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∗ Christian-Albrechts-University Kiel, Kaiserstrasse 2, 24143 Kiel,
Germany (Tel: 0049-431-8806285; e-mail: jh@tf.uni-kiel.de)

Abstract:
This paper presents an innovative method for the online determination of biomass in fermen-
tation, using a combination of model-based full-horizon observer and Neural Network. The
performance of the Neural Network depends highly on correct initial conditions of the unknown
process values. Unfortunately, in biological processes it is impossible to guarantee reproducible
initial conditions. On the contrary, the variations in the innoculated amount of bacteria oscillate
between 30% in lab scale and more than 100% in industrial applications.
To reduce the effect of these variations to the Neural Network, we herein propose the use of an
optimization based estimator to determine the initial conditions of the process values online in
early process stages in order to improve the estimation results of the Neural Network.
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1. INTRODUCTION

The bacterium Streptococcus thermophilusis an important
agent in dairy industry (Gronau (2005); Hols et al. (2005)).
It is used in many different production processes, e.g. as
a starter culture in the manufacture of yoghurt or cheese,
where its main purpose is acidifying the milk by metabo-
lizing the disaccharide lactose into the acid lactate.
Up to now the fermentation processes do not have the
same high level of automation as found in the pharma
industry, where modern process control is already regarded
essential. Instead, the production of Streptococcus ther-
mophilus is to a large extend still carried out in traditional
ways, where experience and experimental data are of high
importance for process development.
Since the demands on quality and quantity of this bacteria
increase, the starter culture producers have to improve
the fermentation processes in order to fullfill these higher
requirements. Concepts of modern process control must
be applied to achieve better performance of the process,
to obtain constant output rates and to achieve constant
high quality. A bottleneck for process control is the lim-
ited possibility of measuring important process values, like
biomass, the substrate lactose and the product lactate, in
real-time. Since these values are fundamental for the eval-
uation of the actual process, further concepts have to be
developed in order to gain online information about these
interesting process states. A suitable method of achieving
this goal is the use of software-sensors in order to estimate
the desired process states in real time.
This contribution introduces a combination of a model-
based observer, the full-horizon observer, with the state

estimation using a Neural Network. These two methods
are brought together in one software-sensor in order to
improve the state estimation of unknown process variables
in starter culture fermentation.

2. REAL-TIME-MEASUREMENT IN THE
FERMENTATION OF STREPTOCOCCUS

THERMOPHILUS

Since the performance of a high-level process control de-
pends on the knowledge of process determining values, sev-
eral different process states have to be determined online
during the fermentation in order to influence the process
in the desired way. Several sensors are available in order
to measure various process values in real-time.
In the considered process the pH-value of the medium as
well as its conductivity and the amount of base added to
the medium in order to control the pH-value are used as
online measurement values.
Unfortunately, none of the interesting process states, the
substrate lactose, the product lactate nor the biomass, can
be measured directly. The concentration of the medium
components are determined offline by analyzing manually
taken samples using an HPLC, while the biomass is deter-
mined by cell count two days after the sample has been
taken.
However, it is possible to correlate the amount of produced
lactate via a second degree polynomial with the pH-value
and the conductivity, respectively.
Since the pH-value is, for process specific reasons, kept
at an almost constant level in later process times, which
is done by adding base to the medium, the correlation
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between pH-value and lactate concentration is only valid in
early process stages. Due to the increasing amount of base,
the conductivity of the medium increases, which motivates
the use of the correlation between the product lactate and
the conductivity of the medium in later process times.
The variation in time of these two key variables during
the fermentation process is presented in figure 1, while the
already mentioned correlation is shown in figure 2.
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Fig. 1. The variation in time of the conductivity (upper
picture) and the pH-value (lower picture), respec-
tively during a fermentation process of Streptococcus
thermophilus.
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Fig. 2. Corelation between the concentration of lactate in
the medium and the conductivity value (upper pic-
ture) and the pH-value (lower picture), respectively.

Unfortunately, the other interesting process values, lac-
tose and biomass, cannot be correlated to online available
measurement data. To overcome this deficiency, the appli-
cation of a software-sensor is proposed in several publica-
tions in order to gain information about the formation of
biomass and the consumption of substrate (Buchen et al.
(2005); Hörrmann et al. (2007)). A schematic representa-
tion of this method is shown in figure 3.
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Fig. 3. Schematic representation of a software-sensor

The output measurements are used to synchronize the
software-sensor with the real process, so that possible dis-
turbances and uncertainties in the process can be included
in the estimate.
Many different methods for the realization of a software-
sensor are proposed (Jenzsch et al. (2006); Bastin and
Dochain (1990); Haag (2004); Buchen (2007)). A very
common method is the implementation of a previously
developed mathematical model of the process, e.g. in an
Extended Kalman Filter (Gelb et al. (1992)). In the herein
considered application, however, a Neural Network is oper-
ating in parallel to the process, in early process stages sup-
ported by the use of a model-based full-horizon observer.
The online available measurement data, the concentration
of the pH-value, the conductivity of the medium and the
amount of base added to the medium, are used for the
synchronization between the real process and the process
model. Using this data, the desired process values for
biomass, lactose and lactate are estimated.

3. ARTIFICIAL NEURAL NETWORK AS
SOFTWARE-SENSOR

The relationship between different process variables in
biological processes is mostly nonlinear. One possibility to
express these nonlinear correlations is the use of artificial
neural networks (ANN), whose areas of application are
increasing during the last decades (Baughman and Liu
(1995)).

Herein the ANN is used as a software-sensor in order to
estimate the amount of biomass and lactose online during
the fermentation process. Therefore a direct mapping of
online-measurable values onto biomass and lactose con-
centration is suggested, as illustrated in figure 4.
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Fig. 4. Strucutre of an ANN

For process specific reasons two different ANNs are used
for each output value. As long as the pH-value decreases
(t = 0 until t ≈ 1.25[h]), the pH-measurement serves
as input for the first ANN. When the pre-specified value
of pH = 6.05 is reached, base is fed to the medium in
order to keep the pH-value constant. This action leads to
an increase of the medium conductivity, which serves as
input for the second ANN, which then calculates the state
estimate.

In order to get reliable results for the biomass and the
substrate, the output values have to be normalized

T1(0) = 1 (1)

X̂(t) = X0 · T1(t), t < tk (2)

T2(tk) = 1 (3)

X̂(t) = X0 · T1(tk) · T2(t), t ≥ tk, (4)

where X0 is the initial estimate of the biomass at t = 0,
while T1 and T2 are the normalized estimated values of
the different ANNs using pH-value and conductivity as
input, respectively. The value tk denotes the point in time,
when the second ANN, using the conductivity as input
value, is launched into operation with the process. The
normalization of the values obtained by the ANNs for
the estimation of the substrate lactose is identical to the
one mentioned above. Due to the suggested normalization,
the amount of hidden layers and neurons of the net and
therefore its training epochs decrease.

Since the ANN represents the correlation between input
and output values, the training has to be performed ap-
plying the mentioned normalization. Therefore the batch
training using data sets of prior fermentations is disposed,
using classical training algorithms like the backpropaga-
tion method.

4. THE OPTIMIZATION-BASED STATE
ESTIMATOR

The results of the estimation process are very sensitive to
the initial conditions. While the concentration of the sub-
strate lactose and the product lactate can be determined
a priori by analyzing the medium before the bacteria is
inoculated, the amount of bacteria at the beginning of the
process can hardly be considered as being constant. The
variations reach from 30% in labscale up to more than
100% in industrial applications. To overcome these uncer-
tainties, during the first 50 minutes of the fermentation

process a full-horizon observer is used to determine the
most likely initial amount of bacteria in the fermenter.

4.1 The Full-Horizon Observer

A general formulation of this estimation method is given
in (Robertson et al. (1996)).
Using a given initial value x

0
and available measurement

data y
1
, · · · , y

k
, the error in the initial condition w

0
and

the error sequence
{

w
1
, · · · , wk−1

}

can be determined by
minimizing a cost function J at each time step k,

min J(w
0
, · · · , wk−1

) = wT
0
P−1w

0
+

k
∑

l=1

vT
l R−1vl +

k−1
∑

l=1

wT
l Q−1wl , (5)

with

x̂
0
= x

0
+ w

0
(6)

xl = F (xl−1
) + wl−1

(7)

vl = y
l
− h(xl) . (8)

The first term in equation (5) pays attention to the
deviation in the initial conditions, the second and third
term to modelling and measurement errors, respectively.
The matrices P,Q and R, describe the confidence into the
corresponding terms and are chosen with respect to the a
priori knowledge about the different errors. The nonlinear
function F in equation (7) represents the mathematical
modell of the process while the vector vl in equation (8)
is the difference between calculated process value and the
corresponding measurement.
The solution of this optimization can be realized by a
combination of different methods of numerical integration
and nonlinear optimization.

4.2 The Growth Model of the Bacteria Streptococcus
thermophilus

In order to determine the unknown process values via an
optimization based observer, a sufficiently exact model of
the fermentation process has to be developed. A brief
description of the unstructured model is introduced in
the following. Hereby the intra-cellular metabolism of the
bacteria is considered as a black box and merely the
dynamics of the concentration of the substrate lactose S,
the product lactate P and the amount of biomass X are
taken into account.
The popular kinetic approach of Monod (Monod (1942)) is
used to develop a mathematical expression for the growth
dynamic, paying attention to the phenomena of product
inhibition and substrate limitation. One then obtains a set
of coupled differential equations,

Ẋ = µ · X (9)

Ṡ = YS · µ · X (10)

Ṗ = YP · µ · X (11)
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where YS and YP are the yield coefficients for the substrate
and the product, respectively, while µ is the specific
growthrate, calculated by

µ = µmax ·
S

KS + S
·

KP

KP + P
(12)

with µmax representing the maximum growth rate and
KS and KP being the limitation and inhibition constants,
respectively. Figure 5 compares simulated values which are
obtained by the mathematical growth model mentioned
above and experimental results of three different fermen-
tations with each other.
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Fig. 5. Experminental results of three different fermen-
tations compared with simulated values based on a
mathematical growth model.

The five unknown parameters YS , YP ,KS ,KP and µmax

which determine the characteristics of the growth model,
are obtained by least squares estimation and presented in
the following table.

Parameters for the growth model
of the bacteria Streptococcus thermophilus

YS [g/CFU ] 4.947 · 10−9

YP [g/CFU ] 1.887 · 10−9

KS [g/l] 1.7411

KP [g/l] 14.989

µmax[1/h] 1.8584

Obviously, this very simple mathematical model gives al-
ready a sufficiently good representation of the fermenta-
tion process and therefore can be used for the estimation
of process variables using a model-based observer.

5. RESULTS AND CONCLUSIONS

In order to test the performance of the proposed software-
sensor it was applied to a common fermentation process,
where the biomass, lactose and lactate were to be deter-
mined online.

5.1 Conditions of the Fermentation

The fermentations are performed in a 2 liter batchreactor,
using a complex medium, with lactose serving as major
substrate. The pH-value of the medium is adjusted to 6.5
prior to inoculation. Due to the growth of the bacteria, the
acid lactate is produced, which leads to a decrease of the
pH-value. When the marginal value of 6.05 is reached, a
controller steadies the value by adding base to the medium.
These process specifications are defined by industrial pro-
ducers, who rely on long fermentation experience.
The values of medium components and biomass are de-
termined offline. Every 15 minutes a sample is taken from
the process and analyzed manually. An HPLC serves to
determine lactose and lactate, while the results of the
biomass are obtained via cell count.

5.2 Estimation Results

At the beginning of the fermentation, the initial conditions
of the 3 process variables have to be determined. The
amount of lactose and lactate in the medium are analyzed
a priori to the inoculation using an HPLC, hence these
values are known. The initial condition for the biomass is
assumed to be X0 = 9 ·106, a value which is determined in
former experiments. Once again, it shall be pointed out,
that there cannot be an exact prediction of the initial
value, due to unreproducable growth of the bacteria in
preculture and errors in the inocculation amount. Al-
though a sample is taken immediately after the pre-culture
is inoculated into the fermenter, it takes at least two days
until reliable results of the biomass at the beginning of
the process, X0,real, are available. For this reason the full-
horizon observer is used to estimate an improved value of
the initial biomass concentration X0.
Every ten minutes a new prediction is calculated and so a
new initial value of biomass is obtained. The development
of the improved values is shown in figure 6.
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Fig. 6. Development of the estimated initial condition of
biomass X0,est over process time t.

The estimated initial value X0,est evolves over process time
and finally approaches the exact initial value X0,real, which
is determined manually by offline analysis.
These estimated results are immediately used for the ANN
based estimation of biomass. The results of this state
estimation is shown in figure 7.
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Fig. 7. Results of biomass estimation with static and
dynamic initial condition for X0.

The sensitivity of the estimation result to the initial con-
dition X0 is evident. In the case where the initial guess
for X0 is used over the whole process time, the estimated
values do not agree with the measured ones. In fact the
qualitative behavior of the process is well represented,
merely the whole course of the estimation lies below the
measurements.
In contrast, the estimation results of the ANN with dy-
namic initial conditions are very good. During the first
hour of the process one clearly sees the steps in the esti-
mation curve due to updated initial condition guesses and
consequently the influence of the updated initial condition
X0,est on the output value of the software-sensor. The
continuously attained results of the ANN using dynamic
initial conditions correspond well to the real process values
and are superior to the results obtained with the static
X0,est.

In addition to the estimation of biomass, also the con-
centrations of lactose and lactate have been determined.
The results are shown in figure 8.
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Fig. 8. Development of the estimated lactose and lactate
concetrations over process time.

Lactose concentration was also estimated with an ANN.
The initial condition has not been optimized dynamically,
due to the a priori determination. The estimated values
also correspond well to the measured ones.
The lactate values were calculated using the correlations
between the pH-value and the conductivity of the medium,
respectively, as already shown in section 2. The obtained
results also agree well with the reality.

5.3 Conclusion

In this contribution we proposed a software-sensor for
the estimation of biomass using ANNs. We showed the
sensitivity of the estimation to the initial condition, which
cannot be predicted reliably. To overcome this obstacle
we combined the optimization based full-horizon observer
with the ANN. With this modell-based method the initial
condition of biomass is estimated during early process
stages and so leads to a more credible value than a guess
based on experience. Using this new, better value, the
estimation results show a very good correspondence to
reality. This method is therefore suitable for the online-
measurement of biomass in biotechnological fermentation
processes.
Based on the herein achieved results, the fermentation can
now be optimized by applying modern control theory to
the process, which will be based upon the online estimation
of process values, in order to increase the output and
quality of the product.
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