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25, 1000 Ljubljana, Slovenia (e-mail: saso.blazic@fe.uni-lj.si).

Abstract: The hyperstability theory of adaptive control systems is extended to encompass
plants with unmodelled dynamics and disturbances. The analysis not only shows that leakage
in the adaptive law is a natural way to avoid robustness problems (which is a known result in
adaptive control theory), but also provides a new adaptive law that is a sort of signal-dependent
σ-modification. The proposed adaptive law is less conservative than the σ-modification, but
still ensures the global stability of the system, which is formally proven in the paper. Since it is
shown that the design parameter σ′ of the proposed adaptive law is directly related to the H∞

norm of the parasitic dynamics, the criteria for system stability are derived. Based on these,
some guidelines for choosing the leakage parameter σ′ and the bandwidth of the reference model
are presented.
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1. INTRODUCTION

At the end of the 1970s much effort was put into prov-
ing the stability of adaptive algorithms. Several stability
proofs were derived showing the stability of the adaptive
system based on certain assumptions (knowledge of the
plant order, no disturbances, noises etc.). Rohrs et al.
[1985] showed that a relatively slight violation of these
assumptions can result in system instability. In the 1980s
there was a lot of work on robust adaptive control in
order to try to minimise the negative influence of parasitics
and disturbances in the system. One of the best known
approaches to robust adaptive control is the use of leak-
age in the adaptive law. Well-known types of leakage are
σ-modification, e1-modification, switching σ-modification,
etc. The general idea of the leakage is developed further by
Wu et al. [1993], where the leakage parameter switches to
some signal-dependent term when the estimates are far
from the a-priori guess, and by Nascimento and Sayed
[1999], where a so-called “circular-leaky” algorithm is in-
troduced. Another possibility for preventing parameter
bias is the use of directional leakage by Hovd and Bitmead
[2006] where the leakage is applied only in the directions
in parameter space in which the exciting signal is not
informative.

To prove the stability of the classical adaptive systems
several mathematical tools were used such as Lyapunov
functions and Popov hyperstability theory. In this paper
the latter will be extended to the case where there are
parasitics and disturbances present in the system. The
analysis will show the very well-known fact that the
inclusion of leakage into the adaptive law is a natural
way to stabilise the system in the presence of parasitics.
This analysis will also lead to a new adaptive law with
leakage, which is similar to the σ-modification but less
conservative and more robust to different amplitudes of
the signals in the system. A very important property of

the proposed adaptive law is that the leakage parameter
is not dependent on any signals present in the system.

One of the main drawbacks of adaptive control algorithms
is the lack of guidelines for choosing the design parameters
in such systems. Some issues on tuning the σ parameter
have been discussed by Rey et al. [1989], especially those
that influence the onset of bursting. Another route was
taken by Kamenetsky and Widrow [2004]; they proposed
an algorithm for adjusting the σ parameter on line, based
on the a-posteriori errors obtained using the algorithm
with and without leakage. One of the important results
of the analysis carried out in this paper is the fact that
some criteria on ensuring the stability of the system
in the presence of parasitic dynamics will be obtained.
Consequently, some guidelines on choosing the design
parameters in direct model reference adaptive control
(MRAC) systems will be obtained.

2. PROBLEM FORMULATION

Consider the minimum phase plant with input u and
output yp

yp = B(s)
A(s) (1 + ∆(s)) (u+ du) (1)

where B(s) and A(s) are the following polynomials

A(s) = sn + a1s
n−1 + . . .+ an

B(s) = b0s
m + b1s

m−1 + . . .+ bm
(2)

and ∆(s) is a transfer function that describes parasitic (un-
modelled) dynamics in multiplicative form. Since the plant
is linear and minimum phase, all bounded disturbances in
the plant can be replaced by one bounded disturbance at
the plant input – denoted by du.

The desired behaviour of the closed-loop system is defined
by a reference model

ym = Gm(s)w = Bm(s)
Am(s)w = bm0smm+...+bmm

snm+...+amn
w (3)

where w represents the reference.
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If the plant parameters are unknown, but ∆(s) and du

are absent in Eq. (1), the problem can be solved by direct
MRAC. The following control law is used:

u = ψT θ̂ (4)

where

ψT =
[

αT (s)
Λ(s) u

αT (s)
Λ(s) yp yp w

]

∈ R
2n

αT (s) =

{
[ sn−2 sn−3 . . . s 1 ] n ≥ 2

0 n < 2

(5)

and Λ(s) is the arbitrary Hurwitz polynomial that includes
the numerator polynomial of the reference model as a

factor. The control parameter vector θ̂ is obtained with
the adaptive law. The parameter error θ̃ is defined as

θ̃ = θ̂ − θ (6)

where θ is the true control parameter of the tuned system:

θT =
[

θT
1 θT

2 θ3 θ4
]
, θ1, θ2 ∈ R

n−1 (7)

If the control law of the tuned system (with adaptation
switched off) is interpreted as a pole placement control
law, the feedback controller can be obtained:

u

−yp

=
−(θT

2 α(s) + θ3Λ(s))

Λ(s) − θT
1 α(s)

(8)

The numerator and the denominator of the above feedback
control are denoted by Q(s) and P (s), respectively:

Q(s) = −(θT
2 α(s) + θ3Λ(s))

P (s) = Λ(s) − θT
1 α(s)

(9)

In the case of pole placement control, the Bezout identity
is obtained, which in the case of model reference control
where the plant zeros are cancelled becomes (see Isermann
et al. [1992])

AmO = b0Q+ P ′A (10)
where P ′ is the controller denominator polynomial after
cancelling the plant zeros (P = P ′ B

b0
) and O is interpreted

as the observer polynomial whose roots are the roots of
Λ(s) that are not included in Bm(s):

Bm(s)O(s) = bm0Λ(s) (11)

The problem arises if parasitic dynamics and disturbances
are present in the system. The question is: What adaptive
law should be used in combination with control law (4)?

3. THE ERROR MODEL OF THE ADAPTIVE
SYSTEM

It is fairly easy to obtain the following equation that occurs
often in classical adaptive literature (see Isermann et al.
[1992]):

ε = yp − ym =
b0
bm0

Gm(s)
[

ψT θ̃
]

(12)

This equation is the error model of the system. If parasitic
dynamics and disturbances are present in the plant, similar
error model is obtained after some calculations:

ε =

Hε
︷ ︸︸ ︷

H0

ε
︷ ︸︸ ︷
b0

bm0

Gm

1 + ∆

1 + ∆ b0Q
AmO

(

ψT θ̃
)

+

+
P ′A∆

AmO + b0Q∆
ym + b0

bm0

Gm

1 + ∆

1 + ∆ b0Q
AmO

du

︸ ︷︷ ︸

de

(13)

where Hε(s) is the transfer function ε/(ψT θ̃) and H0
ε (s)

denotes the nominal part of this transfer function (that can
be seen in Eq. 12), and de is equivalent disturbance that
combines the contributions of all external signals. More
compact version of the error model:

ε = Hε(s)
(

ψT θ̃
)

+ de (14)

The error model described by Eq. (13) or (14) will be
analysed. It will be particularly important if the transfer
function Hε(s) is strictly positive real (SPR). The latter
demand in the nominal case requires that Gm(s) in Eq.
(12) is SPR. That would limit the use of direct MRAC
to plants with relative degree 1. Many adaptive schemes
were designed in the late 1970s that overcome this problem
and modify the design so that H0

ε (s) is SPR even if Gm(s)
is not. We assume that H0

ε (s) is indeed SPR and that
the direct MRAC applied on the plant without parasitics
would result in globally stable system. Our question is:
How do parasitic dynamics affect the SPR property of the
error model and consequently stability of the system?

The poles of all transfer functions on the right hand-side
of Eq. (13) are the same – they are equal to the closed-loop
poles of the tuned system, but with unmodelled dynamics
taken into account. Hence, the closed-loop poles are not
exactly the same as the desired ones. If there exists the
controller parametrisation θ that stabilises the whole class
of plants (1) where ∆(s) is bounded in some way, then all
transfer functions on the right hand-side of Eq. (13) are
stable.

To analyse the error model further, the “additive uncer-
tainties” in Hε(s) will be introduced:

H̃a
ε = Hε −H0

ε = H0
ε

P ′A

AmO + ∆b0Q
∆ (15)

Our task is to show the contribution of H̃a
ε to the vio-

lation of the SPR property, i.e. we will try to estimate
infω ℜ{H̃a

ε (jω)}. In order to do so, the frequency charac-
teristics of the function in Eq. (15) will be analysed next.

Frequency response of ∆(s) at low frequencies. It has to be
noted that the meaning of parasitic dynamics in adaptive
control is slightly different than in robust linear control. In
the latter the parasitic dynamics cater for the differences
between the plant and its nominal model in the whole fre-
quency interval. Adaptive control itself is very convenient
for controlling the plants with structured uncertainties.
When there are also unstructured uncertainties in the form
of ∆(s), then the nominal parameters values θ are chosen
so that the perfect tracking is obtained at low frequencies
while there is some tracking error at higher frequencies.
Practically all relevant adaptive schemes (the direct and
the indirect ones) are capable of adapting to arbitrary (but
of the same sign) DC-gain of the plant:

∆(jω)|ω=0 = 0

|∆(jω)|
∣
∣
ω≪ωpar

≪ 1
(16)

where ωpar is the angular frequency of the dominant pole
or zero in parasitic dynamics ∆(s). It is obvious that ωpar

is higher than the bandwidth of the nominal plant model
B(s)/A(s). Transfer function ∆(s) is differential according
to Eq. (16).
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Frequency response of ∆(s) at high frequencies. It is very
well known that it is much easier to construct adaptive
controller when the relative degree (the difference between
the number of poles and zeros) is small. This is why in all
practical cases of designing an adaptive controller there
are more poles in (1 + ∆(s)) than there are zeros, or at
least their number is equal. Consequently, the frequency
response |∆(jω)| → K < ∞ as ω → ∞. Merging the low
frequency and the high frequency characteristics, ∆(s) has
similar frequency response like the high-pass filter with the
cut-off frequency ωpar.

Frequency response of P ′A
AmO+∆b0Q

. This transfer function

can be rewritten as follows:
P ′A

AmO + ∆b0Q
=

P ′A

P ′A+ b0Q+ ∆b0Q
=

=
1

1 + b0Q
P ′A

(1 + ∆)
=

1

1 + Q
P

B
A

(1 + ∆)
= S

(17)

Eq. (17) gives (output) sensitivity function S(s) of the
closed-loop system with plant B

A
(1 + ∆) and controller

Q(s)
P (s) where the latter was obtained based on the nominal

plant model and desired closed-loop poles equal to roots of
Am(s)O(s). The sensitivity function S(s) approaches 1 at
high frequencies. Actually this happens at the bandwidth
of the closed-loop system that is near the Gm bandwidth
ωref . At low frequencies the sensitivity is not 0 as model
reference controller in its original form is not capable of
completely eliminate the effect of constant disturbance.
Actually, quick analysis shows that S(0) is greater than 1
if the closed-loop system is slower compared to the open-
loop plant, and lower than 1 if the controller is designed
to quicken the system. The latter case is met much more
often.

Frequency response of H0
ε . It can easily be shown that this

transfer function is equal to the following:

H0
ε (s) = T0(s) = 1 − S(s)|∆(s)=0 (18)

where T0(s) is the inverse sensitivity function of the system
under the assumption that the plant is without parasitics

and the controller is also the nominal one Q(s)
P (s) . As such,

H0
ε (s) acts as a low-pas filter with cut-off frequency near

ωref while the gain at low frequencies is finite and usually
lower than 1 (in cases where the bandwidth of the closed-
loop system is greater than the open-loop one).

By introducing Eqs. (17) and (18) into Eq. (15) we obtain

H̃a
ε (s) = T0(s)S(s)∆(s) (19)

The analysis in this subsection has shown that T0(s) (low-
pass filter with cut-off frequency near ωref ) significantly

defines the behaviour of H̃a
ε (s) at high frequencies while

∆(s) (high-pass filter with cut-off frequency near ωpar) is
the most important for the behaviour at low frequencies.
Based on the relation between the two cut-off frequencies,
two possible approximations of |H̃a

ε (jω))| are shown in Fig.
1. Note that the gain in the flat area of the frequency
response in Fig. 1b is around 1 (0 dB).

If the poles play the dominant role in the parasitic dy-
namics (which is the usual case), the majority of the

polar diagram of the H̃a
ε (jω) resides in the left hand-side

half-plane. Approximate analysis of the simple frequency

0 dB
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Fig. 1. Approximate frequency response of |H̃a
ε (jω))|
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Fig. 2. The modified scheme of the adaptive system

responses (like those in Fig. 1) also shows that the shape
of the polar diagram is similar to the circle in the left
hand-side half-plane. We are particularly interested in the
point that is the farthest to the left in the polar diagram.
This usually happens around phase shift of −180◦ which
nearly coincides with the point that is the farthest from
the origin of the complex plane:

inf
ω

ℜ{H̃a
ε (jω)} ≈ − sup

ω
|H̃a

ε (jω)| (20)

Many proofs of adaptive system stability in the 1970s
relied on the Popov hyperstability theory. Applying this
theory on the adaptive system in Fig. 2 (without dotted
block) leads to the following corollary: If the operator

H0
ε + H̃a

ε is SPR and de(t) ∈ L2, then ψT (t)θ̃(t) ∈ L2.
It was taken into account that the feedback operator in
Fig. 2 (due to adaptive law) is positive real (PR).

Since H0
ε is SPR by assumption, we are only interested in

properties of H̃a
ε . A new block (dotted) is added to come

up with a new scheme in Fig. 2. The direct operator (H0
ε )

is SPR. The system in Fig. 2 is therefore hyperstable if
the system in feedback is PR and de ∈ L2. The system
in feedback is again a feedback connection of two systems
and as such it is PR if both subsystems – H̃a

ε + σ′ and
the nonlinear subsystem due to adaptation – are PR. The
latter is PR as before while the other has to satisfy:

ℜ{H̃a
ε (jω)} > −σ′ ∀ω ∈ R (21)

By fulfilling (21) and de ∈ L2, the adaptive system
is hyperstable. The former demand is met by properly
choosing design parameter σ′ while the latter one means
that only disturbances of finite energy are allowed. This
is very unrealistic requirement and it will be shown in the
next section how to circumvent it.

4. THE DEVELOPMENT OF THE ADAPTIVE LAW

The results of the adaptive system analysis in the previous
section will be used for designing a new adaptive law. By
including σ′ into the scheme of the adaptive system in Fig.
2, the adaptive law has been modified as follows:
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˙̂
θ =

˙̃
θ = Γψ

(

−ε− σ′ψT θ̃
)

= −Γψε− Γσ′ψψT θ̃ (22)

The obvious problem of the adaptive law given by Eq.
(22) is that it is not realisable as an adaptive law since

it contains the unknown θ̃ = θ̂ − θ. But we can use any
possible a-priori estimate for θ, which will be denoted θ∗

(even 0 if there is no information available) to produce the
following adaptive law:

˙̂
θ = −Γψε− Γσ′ψψT

(

θ̂ − θ∗
)

(23)

It can be seen that the adaptive law (23) uses leakage. The
leakage parameter is σ′ψψT ∈ R

2n. Such a leakage term
only acts in the direction of the regressor vector ψ and
is not successful in preventing parameter drift in other
directions of the parameter space. This ascertainment is
linked to the demand that the disturbance has to be of
finite energy to ensure global stability. To overcome this
problem, ψψT is substituted by its trace ψTψ ∈ R in the
adaptive law, and the leakage will act in all dimensions of
the parameter space:

˙̂
θ = −Γψε− Γσ′ψTψ

(

θ̂ − θ∗
)

(24)

Theorem 1. Applying the control law given by Eq. (4) and
the adaptive law given by Eq. (24) to the plant given by
Eq. (1) results in a stable system (in the sense that all
the signals in the system are bounded) provided that the
following conditions have been met:

• the parameter of the adaptive law σ′ satisfies

σ′ > − inf
ω∈R

ℜ{H̃a
ε (jω)} (25)

where H̃a
ε is defined in Eq. (15),

• the equivalent disturbance de defined in Eq. (13) is
bounded,

• there exists t0 ≥ 0, such that for each t ≥ t0 the
following inequality is satisfied:

∣
∣
∣θ̃(t)

∣
∣
∣ ≥

|de(t)|

(σ′ − σ′)|ψ(t)|
+
σ′|θ − θ∗|

σ′ − σ′
(26)

where
σ′ = − inf

ω∈R

ℜ{H̃a
ε (jω)} < σ′ (27)

Proof. The error model given by Eq. (14) can be decom-
posed into three parts based on Eq. (15):

ε = H0
ε

(

ψT θ̃
)

︸ ︷︷ ︸

ε0

+ H̃a
ε

(

ψT θ̃
)

︸ ︷︷ ︸

εa

+ de (28)

As discussed in section 3, the two transfer functions
H0

ε (s) and H̃a
ε (s) have zero-gain at high frequencies, and

are therefore strictly proper. Their minimum state-space
realisations are:

ẋ0 = A0x0 + b0ψ
T θ̃

ε0 = cT0 x0

(29)

and

ẋa = Aaxa + baψ
T θ̃

εa = cTa xa

(30)

The systems described by Eqs. (29) and (30) are stable, as
revealed in section 3. The system (29) is also SPR, while
the system (30) is not in general positive real. But due to

Eq. (27), the system (H̃a
ε +σ′) is PR and can be rewritten

in the state-space form:
ẋa = Aaxa + baψ

T
θ̃

εa + σ
′
ψ

T
θ̃ = c

T
a xa + σ

′
ψ

T
θ̃

(31)

Applying Kalman-Yakubovich lemma on the SPR system
(29) and the PR system (31) leads to the following result:
For any L0 = LT

0 > 0 there exist a scalar ν0 > 0, matrices
P0 = PT

0 > 0 and Pa = PT
a > 0, and vectors q0 and qa

such that
AT

0 P0 + P0A0 = −q0q
T
0 − ν0L0

P0b0 = c0
(32)

and
AT

a Pa + PaAa = −qaq
T
a

Paba − ca = ±qa
√

2σ′
(33)

The following Lyapunov function is proposed for the
stability analysis:

V = xT
0 P0x0 + xT

a Paxa + θ̃T Γ−1θ̃ (34)

Its derivative with respect to time can be calculated taking
into account Eqs. (29), (31), and (24):

V̇ = x
T
0
A

T
0
P0x0 + x

T
0
P0A0x0 + 2x

T
0
P0b0ψ

T
θ̃+

+ x
T
a A

T
a Paxa + x

T
a PaAaxa + 2x

T
a Pabaψ

T
θ̃+

+ 2θ̃
T

Γ
−1
(
−Γψε− Γσ

′
ψ

T
ψ(θ̂ − θ

∗
)
)

(35)

The error ε can be rewritten based on Eqs. (28), (29), and
(30):

ε = ε0 + εa + de = cT0 x0 + cTa xa + de (36)

Introducing Eqs. (32), (33), (36) and (6) into Eq. (35) and
cancelling the equal terms yields:

V̇ = −
(
x

T
0
q0

)
2

− ν0x
T
0
L0x0 −

(
x

T
a qa

)
2

± 2x
T
a qa

√
2σ′ψ

T
θ̃−

− 2ψ
T
θ̃de − 2σ

′
ψ

T
ψθ̃

T
θ̃ − 2σ

′
ψ

T
ψθ̃

T
(θ − θ

∗
)

(37)

Applying Cauchy’s inequality on the sixth term on the
right-hand side of Eq. (37) gives:

V̇ ≤ −
(
x

T
0
q0

)
2

− ν0x
T
0
L0x0−

−

((
x

T
a qa

)
2

∓ 2
(
x

T
a qa

)√
2σ′

(
ψ

T
θ̃

)
+ 2σ

′

(
ψ

T
θ̃

)
2

)

−

− 2(σ
′
− σ

′
) |ψ|

2

∣
∣θ̃
∣
∣
2

− 2ψ
T
θ̃de − 2σ

′
ψ

T
ψθ̃

T
(θ − θ

∗
) =

= −
(
x

T
0
q0

)
2

− ν0x
T
0
L0x0−

−
((
x

T
a qa

)
∓
√

2σ
(
ψ

T
θ̃

))2
− 2(σ

′
− σ

′
) |ψ|

2

∣
∣θ̃
∣
∣
2

−

− 2ψ
T
θ̃de − 2σ

′
ψ

T
ψθ̃

T
(θ − θ

∗
)

(38)

The first three terms on the right-hand side of Eq. (38)
are always negative semi-definite, the fourth term is also
negative semi-definite and has to make the derivative of
the Lyapunov function negative semi-definite. The only
critical terms in Eq. (38) are the last two terms. Applying
Cauchy’s inequality to them results in:

V̇ ≤ −2(σ
′
− σ

′
) |ψ|

2

∣
∣θ̃
∣
∣
2

+ 2|ψ|

∣
∣θ̃
∣
∣ |de| + 2σ

′
|ψ|

2

∣
∣θ̃
∣
∣
∣
∣θ − θ

∗

∣
∣ =

= −2(σ
′
− σ

′
) |ψ|

2

∣
∣θ̃
∣
∣

(

∣
∣θ̃
∣
∣−

|de|

(σ′ − σ′)|ψ|
−
σ′

∣
∣θ − θ∗

∣
∣

σ′ − σ′

)
(39)

If there exists t0 ≥ 0 such that the condition given by
inequality (26) is satisfied for each t ≥ t0, then V (t) ≤
V (t0) for each t ≥ t0 due to Eq. (39). Consequently, it

follows from Eq. (34) that the signals x0, xa, and θ̃ are
bounded. The error ε is then also bounded (see Eq. (36)
and the assumption on bounded de). The plant output is
also bounded (yp = ym+ε) and due to the minimum-phase
plant, the same is true for the plant input u.
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Remark 1. The proposed adaptive law (24) is similar to
the adaptive law with the σ-modification:

˙̂
θ = −Γψε− Γσ

(

θ̂ − θ∗
)

(40)

The proposed approach has certain advantages. When the
excitation is no longer present (ψ = 0), the adaptation
stops completely, while in the case of adaptive law (40)

only the leakage term is active – moving θ̂ towards θ∗,
which results in “forgetting” of the current estimates.

Remark 2. It is very well known that the adaptive law
with the σ-modification in the form of Eq. (40) produces
very inaccurate results if the amplitudes of the signals
change drastically. One of the main reasons for this is
that the ratio between the nominal adaptation and the
leakage also changes drastically. If the signals (this includes
ψ and ε) change by a factor of β, then the first term in
Eq. (40) changes by a factor of β2, while the second term
remains the same. In the case of the proposed adaptive
law (24), both terms change by a factor of β2, keeping
the ratio constant. Most of the existing adaptive laws
involving leakage do not share this property, e.g., in the
e1-modification the leakage term changes by a factor of
β, the switching σ-modification is equivalent to the σ-
modification when leakage is activated. The exception is
the adaptive law, proposed by Wu et al. [1993]. These are
of course just very approximate estimates, but this simple
analysis shows the roots of the problem. It has been known
for a long time how to overcome this problem, i.e., by using
normalisation (static or dynamic). The interesting fact
about the proposed adaptive law without normalisation
(24) is that not only is the stability of the system achieved
at different amplitudes of the signals, but also the dynamic
properties do not change much. This is due to a very subtle
mechanism introduced through a signal-dependent leakage
term (ψ is present in the leakage).

Remark 3. If at some point in time ψ(t) becomes 0, the
condition (26) becomes impossible to satisfy. The problem
lies in the nature of the adaptive law in the vicinity of
ψ = 0. Note that the “classical term” in the adaptive law
(24) is linearly dependent on ψ, while the “leakage term”
is quadratically dependent on ψ and vanishes compared to
the “classical term” when ψ is very small. So, effectively
the leakage is turned off when small signals are driving
the adaptation. When ψ is exactly 0, the adaptation is
also switched off and no problems are encountered. To
overcome the above-mentioned problems, an extra linear
term is added to the leakage, which is treated in the next
theorem.

Theorem 2. The next adaptive law is proposed:

˙̂
θ = −Γψε− Γ(σ′ψTψ + σ′

2|ψ|)
(

θ̂ − θ∗
)

(41)

It again results in a stable system where the last condition
from Theorem 1 is replaced by:

• there exists t0 ≥ 0 such that for each t ≥ t0 the
following inequality is satisfied:
∣
∣
∣θ̃(t)

∣
∣
∣ ≥ max

{
|de(t)|

σ′
2

+ |θ − θ∗|,
σ′|θ − θ∗|

σ′ − σ′

}

(42)

Proof. The proof of the theorem follows the same lines
as the proof of theorem 1 (A part of the theorem and
complete proof are left out due to space limitations).
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Fig. 3. The performance of the system in the easy condi-
tions (proposed approach vs. σ-modification)
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Fig. 4. The performance of the system in the difficult
conditions (proposed approach vs. σ-modification)

Remark 4. The feature that makes the last condition of
theorems 1 and 2 problematic is that it is practically
impossible to fulfil it. The parameter error is almost never
high from some time to infinity. Rather, it is high for
a shorter period which is often referred to as a burst
(bursting phenomena are quite common in many adaptive
schemes). During that time, the derivative of Lyapunov
function is negative and the system is “stabilised” during
that time. Excitation is high during a burst and the
parameter error decreases. Due to parasitic dynamics
and disturbances parameter error may increase again and
another burst may occur after a period of time. Note
that all signals are still bounded during bursts and that
bursting phenomenon occurs quite rarely or even not at
all.

Example 1. Let us take the famous Rohrs’ example with
plant Gp(s) – the nominal part is G0(s):

Gp(s) = G0(s) (1 + ∆(s)) =
2

s+ 1
·

229

s2 + 30s+ 229
(43)

The following parameters have been chosen: Γ = I,
σ = 0.1, σ′ = 0.1. The first experiment was done with
unit step on reference signal and without disturbances.
The results are shown in Figs. 3. The comparison shows
that the performance of both approaches is similar. The
second experiment was done in much harder conditions:
w(t) = 100, de(t) = 50. The results of the proposed
approach are shown in the upper part of Fig. 4. The same
experiment was conducted on the adaptive system using
σ-modification and it resulted with instability. The system
was still unstable after reducing the adaptive gain for the
factor 100. After reducing it for the factor 1000 the system
was stabilised as shown in the lower part of Fig. 4. Even
after changing the design parameters, the system with σ-
modification still has much worse transient compared to
the proposed approach.
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5. GUIDELINES FOR CHOOSING THE DESIGN
PARAMETERS IN DIRECT MRAC

The transfer function H̃a
ε (s) that was analysed in the

preceding sections will play the central role in this section.
Especially important is the frequency response H̃a

ε (jω). It
should not be necessary to emphasise that the supremum
of |H̃a

ε (jω)| should be as low as possible to approach the
ideal case where Hε(s) is SPR. In view of Fig. 1 this can
be achieved by fulfilling the following condition:

ωpar ≫ ωref (44)

that can be interpreted in the following way: Since in the
real systems it is not possible to ensure that Hε(s) is
SPR, it is good for the robustness to come close to this
requirement. This is done by selecting a reasonably low
bandwidth for the reference model – in any case lower
than the dominant part in the unmodelled dynamics. This
demand is in accordance with robust linear control and is
intuitively clear – when one wants good performance from
the system (high bandwidth), it is necessary to cope with
reduced robustness.

One of the requirements of theorems 1 and 2 is that σ′ has
to satisfy the following inequality:

σ′ > − inf
ω∈R

ℜ{H̃a
ε (jω)} (45)

If the design parameter σ′ satisfies the following inequality
∣
∣
∣H̃a

ε (jω)
∣
∣
∣ < σ′ ∀ω ∈ R (46)

then the inequality (45) will definitely be satisfied. The
parameter σ′ will not be chosen based on the estimation
of (− infω ℜ{H̃a

ε (jω)}), but rather based on the estimation

of supω |H̃a
ε (jω)|. The estimation based on supω |H̃a

ε (jω)|
provides a higher value for σ′, although the two estimates
are similar. The exact values of (− infω ℜ{H̃a

ε (jω)}) and

supω |H̃a
ε (jω)| for the case treated in example 1 are 0.2361

and 0.2369, respectively.

From inequality (46) it follows that the estimate of ‖H̃a
ε ‖∞

is needed for the choice of σ′. It is obvious that the estimate
of σ′ according to inequality (46) is different from the one
in (21), but on the other hand unmodelled dynamics are
not known (even the dominant dynamics are unknown in
adaptive control), and we need a very raw estimation. The

next question is: How is ‖H̃a
ε ‖∞ related to ωpar and ωref?

We have three possibilities:

• ωref > ωpar: the frequency response of |H̃a
ε (ω)| has

the shape as shown in Fig. 1b; the leakage parameter
that fulfils inequality (46) is too large for the system
to have acceptable performance; for these reasons,
choosing the reference model bandwidth so high is
not preferable.

• ωref ≈ ωpar: the frequency response of |H̃a
ε (ω)| has

the shape as shown in Fig. 1a with the supremum
around 0 dB; σ′ should be around 1 so that the
inequality (46) is fulfilled.

• ωref < ωpar: this is the preferred choice of the
reference model bandwidth that results in a system
with acceptable robustness and performance.

When ωref < ωpar, the graphical analysis of the diagram
in Fig. 1a gives:

σ′ =
√

ωref

ωpar
(47)

Since the frequency response is rounded off, the estimate
in Eq. (47) is a little conservative and results in a value
for σ′ that is too high. Usually, a choice of σ′ between 0.1
and 1 is a good idea. When more robustness is desired,
the parameter is increased, while in the case of a high-
performance demand the value can be decreased especially
when the condition ωpar ≫ ωref is fulfilled with a high
probability.

6. CONCLUSIONS

An analysis of the direct MRAC with parasitics has shown
that the hyperstability of the system can be ensured by
adding an extra term to the adaptive law. This term can
be interpreted as the leakage in the adaptive law. The
algorithm is further developed so that the global stability
in the presence of disturbances is proven. The proposed
adaptive law has signal-dependent leakage, and is therefore
more suitable for controlling systems where the amplitudes
of signals change drastically. It has to be pointed out that
this is achieved without using signal normalisation. It is
shown that under some circumstances a version of the
proposed adaptive law is similar to the σ-modification with
the static normalisation of signals. For this reason the two
approaches are compared in the sense of how they are able
to control the famous Rohrs’ plant. It turned out that the
proposed approach gives better results, especially in the
case of very high or very low signals in the regressor ψ.

A great problem in adaptive control design is the choice of
several design parameters. Since it is shown that the design
parameter σ′ of the proposed adaptive law is directly
related to the H∞ norm of the parasitic dynamics, the
criteria for system stability are derived. Based on these,
some guidelines for choosing the leakage parameter σ′ and
the bandwidth of the reference model are also presented.
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