used throughout is standard. Capital let-
ters denote matrices and small letters denote vectors. For
scalars, small Greek letters are used and N = {1, · · · , N}.
For real matrices or vectors (′) indicates transpose. For
square matrices Tr(X) denotes the trace function of X
being equal to the sum of its eigenvalues and, for the sake
of easing the notation of partitioned symmetric matrices,
the symbol (•) denotes generically each of its symmetric
blocks. The operator diag(X,Y ) generates a block diag-
onal matrix in whose main diagonal are the matrices X
and Y . For matrices or transfer functions Xλ denotes the
linear parameter dependence Xλ :=

∑N

i=1 λiXi, where λ
belongs to the unitary simplex

Λ =

{

λ ∈ R
N :

N
∑

i=1

λi = 1 , λi ≥ 0

}

(1)

Finally, the notation

G(ζ) = C(ζI − A)−1B + D =

[

A B
C D

]

(2)

is used for transfer functions of continuous time systems,
where the real matrices A, B, C and D of compatible
dimensions define a possible state space realization and
G(ω) denotes G(ζ) calculated at ζ = jω, where ω ∈ R. For
any real signal ξ, defined in the continuous time domain,

ξ̂ denotes its Laplace transform.

2. PROBLEM FORMULATION

Figure 1 shows the basic filtering structure design in
terms of transfer functions, where F (ω) denotes the filter
to be designed and H(ω) denotes a LTI system subject
to structured uncertainties characterized by the following
state space representation

ẋ = Ax + Eq + Bw

p = C

[

x
w

]

+ Dq

q = ∆p , ∆ ∈ Ξ
y = Cyx + Dyw
z = Czx + Dzw

(3)

where x ∈ R
n is the state, q ∈ R

m and p ∈ R
r are

internal variables of the model, w ∈ R
mw is an external

disturbance, y ∈ R
ry is the measured output, z ∈ R

rz is
the output to be estimated and Ξ is the set of all feasible
parameters uncertainty, defined by

Ξ = co{∆i : i ∈ N} (4)

where co{·} denotes the convex hull generated by N known
matrices ∆i for all i ∈ N. Hence, any element of the set Ξ
can be written in the form ∆λ for some λ ∈ Λ. All matrices
are supposed to be of compatible dimensions, yielding the
following definition of the transfer function H(ω) as being

H(λ, ω) =

[

T (λ, ω)
S(λ, ω)

]

=





A∆(λ) B∆(λ)
Cy Dy

Cz Dz



 (5)

where

[ A∆(λ) B∆(λ) ] = [ A B ] + E(I − ∆λD)−1∆λC (6)

ŵ

H(ω)

ŷ

ẑ

p̂q̂

F (ω)

ẑf
ê

−

+

∆

Fig. 1. Filtering Structure

This relationship makes clear the nonlinear dependence of
the state space representation of the plant, with respect
to λ ∈ Λ, whenever D 6= 0. It is assumed that det(I −
∆λD) 6= 0 for all λ ∈ Λ. Notice that this model is quite
general and reduces to the structured LFT description
considered in Tuan et al. [2003] from a particular choice
of matrices C, D, E and the structure of ∆ ∈ Ξ. For
this system, the filter F (ω) has to be designed in such
a way that its output is the best estimate of ẑ that can
be obtained from the data contained in ŷ. Formally, the
problem is expressed as

min
F∈F

max
λ∈Λ

J(F (ω),H(λ, ω)) (7)

where J(F (ω),H(λ, ω)) = ‖EF (λ, ω)‖2
2 is the H2 squared

norm of the transfer function from the exogenous input ŵ
to the estimation error ê, that is EF (λ, ω) = S(λ, ω) −
F (ω)T (λ, ω), and the set F is used to impose some
desired characteristics to the optimal filter as, for instance,
asymptotical stability and causability.

The equilibrium solution of (7) is very difficult to calculate
(see Rockafellar [1970]). The main reason is the highly
nonlinear dependence of the transfer function H(λ, ω) with
respect to λ ∈ Λ, which makes the max problem in (7) hard
to solve. In numerous works, problem (7) is addressed by
defining the so called guaranteed cost Ju(F (ω)) satisfying
J(F (ω),H(λ, ω)) ≤ Ju(F (ω)) for all λ ∈ Λ and a feasible
set Fu ⊂ F . The main motivation to this approach is
that when Fu is constrained to contain only the full order
filters of F , the filtering design problem minF∈Fu

Ju(F (ω))
is convex and, thus, solvable by means of any LMI solver,
see Geromel [1999], Geromel et al. [1998] and Boyd et al.
[1994].

In this paper we follow the same lines adopted in Geromel
and Korogui [2007] and we extend those results to cope
with the linear fractional representation of the plant.
First we determine a lower bound to (7), by solving a
problem that can be written in terms of LMIs. The optimal
optimistic filter obtained in this way has order equal to
the order of the plant times the number of vertices of the
unitary simplex Λ (see Geromel and Regis [2006], Geromel
and Korogui [2007]), putting aside eventual poles and
zeros cancellations. Afterwards, the filter associated to the
lower bound defines a parametrization which enables us to
determine a robust filter with a certification of the distance
to the optimal robust filter provided by the equilibrium
solution of problem (7).
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3. OPTIMISTIC PERFORMANCE

In this section, our purpose is to calculate a lower bound
to the equilibrium cost (7), since in the general case of
uncertain polytopic systems its global solution is virtually
impossible to be exactly calculated. A lower bound of (7)
is determined from

min
F∈F

max
λ∈Λ

J(F (ω),H(λ, ω)) ≥

≥ min
F∈F

max
i∈N

J(F (ω),H(ei, ω))

≥ min
F∈F

max
λ∈Λ

∥

∥

∥

∥

∥

N
∑

i=1

λi (S(ei, ω) − F (ω)T (ei, ω))

∥

∥

∥

∥

∥

2

2

(8)

where ei is the i-th row of the identity matrix and it defines
one of the N vertices of the parameter polytope Λ. The
first inequality follows from the fact that the set of all
vertices of Λ is a subset of Λ and the last one comes from
the convexity of the functional ‖·‖2

2 and, consequently, the
indicated maximum is attained at one vertex of the convex
polytope Λ.

Using the results of Geromel and Korogui [2007], the
minimax problem on the right hand side of (8) can be
exactly solved. Thus, a lower bound to the equilibrium
solution of (7) can be stated as

JL = min
F∈F

max
λ∈Λ

‖EF (λ, ω)‖
2
2 (9)

where the error transfer function EF (λ, ω) = Sλ(ω) −
F (ω)Tλ(ω) depends linearly on λ ∈ Λ. Considering the
filter state space realization

FL(ω) =

[

AL BL

CL DL

]

(10)

and defining the matrices of compatible dimensions AE =
diag(A∆(e1), · · · , A∆(eN )), CY = [Cy, · · · , Cy], CZ =
[Cz, · · · , Cz] and

B(λ) =







λ1B∆(e1)
...

λNB∆(eN )






(11)

the error transfer function EF (λ, ω) produced by the filter
(10) is given by

EF (λ, ω) =





AE 0 B(λ)
BLCY AL BLDy

CZ − DLCY −CL Dz − DLDy



 (12)

where it is noticed that only the input matrix B(λ) is
affected by the parameter uncertainty λ ∈ Λ. A point to
be emphasized is that matrix AE is of dimension nN×nN ,
in accordance to the fact that the transfer functions Sλ(ω)
and Tλ(ω) are of order nN (prior to possible poles and
zeros cancellations). Then the following theorem gives the
solution of problem (9).

Theorem 1. The filtering design problem (9) is equivalent
to the convex programming problem

JL = inf
σ,Wi,X,L,K

{σ : Tr(Wi) < σ , i ∈ N} (13)

where Wi and X are symmetric matrices and K, L are
matrices of compatible dimensions satisfying the linear
equality constraint Dz − KDy = 0,

[

Wi •
XB(ei) + LDy X

]

> 0 (14)

for all i ∈ N and
[

A′
EX + XAE + LCY + C ′

Y L′ •
CZ − KCY −I

]

< 0 (15)

Moreover, the optimal filter is given by

FL(ω) =

[

AE + X−1LCY −X−1L
CZ − KCY K

]

(16)

Proof. The proof of this theorem, based on the result of
Geromel and Regis [2006], can be found in Geromel and
Korogui [2007]. For this reason it is omitted here. 2

Although the obtained filter in (16) has order nN , it has
been verified in Geromel and Korogui [2007], by means
of several examples, that due to cancelations of poles and
zeros its order is, in general, sensibly smaller than nN .
However, the order of FL(ω) remains greater than n, a
fact that decisively contributes to improve performance.

4. ROBUST PERFORMANCE

In the previous section we have determined a filter FL(ω)
associated to the minimum lower bound of the filter design
problem (7). However, FL(ω) is not a robust filter, since its
performance level JL can not be guaranteed for all λ ∈ Λ
or, in other words, for all ∆ ∈ Ξ. Our goal in this section
is to design a robust filter FH(ω) ∈ FH ⊂ F associated to
a robust performance level JH guaranteed for all λ ∈ Λ.

Adopting the same reasoning presented in Geromel and
Korogui [2007], we propose to choose the set FH as the
set of all LTI causal filters of the form

FH(ω) =

[

AL BL

CH DH

]

(17)

where AL and BL are the matrices from the already
determined state space realization of the optimistic filter
FL(ω), in (16), and CH and DH , of compatible dimensions,
are to be determined. The rationale behind this approach
is that FL(ω) ∈ FH for an appropriate choice of matrices
CH and DH . So, we can define an upper bound to problem
(7) as

min
F∈F

max
λ∈Λ

‖EF (λ, ω)‖2
2 ≤ min

F∈FH

max
λ∈Λ

‖EF (λ, ω)‖2
2 (18)

where EF (λ, ω) = S(λ, ω) − F (λ, ω)T (λ, ω) is the estima-
tion error transfer function produced by a filter F (ω) ∈
FH . The main difficulty we have to face in order to
solve the problem stated in the right hand side of (18)
stems from the nonlinear dependence of transfer functions
S(λ, ω) and T (λ, ω) with respect to the uncertain param-
eter λ ∈ Λ. Hence, from the state space realization of any
feasible filter FH(ω) ∈ FH and taking into account (3),
the state space realization of the estimation error is

˙̃x = Ax̃ + Eq + Bw

p = C

[

x̃
w

]

+ Dq

q = ∆p , ∆ ∈ Ξ
e = Cex̃ + Dew

(19)

where x̃′ = [x′
F x′] is the state vector composed by the

state vectors of the filter xF and the plant x. The indicated
matrices are given by C = [ 0 C ], D = D,

A =

[

AL BLCy

0 A

]

, E =

[

0
E

]

, B =

[

BLDy

B

]

(20)
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and

C′
e =

[

−C ′
H

C ′
z − C ′

yD′
H

]

, De = Dz − DHDy (21)

From the above relations the transfer function from the
external disturbance ŵ to the estimation error ê can be
readily calculated as being

EF (λ, ω) =

[

A∆(λ) B∆(λ)
Ce De

]

(22)

where

[A∆(λ) B∆(λ) ] = [A B ] + E(I − ∆λD)−1∆λC (23)

Taking into account this state space representation for
the estimation error EF (λ, ω), we can state the following
theorem.

Theorem 2. Assume the filter FH(ω) given in (17) is such
that De = 0 and there exist a symmetric multiplier Π
and a positive definite matrices P and W of appropriate
dimensions satisfying the LMIs

[

I ∆′
λ

]

Π

[

I
∆λ

]

> 0 , ∀λ ∈ Λ (24)





A′P + PA • •
B′P −I •
E ′P 0 0



 +

[

C′ 0
D′ I

]

Π

[

C D
0 I

]

< 0 (25)

[

W •
C′

e P

]

> 0 (26)

The H2 squared norm of the estimation error satisfies
‖EF (λ, ω)‖2

2 < Tr (W ) for all λ ∈ Λ.

Proof. Consider λ ∈ Λ arbitrary but fixed. Multiplying
(24) by p to the right and by its transpose to the left,
taking into account that q = ∆λp we obtain

[

p
q

]′

Π

[

p
q

]

> 0 (27)

On the other hand, from (19) it is seen that

[

p
q

]

=

[

C D
0 I

]





x̃
w
q



 (28)

which, together with (27) and (25) implies that
[

x̃
w
q

]′




A′P + PA • •
B′P −I •
E ′P 0 0





[

x̃
w
q

]

< 0 (29)

This inequality can be further factorized using again the
model (19) since the components of the vector [x̃′ w′ q′]
are not indepedent. Indeed, from the relation





x̃
w
q



 =

[

I

(I − ∆λD)−1∆λC

] [

x̃
w

]

(30)

we conclude that

[

A′P + PA •
B′P −I

]

+

[

PE
0

]

(I − ∆λD)−1∆λC+

+C′∆′
λ(I −D′∆′

λ)−1

[

PE
0

]′

< 0 (31)

which using (23) can be written in the final form
[

A∆(λ)′P + PA∆(λ) •
B∆(λ)′P −I

]

< 0 (32)

As a consequence, using the fact that P > 0, De = 0
and the state space representation of the estimation error
transfer function (22), we have

P−1 >

∫ ∞

0

eA∆(λ)tB∆(λ)B∆(λ)′eA∆(λ)′tdt (33)

implying that

‖EF (λ, ω)‖2
2 < Tr

(

CeP
−1C′

e

)

< Tr (W ) (34)

where the last inequality follows from the Schur Comple-
ment of inequality (26). This concludes the proof of the
proposed theorem since λ ∈ Λ is arbitrary. 2

At this point some remarks are appropriate. First the
constraint (24) represents a set of infinity linear matrix
inequalities, one for each λ ∈ Λ. In the sequel it will
be shown how to convert it into a set of N LMIs, each
one corresponding to a vertex of the unitary simplex Λ.
Second, the result of this theorem provides a slight gen-
eralization of the previous results on multiplier theory by
Iwasaki and Hara [1998] since non-independent parameter
uncertainties acting on both matrices A and B can be
handled with no additional difficulty. The third one, more
important, is a consequence of the particular structure of
the LMIs (24), (25) and (26) that enable us to search for
a parameter dependent solution. Actually, considering the
set of multipliers of the form

Πi =

[

Ri −G
−G′ −Q

]

, i ∈ N (35)

where the indicated matrices are of compatible dimensions
and Q > 0, it is simply verified that the LMIs

[

I ∆′
i

]

Πi

[

I
∆i

]

> 0, i ∈ N (36)

assure that (24) holds. The next theorem takes these
aspects under consideration in order to give a new version
of Theorem 2 where the matrix variables are parameter
dependent, contributing to reduce conservatism on the
evaluation of the robust filter guaranteed performance.

Theorem 3. Assume the filter FH(ω) given in (17) is such
that De = 0 and there exist symmetric multipliers Πi of
the form (35) and positive definite matrices Pi and Wi of
appropriate dimensions satisfying the LMIs

[

I ∆′
i

]

Πi

[

I
∆i

]

> 0 (37)





A′Pi + PiA • •
B′Pi −I •
E ′Pi 0 0



 +

[

C′ 0
D′ I

]

Πi

[

C D
0 I

]

< 0 (38)

[

Wi •
C′

e Pi

]

> 0 (39)

for all i ∈ N. The H2 squared norm of the estimation error

satisfies ‖EF (λ, ω)‖2
2 <

∑N

i=1 λiTr (Wi) for all λ ∈ Λ.

Proof. The proof follows from the multiplication of in-
equalities (37), (38) and (39) by λi ≥ 0 and summing up
the results for all i = 1, · · · , N . Doing this, it is verified
that the conditions of Theorem 2 are fulfilled for the
parameter dependent matrix variables Πλ, Pλ and Wλ.
Hence, we conclude that the inequality
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‖EF (λ, ω)‖2
2 < Tr

(

CeP
−1
λ Ce

)

< Tr (Wλ)

<

N
∑

i=1

λiTr (Wi) (40)

holds for all λ ∈ Λ from which the claim follows. 2

The result of Theorem 3 is important in the sense that it
provides a way to determine a filter of the form (17) asso-
ciated to the upper bound JH of the optimal equilibrium
cost (7). Since the constraint (39) depends linearly on the
filter matrices CH and DH they can be included, with no
additional difficulty, in the set of variables of the robust
filter design problem

JH = inf
σ,Wi,Pi,Πi,CH ,DH

{σ : Tr(Wi) < σ , i ∈ N} (41)

where the matrix variables Wi, Pi, Πi for all i ∈ N and
CH , DH satisfy the LMIs (37), (38) and (39).

In the next section the theory presented so far is applied
to the design of a robust filter for an induction motor with
uncertain leakage inductance.

5. PRACTICAL APPLICATION

Following Krishnan [2001] and Duval et al. [2006] an
induction motor is governed by the following nonlinear
differential equation

η̇ = f(η, υ) (42)

where the state vector η = [ids iqs φdr φqr ν]′ contains
stator currents, the rotor flux linkages and the mechanical
rotor speed, respectively. The input is defined by the vector
υ = [υds υqs Tl]

′ containing the stator voltages and load
torque. For a constant input υ0 the equilibrium point η0

is determined from f(η0, υ0) = 0 yielding the linearized
model

ẋ = A∆x + B∆w (43)

where x = η − η0, w = υ − υ0 and matrices A∆, B∆

depend on the operation point (η0, υ0) and on the leakage
inductance Lf , assumed to be an uncertain parameter with
nominal value Lf0 = 3.7 mH and variation δLf = ±15%
as indicated in Duval et al. [2006].

Hence, the linearized model of the induction motor can be
recast as (3) where the state space nominal matrices are

A =











−589.19 377.00 2749.30 96797.30 −2.86
−377.00 −589.19 −96797.30 2749.30 −84.65

1.18 0 −10.17 18.85 0.01
0 1.18 −18.85 −10.17 0.31

0.21 6.26 98.25 −57.38 −0.70











and

B =











270.27 0 0 0 0 0
0 270.27 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −20 0 0 0











Notice that the last three columns of B correspond to the
measurement noise, included in the external perturbation
vector w. On the other hand, making explicit the depen-
dence of (43) with respect to the leakage inductance Lf ,
defining ∆ = diag (δLf , δLf ), the uncertainty model state
space are given by matrices

Table 1. H2 performance - Induction motor

Order JH maxλ∈Λ J(FH(ω), H(λ, ω)) JL

6 0.2763 0.2661 0.2660
5 0.2448 0.2448 0.2448

D =

[

−1 0
0 −1

]

, E =











270.27 0
0 270.27
0 0
0 0
0 0











and

C =

[

2.18 0 −10.17 −358.15 0.01 −1 0 0 0 0 0
0 2.18 358.15 −10.17 0.31 0 −1 0 0 0 0

]

where D 6= 0 is necessary for the construction of the
nonlinear parameter dependence model. Assuming that
the stator currents ids and iqs and the mechanical rotor
speed ν are measured variables for all t ≥ 0 and that the
measurement device is corrupted by some external noise
with unitary intensity, we set

Cy =

[

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

]

, Dy =

[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]

Finally, our goal is to estimate the currents L−1
m φdr and

L−1
m φqr where Lm = 0.116 H is the magnetizing induc-

tance supposed to be constant. This yields to the output
matrices

Cz =

[

0 0 8.62 0 0
0 0 0 8.62 0

]

, Dz = 0

Using this data and applying Theorem 1 we obtained an
optimistic filter FL(ω) of order 10 (twice the order of the
plant) and a lower bound to the equilibrium solution of
problem (7) given in the first row of Table 1. Applying
the Matlab function minreal with tolerance tol = 10−5,
it has been verified that 4 pairs of poles and zeros could
be cancelled with no impact on the filter performance.
From this operation a 6-th order minimal realization
filter has been obtained. To design a robust filter FH(ω)
parameterized by the minimal realization of FL(ω) just
calculated, we have solved problem (41). The upper bound
to the equilibrium solution of problem (7) is also given in
the first row of Table 1. For completeness the second row of
Table 1 gives the nominal filter of 5-th order corresponding
to the nominal plant with δLf = 0. It is interesting
to notice that the optimality gap of the robust filter is
very small, less that 4% of the lower bound JL. Hence,
in practice, we can say that the robust filter we have
just proposed is almost optimal as far as the filter design
problem (7) is under consideration.

In this particular case, we have verified that the filter
design problems (13) and (41) were ill-conditioned. This
is due to the fact that the eigenvalues of the nominal
matrix A are spread in the complex plane. Indeed, they
present time constants varying from 2 [msec] to 500 [msec]
approximately. Particular attention must be devoted to
the numerical solution of the above mentioned problems
mainly because, in the present case, they involve a large
number of variables.

Figure 2 shows the time simulation of the actual and the
estimate of currents L−1

m φdr and L−1
m φqr for δLf = −15%
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Fig. 2. Time simulation

corresponding to the worst uncertainty. In both frames the
solid line shows the actual values of the currents and, in
dashed lines, the estimate of the currents provided by the
6-th order robust filter FH(ω) previously determined and
considering an impulsive perturbation in the load torque.
It is notice that the robust filter is effective since after
0.2 [sec] approximately the estimation error is virtually
zero on both variables.

6. CONCLUSION

In this paper a new approach to H2 robust filter de-
sign for continuous-time LTI systems subject to linear
fractional parameter uncertainty representation has been
proposed. It is based on the determination of lower and
upper bounds of the equilibrium solution of a minimax
problem. A robust filter is constructed from the optimal
solution of the problems defined by both bounds. The most
interesting characteristic of the design method proposed is
that these problems are expressed in terms of linear matrix
inequalities without the limitation that the order of the
filter must be equal the order of the plant. Moreover, it
was possible to certify the performance of the robust filter
from the estimation of the optimality gap. A practical
application involving an induction motor with uncertain
leakage inductance has been considered for illustration. A
6-th order robust filter has been designed for a 5-th order
plant. The optimality gap was verified to be sufficient small
in such a way that the robust filter can be classified as
near optimal within a precision of less than 4%. The time
simulation of the robust filter and the plant have shown the
quality of the estimation strategy under parameter uncer-
tainty. Some points deserve more attention in the future.
First, the determination of the robustness properties of
the filter FL(ω) associated to the lower bound since this
could avoid the computational effort needed to determine
the filter associated to the minimum upper bound. Second,
the generalization of the present results to cope with H∞

norm.
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