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Abstract: In this paper, the design of a two-level controller is proposed for active suspension
systems. The required control force is computed by applying a high-level controller, which
is designed using a Linear Parameter Varying (LPV) method. The suspension structure
contains nonlinear dynamics of the dampers and the springs. The model is augmented with
weighting functions specified by the performance demands and the uncertainty assumptions.
The actuator generating the necessary control force is a highly nonlinear system, for which a
low-level backstepping-based force-tracking controller is designed. The operation of the two-level
controller is illustrated through simulation examples.
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1. INTRODUCTION

Active suspensions are used to provide good handling
characteristics and to improve ride comfort while harmful
vibrations caused by road irregularities and on-board
excitation sources act upon the vehicle. The performance
of suspension systems is assessed quantitatively in terms of
four parameters: passenger comfort, suspension deflection,
tire load variation and energy consumption, see Gillespie
[1992].

Several methods have been proposed to design active sus-
pension systems. The vast majority of the papers assume
that the suspension system can be approximated by a
linear model and the control system is designed by linear
methods, see e.g. Hrovat [1997], Yamashita et al. [1994],
Gáspár et al. [2003b]. Another and smaller part of the
papers assume that nonlinearity in suspension systems is
dominant and the linearity assumption is not valid in the
entire operation domain. The dynamic characteristics of
suspension components, i.e. dampers and springs, have
nonlinear properties, and they are not time-invariant, but
change during the vehicle life cycles, see e.g. Alleyne and
Hedrick [1995], Lin and Kanellakopoulos [1995], Karlsson
et al. [2000].

A Linear Parameter Varying (LPV) design is proposed
for active suspensions which contain nonlinear suspension
components. This modeling approach allows us to take
into consideration the highly nonlinear effects in the state
space description in such a way that the model structure is
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linear in the states. The design is based on an H∞ control
synthesis extended to LPV systems that use parameter
dependent Lyapunov functions. A weighting strategy is
applied to meet performance specifications, i.e. passenger
comfort and road holding, guarantee a trade-off between
performances that are in conflict with each other and
consider the model uncertainties, see e.g. Fialho and Balas
[2000], Gáspár et al. [2003a].

Due to the highly nonlinear nature of the suspension
actuator its direct inclusion in the state space description
of the suspension dynamics is quite complicated. Ignoring
the nonlinearities of the actuator leads to unacceptable
behavior while applying an LPV approach for the actuator
leads to conservative results. In this paper, a design of
a two-level controller is proposed for active suspension
systems.

For the high-level controller by using an LPV method
passenger comfort, road holding and tire deflection are
taken into consideration as performance outputs and the
control input designed is the control force. In this step
the uncertainties of the model are also considered. The
designed control force is a required force, which must be
created by the hydraulic actuator. One of the difficulties of
the control is that even the simplest model of the actuator
is a bimodal switching system where the switching depends
on one of the state variables. A nonlinear method is
proposed for the design of the low-level controller that
solves an output tracking problem, i.e. the four required
force computed by the high-level controller is tracked
by a lower-level controller designed using a backstepping
method by setting the valves of the actuators.

The proposed method has several advantageous. The de-
sign in the complex case is difficult since the actuator
has fast dynamics while the suspension system has slow
dynamics, which might lead to numerical difficulties and
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performance degradation. Furthermore, if the suspension
design were carried out on the basis of the full-car model,
this might lead to numerical problems due to the increased
complexity.

The structure of the paper is as follows. In Section 2
the modeling of the active suspension system for control
design is presented. In Section 3 the model is augmented
with the performance specifications and multiplicative un-
certainties. The design of the high-level controller, which
generates the control force demand is presented. In Section
4 the design of a lower-level controller, which is based
on a control Lyapunov function and backstepping method
is presented. In Section 5 the operation of the two–level
controller is demonstrated through simulation examples.
Finally, Section 6 contains some concluding remarks.

2. CONTROL-ORIENTED MODELING OF THE
SUSPENSION SYSTEM

The full-car vehicle model, which is shown in Figure 1,
comprises five parts: the sprung mass and four unsprung
masses. Let the sprung and unsprung masses be denoted
byms,muf , and mur, respectively. All suspensions consist
of a spring, a damper and an actuator to generate a push-
ing force between the body and the axle. The suspension
stiffness and the tire stiffness are denoted by ks and kt,
respectively. The front and rear suspension dampers are
denoted by bs. Let the front and rear displacement of the
sprung mass on the left and right side be denoted by x1fl,
x1rl and x1fr, x1rr. Let the front and rear displacement of
the unsprung mass on the left and right side be denoted
by x2fl, x2rl, x2fr, and x2rr. In the full-car model, the
disturbances, wfl, wrl, wfr, wrr are caused by road irreg-
ularities. The input signals, ffl, frl, ffr, frr are generated
by the actuators.
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Fig. 1. The full car model

The full-car model is seven degrees-of-freedom: The sprung
mass is assumed to be a rigid body and has freedoms of
motion in the vertical, pitch and roll directions. The x1
is the vertical displacement at the center of gravity, θ is
the pitch angle and φ is the roll angle of the sprung mass,
respectively. Each unsprung mass has freedom of motion
in the vertical direction, x2fl, x2rl, x2fr, x2rr. The vehicle
dynamical model, i.e. the heave motion, the pitch motion,
the roll motion, the front and rear tires, is as follows:

msẍ1 = Fkfl + Fkfr + Fkrl + Fkrr+

Fbfl + Fbfr + Fbrl + Fbrr
− ffl − ffr − frl − frr (1)

Iθ θ̈ = lfFkfl + lfFkfr − lrFkrl − lrFkrr+
lfFbfl + lfFbfr − lrFbrl + lrFbrr
− lfffl − lfffr + lrfrl + lrfrr (2)

Iφφ̈ = tfFkfl − tfFkfr + trFkrl − trFkrr+
tfFbfl − tfFbfr + trFbrl − trFbrr
− tfffl + tfffr − trfrl + trfrr (3)

muf ẍ2fl = −Fkfl − Ftfl − Fbfl + ffl (4)

muf ẍ2fr = −Fkfr − Ftfr − Fbfr + ffr (5)

murẍ2rl = −Fkrl − Ftrl − Fbrl + frl (6)

murẍ2rr = −Fkrr − Ftrr − Fbrr + frr (7)

where the following linear approximations are applied:
x1fl = x1 + lfθ + tfφ, x1fr = x1 + lfθ − tfφ, x1rl = x1 −
lrθ + trφ, and x1rr = x1 − lrθ − trφ.

The suspension damping force, the suspension spring force,
the tire force, respectively, are as follows:

Fbij = b
l
s(ẋ2ij − ẋ1ij)− b

sym
s |ẋ2ij − ẋ1ij |

+ bnls

√
|ẋ2ij − ẋ1ij | sgn(ẋ2ij − ẋ1ij), (8)

Fkij = k
l
s(x2ij − x1ij) + k

nl
s (x2ij − x1ij)

3, (9)

Ftij = kt(x2ij − dij), (10)

and fij are the forces of the actuator, where ij ∈
{fl, fr, rl, rr}. Here, parts of the nonlinear suspension
damper bs are b

l
s, b

nl
s and b

sym
s . The bls coefficient affects

the damping force linearly while bnls has a nonlinear im-
pact on the damping characteristics. bsyms describes the
asymmetric behavior of the characteristics. Parts of the
nonlinear suspension stiffness ks are a linear coefficient k

l
s

and a nonlinear one, knls .

The state vector x is selected as follows:

x = [q xu q̇ ẋu]
T
, (11)

with q = [x1 θ φ]
T
and xu = [x2fl x2fr x2rl x2rr]

T
.

In the LPV modeling parameters, which are directly
measured or can be calculated from the measured signals,
must be selected. Two expressions concerning the front
and rear displacement of the unsprung mass on the left
and right side and their velocities are selected as scheduling
variables:

ρbij = sgn(ẋ2ij − ẋ1ij), (12)

ρkij = (x2ij − x1ij)
2. (13)

with ij ∈ {fl, fr, rl, rr}. Parameter ρbij depends on the
relative velocity, parameter ρkij is equal to the relative
displacement. In practice, the relative displacement is a
measured signal. The relative velocity is then determined
by numerical differentiation from the measured relative
displacement. Thus, in the LPV model of the active sus-
pension system eight parameters are selected as scheduling
variables.

The state space representation of the LPV model is as
follows:

ẋ = A(ρ)x+ gu, (14)

where u = [ffl ffr frl frr]
T
.
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2.1 Modeling of the actuator dynamics

The actuator which generates the necessary force for the
suspension system is a four-way valve-piston system. For
a given quarter-car model denote by f the the force of the
actuator and by z(= ẋ2 − ẋ1) the relative velocity. Then

f = APPL, (15)

where AP is the area of the piston and PL is the pressure
drop across the piston with respect to the front and rear
suspensions. The derivative of PL is given by

ṖL = −βPL + αAP z + γQ, (16)

in which Q is the hydraulic load flow, α, β, γ are constants
and

Q = sgn [PS − sgn(xv)PL]
√
|PS − sgn(xv)PL|xv, (17)

with the supply pressure PS and the displacement of the
spool valve xv. The cylinder velocity acts as a coupling
from the position output of the cylinder to the pressure
differential across the piston. It is considered a feedback
term, which has been analyzed by Merritt [1967], Alleyne
and Liu [2000]. The displacement of the spool valve is
controlled by the input to the servo-valve u:

ẋv =
1

τ
(−xv + u) . (18)

where τ is a time constant.

It is assumed that during the operation PS > PL. With
this assumption, eq. (17) reads

Q =

{
xv
√
PS − PL, xv ≥ 0

xv
√
PS + PL, xv < 0

(19)

which defines a state-dependent bimodal switching system
for the actuator dynamics, see e.g. Alleyne and Liu [2000].

Let x5 and x6 denote PL and xv, respectively. Then, the
actuator model can be written separately as

ẋ5 = −βx5 + αAP z + γQ, (20)

ẋ6 = −
1

τ
x6 +

1

τ
ua. (21)

3. DESIGN OF A HIGH-LEVEL CONTROLLER
BASED ON AN LPV METHOD

In order to improve passenger comfort it is important to
keep the effects of the road disturbance on the heave ac-
celeration small. Structural features of the vehicle place a
hard limit on the amount of suspension deflection available
for reducing the acceleration of the vehicle body. Hence
it is also important to keep the effect of the disturbance
on the suspension deflection sufficiently small. In order to
reduce the dynamic tire load deflection, the effect of the
disturbance on tire deflection should also be kept small.
The control force limitation is incorporated into the design
procedure in order to avoid large control forces.

Consider the closed-loop system in Figure 2, which in-
cludes the feedback structure of the model G and con-
troller K, and elements associated with the uncertainty
models and performance objectives. In the diagram, u is
the control input, which is generated by actuators, y is the
measured output, which contains the relative displacement
between the sprung mass and the unsprung mass, n is
the measurement noise. In the figure, w is the disturbance

signal, which is caused by road irregularities. z̃ represents
the performance outputs: passenger comfort (heave accel-
erations, pitch and roll angle accelerations), the suspen-
sion deflections, the wheel relative displacements and the
control forces.

Fig. 2. The closed-loop interconnection structure

The purpose of weighting functions Wp,az, Wp,sd, Wp,td
and Wp,F is to keep the heave accelerations, suspension
deflections, wheel travels, and control inputs small over the
desired operation range. These weighting functions chosen
for performance outputs can be considered as penalty
functions, i.e. weights should be large in a frequency range
where small signals are desired and small where larger
performance outputs can be tolerated. Thus, Wp,az and
Wp,sd are selected as

Wp,az(ρkij) = φaz(ρkij) ∙ 0.5
s
350 + 1
s
10 + 1

, (22)

Wp,sd(ρkij) = φsd(ρkij) ∙
s
350 + 1
s
10 + 1

. (23)

Here, it is assumed that in the low frequency domain
disturbances at the heave accelerations of the body should
be rejected by a factor of φaz and at the suspension
deflection by a factor of φsd.

The trade-off between passengers comfort and suspension
deflection is due to the fact that is not possible to keep
them together simultaneously. A large gain φaz and a small
gain φsd correspond to a design that emphasizes passenger
comfort. On the other hand, choosing φaz small and φsd
large corresponds to a design that focuses on suspension
deflection. In the LPV controller ρkij is the relative dis-
placement between the sprung and the unsprung masses.
ρkij is used to focus on minimizing either the vertical ac-
celeration or the suspension deflection response, depending
on the magnitude of the vertical suspension deflection.

The parameter dependence of the gains is characterized by
the constants ρ1 and ρ2 in the following way:

φaz(ρkij) =






1 if |ρkij | < ρ1
|ρkij | − ρ2
ρ1 − ρ2

if ρ1 ≤ |ρkij | ≤ ρ2

0 otherwise

, (24)

φsd(ρkij) =






0 if |ρk| < ρ1
|ρkij | − ρ1
ρ2 − ρ1

if ρ1 ≤ |ρkij | ≤ ρ2

1 otherwise

. (25)

The selection of the parameter dependence of the gains
is the reason why an LPV model is formulated even in a
linear model is used in the basis of the control design. The
uncertainties of the model are represented by Wr and Δm.
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Wr is assumed to be known, and Δm is assumed to be
unknown with ‖Δm‖∞ < 1. Design models used for active
suspension control typically exhibit high fidelity at lower
frequencies, but they degrade at higher frequencies. Thus,
Wr is selected as Wr = 2.25

s+20
s+450 .

The solution of an LPV problem is based on the set of
infinite dimensional LMIs being satisfied for all ρ ∈ FP ,
thus it is a convex problem, Rough and Shamma [2000],
Wu [2001]. In practice, this problem is set up by gridding
the parameter space and solving the set of LMIs that hold
on the subset of FP , see Balas et al. [1997]. The number of
grid points depends on the nonlinearity and the operation
range of the system. For the interconnection structure, H∞
controllers are synthesized for 5 values of ρ1 in a range
[−2, 2] and 5 values of ρ2 in a range [0, 1].

4. NONLINEAR DESIGN OF A LOW-LEVEL
CONTROLLER

We assume that the reference for F (which is a linear
function of x5) is given by the linear controller. The goal
is to asymptotically track this reference with the actuator
dynamics. Since the actuator subsystem and the suspen-
sion subsystem form a cascade of a nonlinear and a linear
system, the backstepping methodology is an appropriate
choice for our control goal. Backstepping is a control Lya-
punov function-based nonlinear controller design method
Sepulchre et al. [1997]. We will use the notations of van der
Schaft [2000] where backstepping is presented from the
viewpoint of the theory of interconnected passive systems.

The model of the suspension and actuator system with
zero disturbance is written in the following form

ż = Az +Bξ1, (26)

ξ̇1 = a1(z, ξ1) + b1(ξ1)ξ2, (27)

ξ̇2 = a2(ξ2) + b2ua, (28)

where z = [x1 x2 x3 x4]
T with relative displacements x1,

x2 and relative velocities x3(= ẋ1), x4(= ẋ2), moreover,
ξ1 = x5, ξ2 = x6, and

a1(z, ξ1) = −βx5 + αAP (x4 − x3), (29)

b1(ξ1) =

{
γ
√
PS − x5, ξ2 = x6 ≥ 0

γ
√
PS + x5, ξ2 = x6 < 0

, (30)

a2(ξ2) = −
1

τ
x6, (31)

b2 =
1

τ
. (32)

Let us assume that there exists a smooth feedback function
K(z) (possibly in LPV form) such that the closed loop
system

ż = Az +BK(z) (33)

is asymptotically stable with control Lyapunov function
V (z).

The backstepping design for the actuator subsystem can
be performed in two steps. In the first step, let us consider
ξ2 as a virtual input and y1 = ξ1 − K(z) as a virtual
output. Since ξ1 is not a manipulable input, we would
like to construct a feedback that guarantees the tracking
of K(z) with ξ1. It is reasonable therefore to define the
tracking error to be linear and stable, i.e., ẏ1 = −k1y1,

k1 > 0. From this (using eqs. (26)–(27)), the desired time-
function for ξ2 can be computed as a nonlinear feedback
of the form

ξ2,des = α1(z, ξ1)

=
1

b1(ξ1)
[−a1(z, ξ1)

+
∂K

∂z
∙ (Az +Bξ1)− k1(ξ1 −K(z))]. (34)

In the second step, the following virtual output is defined:
y2 = ξ2 − α1(z, ξ1). For the tracking error, a stable linear
dynamics is also prescribed in this case: ẏ2 = −k2y2,
k2 > 0. Using equations (26)–(28), we can now express the
physically manipulable actuator input ua as a function of
z and ξ in the following form

ua = α2(z, ξ1, ξ2)

=
1

b2
∙ [−a2(ξ2) +

∂α1

∂z
∙ (Az +Bξ1)

+
∂α1

∂ξ1
(a1(z, ξ1) + b1(ξ1)ξ2)− k2(ξ2 − α1(z, ξ1))].

(35)

By applying the above design, the closed loop system will
be asymptotically stable with control Lyapunov function
S(z) = V (z) + 1

2y
2
1 +

1
2y
2
2 (see Sepulchre et al. [1997]).

It is important to note that the obtained feedback law
(35) is a state-dependent switching function because of
the switching term b1(ξ1) (see eq. (30)).

Since the actual feedback law generated by the LPV con-
troller is a rather complicated function of the state vari-
ables, and we do not know the road excitation disturbances
in advance, the above controller design procedure cannot
be implemented in its original theoretical form. Therefore
in the next section we will consider the more realistic
assumption, when the reference for x5 is computed by the
high level LPV controller, and for the trajectory tracking,
the time derivatives of the reference signals are computed
numerically.

The reference for x5 computed for the LPV controller is de-
noted by x5,ref . To simplify the forthcoming calculations,
let us use the following notations

ga1(x) = −βx5 + αAp(x4 − x3), (36)

fa1(x5) =
√
PS − x5, (37)

fa2(x5) =
√
PS + x5. (38)

This way, equation (20) can be written as

ẋ5 = ga1(x) + γQ. (39)

The required tracking error dynamics is defined as

ẋ5 − ẋ5,ref = −k1(x5 − x5,ref ) with k1 > 0. (40)

From (40) yield the following form:

γx6fa1,2(x5) = −ga1(x) + ẋ5,ref − k1(x5 − x5,ref ). (41)
The reference for x6 is given by

x6,ref =






−ga1(x) + ẋ5,ref − k1(x5 − x5,ref )

γfa1(x5)
if x6 ≥ 0

−ga1(x) + ẋ5,ref − k1(x5 − x5,ref )

γfa2(x5)
if x6 < 0

.

(42)

The tracking error dynamics for x6,ref is written as

ẋ6 − ẋ6,ref = −k2(x6 − x6,ref ) if k2 > 0. (43)
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This gives

−
1

τ
x6 +

1

τ
ua − ẋv,ref = −k2(x6 − x6,ref ), (44)

from which the following expression for the physical input
ua is deduced:

ua =
1
τ
x6 + ẋv,ref − k2(x6 − x6,ref )

1/τ
. (45)

In order to practically implement the control law, we need
to compute the time derivatives of x5,ref and x6,ref , which
can be done in a number of ways depending on the mea-
surement noise conditions and the required precision. The
controller parameters k1 and k2 determine the convergence
speed of the virtual outputs y1 and y2, respectively.

The asymptotic stability of the closed loop system in
the original theoretical case follows from the structure of
the controller and the control Lyapunov function can be
easily determined van der Schaft [2000]. The first solution
is to write an LPV state-space realization of the whole
closed loop system and find a parameter-dependent or a
parameter-independent Lyapunov function by trying to
solve the corresponding set of LMIs (see, e.g. Scherer and
Weiland [2000]). The second (more conservative) method
uses the fact that the closed loop system is a standard
feedback interconnection of two systems: the mechanical
suspension subsystem together with the LPV controller
and the linearized actuator subsystem together with the
reference tracking controller. In this case, we can apply the
well-known small-gain theorem (see, e.g. Zhou et al. [1996]
or van der Schaft [2000]) to prove the overall stability of
the closed loop system.

5. SIMULATION EXAMPLES

In the first example the tracking properties of the low-level
controller is presented. The force required by the high-level
controller at the front and the left-hand side of the vehicle
is generated by the low-level actuator. The upper plot of
Figure 4 shows that the generated force approximates the
required force with high accuracy. The middle plot shows
that the tracking error is below 1 %. The tracking is tested
in an uncertain case, i.e., when the parameters bls, k

l
s and

kt are assumed to be uncertain and the percentage of the
variation around their nominal value is 10 %. The lower
plot shows that the tracking error is below 5 %.
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Fig. 3. Analysis of the tracking

In the second example the controlled system is tested
on a bad-quality road, on which four bumps disturb the
vehicle motion: the bumps are 8 cm, 6 cm, 2 cm and
4 cm. The time responses of the heave acceleration, the
relative displacement, the wheel travel, and the control
force at the front and the left-hand side of the vehicle
are illustrated in Figure 4. The solid line corresponds to
the force required by the LPV controller in which the
performance specifications are taken into consideration.
The dashed lines illustrate the result of the controllers
designed by the backstepping method. The force tracking
is less accurate than in the previous open-loop case, since
the small error between the required and the generated
forces during the closed-loop operation results in larger
deviation from the required force.
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Fig. 4. Time responses of the designed system

The tracking properties of the controllers are acceptable.
The realization of the control force by using backsteping
method is illustrated in Figure 5. The figure shows the
pressure drop across the piston, the displacement of the
spool valve and the control signal, see equation (18).

In the final example the tracking properties are tested in
an uncertain case, i.e., when the parameters bls, k

l
s and

kt are assumed to be uncertain and the percentage of
the variation around their nominal value is 10 %. The
solid line corresponds to the force required by the LPV
controller in Figure 6. The dashed line illustrates the force
of the controller designed by the backstepping method.
The controller is able to generate the required force even
in uncertain cases. As the handling of uncertainty is an
important consideration we recommend the backstepping
control method for carrying out the low-level task.
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Fig. 5. Time responses of the actuator based on backstep-
ping method

0 1 2 3 4
-3
-2
-1

0
1
2

bo
dy

 a
cc

. (
m

/s
2 )

0 1 2 3 4
-0.04
-0.02

0
0.02
0.04

re
l. 

di
sp

. (
m

)

Time (sec)

0 1 2 3 4
0

0.05

0.1

w
he

el
 d

is
p.

 (
m

)

0 1 2 3 4
-1000

-500
0

500
1000

fr
on

t f
or

ce
 (

N
)

Time (sec)

Fig. 6. Time responses of the controlled system with
parametric uncertainties

6. CONCLUSIONS

In this paper a combined controller has been presented
for the control of active suspension systems. An LPV-
based controller is used to compute the required input
force, which is tracked using a nonlinear controller for
the actuator subsystem. For actuator control a low-level
backstepping-based force-tracking controller has been de-
signed. It has been found that the low-level controller
shows an adequate tracking performance and it is also
able to handle the parametric uncertainties. The successful

combination of the linear and nonlinear control design
methods is possible mainly because of the different time-
domain performance requirements in the two subsystems.
The main advantage of the proposed solution is its ability
to meet complex control performance criteria together
with the handling of switching nonlinear actuator dynam-
ics.
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