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Abstract: In this paper, parameter identification of two-dimensional (2-D) linear differential systems via
two-dimensional modulating functions is proposed. In this method, a partial differential equation on the
finite time intervals converts into an algebraic equation linear in parameters. Then the parameters of the
system can be estimated using the least squares algorithm. The underlying computations utilize a 2-D fast
Fourier transform algorithm on polynomials of the data without the need for estimating unknown initial
or/and boundary conditions at the beginning of each finite time interval. Numerical simulations are

presented to confirm the theoretical results.

1. INTRODUCTION

The identification of continuous-time systems is a problem of
considerable importance that has applications in various
areas, such as astrophysics, economics, control, and signal
processing (Garnier et al., 2004, Larsson et al., 2002, 2004,
2006). The most obvious reason for working with
continuous-time models is that most physical systems are
inherently continuous in time. Therefore, the parameters in
the models often have a physical interpretation (Larsson et
al., 2004).

There exist a number of alternative approaches for
identification of continuous-time dynamic systems. Some
methods avoid differentiation by identifying a discrete model
and converting to continuous-time models using the bilinear
transformation (Garnier ef al., 2004). In these cases, sampling
times play an important role. Direct continuous-time
identification can be done either in time domain and
frequency domain (Garnier et al., 2004).

Two-dimensional system identification is a difficult task.
During the last three decades, although several new methods
and algorithms have been proposed for one dimensional (1-
D) system identification (Garnier ef al., 2004, Larsson et al.,
2002, 2004, 2006, Unbenhauen et al., 1988, 1998), but 2-D
identification has not received so much attention.

In this paper, the system identification method proposed by
Pearson et al. (Pearson et al., 1985) is evaluated and extended
to 2-D continuous-time systems that governed by partial
differential equations (PDE).

The main motivation for the development of these techniques
and our study is that a large number of two-dimensional
control system synthesis tasks are the most natural and the
casiest to perform by using continuous-time models;
therefore, it is advantageous to develop identification
techniques that directly give the continuous-time

representation.
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In the proposed method, trigonometric functions are used as
modulating functions. In this case, two-dimensional (2-D)
fast Fourier transform in evaluating numerical integrations
can be used. Thus, this method is provided a fast algorithm
for the identification of two-dimensional continuous-time
systems.

This correspondence is organized as follows: The problem
formulation, basic  algorithm, and computational
considerations are presented in section 2. Section 3 provides
numerical simulations in order to illustrate the effectiveness
of the proposed method. Finally, section 4 contains
conclusions.

2. TWO-DIMENSIONAL LINEAR DIFFERENTIAL
SYSTEM IDENTIFICATION

2.1 Problem Formulation

Consider a 2-D linear continuous-time system defined by
partial differential equations as follows:

n o n3

i i
Z Zanl—il,nz—iz p1]p22 y(tl’t2)=

i =0i5 =0 (1)
n|  nhH

Z zbnj iy —iy P PF ultity) 5 agg =1

i1 =0ip =0
where (y(#,tp),u(ty,t,)) is an input-output pair of two-
dimensional system. (ny,n,) and (n{,n,) are order of
system; n; >n{,ny, n, 2n,n5. pj,p, are denoted the

differential operators o and 9 , respectively.
on 0ty

The objective is to estimate the unknown parameter
coefficient (al-l’iz,b 1ada) using finite time-series of input
and output data ranging from # =0 to =7} and #, =0 to
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t2 = T2 .
In this paper, the order of the linear differential equation is

assumed to be known; however, in general the model order is
not known and must be estimated.

2.2 Modulating Functions

#(t1,t) is a 2-D modulating function of order (n,n,)
[0.7,]x[0,75] if it
sufficiently smooth and possesses the property that

relative to a fixed time interval

¢(i1’i2)(f1,f2)‘z2 =0

¢(i1’i2)(f1,f2)‘z] =0

il =0,1,...,I’l] , i2 =0,l,...,n2 5 (il,iz)i(nl,nz)

¢(i1’i2)(t1 b )‘tz -, =0

82 (1,1 )‘zl -1, =0 @

ol +i2)¢
on' ot
modulation of both sides of (1) with ¢(#,,), integration

both sides of the assumed system model equation (with
unknown coefficients) over the time windows [0,7;] and

where ¢(i1’i2)(t1,tz)= The multiplication or

[0,75], and utilizing integration-by-parts, while noting (2),
leads to the relation,

n. ny o LT o

z Z(_l)(ll+l2)anl—i1,n2—i2 J. I¢(ll 2)(41,0) (81,15 dty dty =

i1=0i=0 00

n| nh o L1 o (3)
D 2 by [ [00200) wt)dn dry

i1=0iy=0 00

With the conditions given in (2), the differential equation (1)
has been transformed into an integral equation (3). The roles
of y and ¢ within the integrals are interchanged. It is noted

that the prime reasons for using such modulating functions
are to avoid differentiating the data and to avoid estimating
unknown initial conditions for time limited data; in the other
words, modulating function methods allow for arbitrary
initial conditions (Pearson ef al., 1985, Co et al., 1990).

The simplest approach in building two-dimensional
modulating functions is Kronecker product of two
modulating functions in 1-D, one for the # direction, one for

the ¢, direction. In mathematics, the Kronecker product,

denoted by ®, is an operation on two matrices of arbitrary
size resulting in a block matrix. So if ¢](i‘)(t]) and ¢§i2)(t2)
are one-dimensional modulating functions for # and ¢,
directions, then ¢'12)(¢,1,) = (4 (1) ® (852 (1))7 s a

two-dimensional modulating function.

The one-dimensional modulating functions can be chosen to
satisfy the following properties (Pearson et al., 1985, Co et

al., 1990):
#V0) =gV (1)=0
#(0) =g (1) =0

(42)
(4b)

il =0,1,...,n1

iz 20,1,...,112

There are many functions to satisfy these properties. In this
work, trigonometric functions are used as modulating
functions, because these functions are sufficiently smooth
and the use of fast Fourier transform in the evaluating
numerical integrations can be allowed (Pearson ef al., 1985).

2.3 Parameter Identification of Two-Dimensional Linear
Differential Systems via Trigonometric Functions

Consider the set of 1-D commensurable sinusoids as follows

f(&) ={1, cos(=myw,t), sin(—=mywyt), cos(—myw,t), (5)
sin(=mywyt),...,cos(—ny w,t), sin(—my, wyt)}

2r o
where w =7 and (my, my,...,my,) are selected positive

integers satisfying m; <m, <...<my, (Pearson et al., 1985).
Within the (2M +1) -dimensional function space spanned by
the set in (5), there exist a (2M +1-—n)-dimensional

subspace of modulating functions of order n represented by
the vector function ¢(¢) as follows (Pearson ef al., 1985).

(1) =C f(1) (6)

The matrix C in the above equation has rank (2M +1-n)

and it is determined by the solution to Vandermonde type
matrix equations (Pearson et al., 1985). Now, consider the
f1(#)) and f,(¢,) as follows:

J1(#) =[1, cos(=myw,ty), sin(=mywyty), ...,

cos(—mp w,ty), sSin(—mpy; wot; )]T (7a)
2
m <mp <..<mMy , Wo=——
h
f2(t) =[1, cos(—myw,ty), sin(—miwyty), ...,
cos(=miywhiy), sin(—mywit)l” (7b)
’ ! ! ’ 27[
my<mp <..<myr , Wo=—
)
The one-dimensional modulating functions represented by
H () =C fi(n) (8a)
P (ty)=C, fr(12) (8b)
Then, the 2-D modulating function is given by
$(t1.2) = (1 (1) B(gy (1)) o)

=C, i) 17 (1) C
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It can be seen from (7) and (9) that the time derivatives of
@ (t;) , $(t,) have the representation as follow (Pearson et

al., 1985):
W @)= Df fa. q=012.. (1

D¢ 0) = D% fre), =002 (P
where D, D, are operational matrixes defined by the block
diagonal structure (Pearson et al., 1985):

T o1l 02 0 M (11a)
U B Y o ) i I VA

b - diaelo] O] 02 0 M (11b)
2 = ~Wpalag 11 olfl=2 0l = 0

Then

(=)@+2) g (1 1y = ¢ DI i) (1) (D2 cf (12)

Using the above equation, the equation (3) can be rewritten
as

n. ny . nn .

2D nims O D [ @) A @) vty dty ey (D) CF =

i]:()iz:() 00

n ) LT, .

ZZ byi—iy siy—i C1 D} (jI.ﬁ(fl)sz(fz) u(ty,ty)dty dty) (D?)' €]
00

71=0iy=0

(13)
(U,Y) are defined as
T1T2 (14a)
Y= [ [ A5 @)r0)dn dry
00
LT, (14b)
U= [ [ 1004 @)uttr)dn dry
00
Then
n np
' iy \T T
Z Z iy my—iy LD Y (D2 CF =
i1=0i, =0 (15)
n| nhH ) )
Z Z byt —iy .y —i, C1 D' U (D3 e
i1 =0ip =0

The above equation can be converted into vector format as
follows:

n o n
i ir\NT ~T
z z Any—iy,ny —in vec(C Dlll Y(D?) G)=
i =0iy =0
n{ nh (16)
b pivu(p2\ T
Z Z n—iy mhy —ip, VeC(C1 DU (D5 )" €3 )
i =0ip =0

where vec is an operator that converts a matrix into a
vector. The above equation can be rewritten as linear
regression equation in the standard form

T O=vec(C; D" Y (D) ¢F) 17

where, the parameter vector 6 and the partitioned matrix
I" defined by

roas)
(19)

0= [—610,1 el aO,nz el dnl 0 dnl 1y b0,0 .. .bni,n'z
T =[vece(C;D" Y (D2 M 1. vee(ciD" v CT)
vec(CY (DY) CT) . vee(C Y CF)

v DMUMD CT) ... vee(CLUC))

Now consider the linear regression equation (17) and assume
the matrix I' has full column rank; then the one-shot least
squares estimation is given by (Ljung 1999)

H=1(0) 1T () vee(C, DIy (D22)T ¢T) (20)

Hence, it is assumed that a sufficient number of one-
dimensional modulating functions have been chosen so that

QM +1-n))2M' +1-ny) > (21)
(n +D)(ny +1) + (n] + )b +1) -1

2.4 Computational Considerations

In this method, the choice of (7},7,,M,M') is very

important. The frequencies retained in the pair (U, Y) should
cover the system bandwidth while excluding higher
frequency noise, it is clear that the highest frequencies in the
modulating functions, (Mwgy, M wy), should be comparable

to the system bandwidth (W,,W.) (Pearson ef al., 1985). If
(W,.,W/) is approximately known, a quantitative statement of
this is

Mwy=125W, , M'wy=125W,

In the case of one-shot estimation, the equation (21)
implies another limitation. The value of (77,7;) should be

(22)

chosen sufficiently large so as to assure reasonable
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resolution in distinguishing system modes of the 2-D
transfer function (Pearson et al., 1985).

The most important computational aspect of this method is
the direct frequency domain interpretation afforded by the
vectors (U, Y) and the efficiency with which these vectors
can be computed by a FFT algorithm. In order to clarify
this point, let z(#,t,) denote a 2-D data function on

[0,771x[0,7,] and assume uniform sampling in generation
the discrete samples as follows:

T T
; h1=N—1 h2=N—2
1 2

i =0,1,..,N, i =0,1,...,N,

Zi,ip =z(ijhy,i3hy) (23)

Then equation (7) and (14) imply determination the
following integrals (complex form)

L)
7= I I Z(ty,ty ) e 0N QTN gyt (24a)
00
LT, (24b)
Zy = IJ.z(tl,tz)e_jmwot‘ &M gy iy,
00
where m=0,1,...M,m' =0]1,...,M". The above

numerical integrations can be evaluated by using well
known digital approximation. For example, the two-
dimensional Simpson's rule yields (Bregains et al., 2004)

LT
J‘J‘ Z(f] ,tz)ejmuotl ejm o2 dtl dtz
00
Np-1
=L 4 w2
=35h h[z0,0 +20,3, +ZN,0 2NN, F 20, W
i=13,...
Ny-2 ) Np-l . Np—2 .
m'iy m'iy m'iy
+2 Z ZO,i2 W2 +4 z ZNl’iZ W2 +2 Z ZNl’iZ W2
ih=2,4,... ir=13,... ir=2.4,...
N1 A N2 ‘ Nl ‘
miy miy miy
+4 ZZWWI +2 ZZWWI +4 Zzil,Nzwl
i=13,... 01=2,4,... i=13,...
N2 A Nyl Nl o
miy miy pr,m'iy
+2 szlszWl +16 Z szlile ",
i1=2,4,... ih=1,3,...q=13,...
N2 Nl No-l N2
mi) m,iz miy m'iz
+8 Z Zilaizl/l/] W2 +8 Z ZZI‘]J‘ZVVI W2
ih=2,4,...iy=13,... iy=13,...i{=2,4,...
N2 N2
miy m,iz 4 4
w4 T R Uiy + o)
in=2,4,...i=2,4,...
(25)
27 .21

where Wy=e M W, =e¢ Y2 and o(h'),0(h3) are
the order of the error as functions of the sampling interval
h and h, . Simpson's rule is a Newton-Cotes formula for

approximating the integral of a function using quadratic
polynomials (Bregains et al., 2004).

Assuming N; and N, is power of 2, the usual 2-D FFT

algorithm can be used to evaluate the DFT of the sum on
the RHS of the above yielding the Fourier series
coefficients for m =0,1,...,N; -1 and m'=0,1,...,N, -1,

Le.,

1
Zl =§h1 l’lz FFT[(ZO’O +ZO,N2 +ZN1,0 +ZN1,N2 ),
420’],220’2,...,420’]\/2_],
4ZN1,1’22N1,2"“’4ZN1,N2—1’
421’0,222’0,...,421\[1_1’0, (26)
4Zl,N27222,N2""’4ZN1—1,N2’

1621,8213,...,162 v, 1.
822,1 ’422,2’”-:822’]\]2_],...,

16ZN1—1,1’82N]—1,2"'"16ZN1—1,N2—1 ]

The computational saving of this algorithm for large N,

or/and N, are well known.

3. NUMERICAL SIMULATIONS

In this section, a number of simulated examples are presented
to provide verification of the theoretical results. In these
simulations, the unknown parameters of two-dimensional
linear continuous-time systems by using trigonometric
functions as modulating functions are estimated. Analysis
and simulation results demonstrate the applicability of the
proposed method in parameter identification of two-
dimensional linear differential systems.

The normalized error criterion for the estimated parameters is
defined by

0| =

K 2

1 & -0
AG|=| = | 2=
] KZ;‘ o

1

100 @7

where 0; is the actual parameter value and X is the number
of unknown parameters.

In these examples, the data

Ny =100,N, =100.

length is Ny xN,;

Example 1: Consider the 2-D linear continuous-time system
that governed by transfer function as

by
S$152 +a1 81 +a2 ) +a3

Hi(sy,57) =
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where ap =3,£12 =2,a3 =6,b0 =6.

The initial or/and boundary conditions are arbitrary and input
signal is a two-dimensional white Gaussian noise. The
objective of continuous-time system identification is to
estimate the parameter coefficients @ = {a,a,,a3;by} using

finite time-series of input data u(#,t,) and output data
y(t,ty) ranging from # =0 to =27 and # =0 to
12 =2r.

In these simulations, a minimum error is reached around
M =2 and M'=3. Note that if the system bandwidth
W,.,w;) is approximately known, the values of M and M’

can be determined by equation (22). In the case of one-shot
estimation, the equation (21) implies another limitation on M
and M'.

Example 2: Consider as a second example a two-
dimensional system with order n;=2,n,=2 and

n; =0, n5 =0 defined as follows:

H,(s,s,) =
b,

2.2 2 2 3 2
5785 + a8, 8, 40,8, +a;8,85 +a,8,S, + a5, + agSy +a;8, +ag

where
a :2,a2 :4,a3 :2’514 =4,a5 =8,a6 =4,a7 =8,a8 =16,
and by =16.

In this example, the initial or/and boundary conditions are
arbitrary and input signal is a two-dimensional white
Gaussian noise.

Results of the identification using sine-cosine functions as
modulating functions are summarized in figures 1-4 and
Tables 1-2. Since the system output and the model output are
not distinguishable in figures 1- 4, the error signals are shown
in figures 5 and 6.

Analysis and simulation results demonstrate the applicability
of Fourier based modulation in parameter identification of
two-dimensional linear continuous-time systems.

it 1)

15 [z8c] 0o

1y [sec]

Fig. 1. Actual output in Example 1

o
t, [sec] a

Fig. 2. Estimated output (Example 1)

ty [sec]

Fig. 3. Actual output in Example 2

t, [sec] 0o

Fig. 4. Estimated output (Example 2)

e(t,l ,12)

t, [sec] 0o

Fig. 5. The error signal of Fig. 2.
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o071

0.005

e(t,l ‘12)

-0.005

-00
8

o
t, [sec] 0

Fig. 6. The error signal of Fig. 4.

Table 1. Estimated parameters using
trigonometric functions as modulating functions
(Example 1)

Unknown parameters Estimated parameters
6 é
a 2.9887
a 1.9840
as 5.9316
bo 5.9268
”AQH %0.9449

Table 2. Estimated parameters using
trigonometric functions as modulating functions

(Example 2)

Unknown parameters Estimated parameters
6; %
a 2.0155
a, 4.0048
as 2.0040
ay 4.0391
as 8.0257
ag 4.0025
az 8.0669
ag 16.0294
by 16.0416

”Agn %0.5290

4. CONCLUSIONS

In this paper, parameter identification of two-dimensional
linear differential systems using Fourier based modulation
function is proposed. In this method, a linear differential
equation on the finite time intervals converts into an algebraic
equation in the parameters. This equation can be solved using
the least squares algorithm. Analysis and simulation results
demonstrate the applicability of the proposed method in
parameter identification of two-dimensional (2-D) linear
continuous-time systems.
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