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Abstract: The principle of target tracking and data fusion techniques are discussed. To resolve high 
uncertainty that exists in sensors of mobile robots, one multi-sensor data fusion algorithm is presented. The 
algorithm is based on particle filter techniques, fuses the information coming from multiple sensors and 
merges different state space models. So it can be used to eliminate system and measurement noise and 
estimate value of position and headings of mobile robot. On simulation experiments, we compare different 
cases such as single sensors and multi-sensor data fusion, the results demonstrate the feasibility and 
effectiveness of this algorithm and exhibits good tracking performance. 

 

1. INTRODUCTION 

Target tracking is the estimation of unknown target 
kinematical state based on indirect, inaccurate and uncertain 
measurements from sensors. The unknown target kinematics 
of interest is usually the position, velocity, and acceleration 
of the moving target. The sensor measurements are usually 
perturbed by noise and contain information about the target 
kinematics. The objective of target tracking is to collect 
sensors data from a field of view containing potential target 
information and to partition the sensor data into sets of 
observations or tracks that are originated from the same 
sources. Figure 1 depicts a target tracking scenario. 
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"observing"mobile robot
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Fig. 1 An illustration of a target tracking scenario

Multiple sensors：
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2. laser
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One complex tracking system (e.g. multiple robots system) 
usually has multiple sensors in order to improve the accuracy 
of tracking. For the sensor networks consisting of multiple 
sensors, there exist two kinds of architectures for tracking. 
One is hierarchical, consisting of lead nodes and sensing 
nodes. The lead nodes perform data fusion, keep records of 
the targets and communicate with the neighboring lead nodes; 
the sensing nodes collect signals and report to their leader 
nodes. Another architecture has no limits about primary and 
secondary sensors. A neighborhood of sensors nodes is 
dynamically formed when a target presented. All sensors 
receiving signals with strength above a threshold constitute 
an active neighborhood. The one with strongest signals plays 
the leading role. Often several sensors of the same type are 
used, but different types of sensors could be used. The 

sensors may be placed at fixed location or on moving 
platform. In multiple sensors systems, the information from 
each sensor may be have different modalities, it need use 
computer techniques to analyze automatically the information 
from those sensors under some rules; optimize and synthesize 
them to finish the estimation and make the decision. All of 
these improve rapidly the development of multiple sensors 
data fusion technique (Blanc et al. 2005; Hall et al. 1992; 
Prahlad et al. 2006). 

Sensor fusion, i.e., combining data from several sensors to 
improve the estimate, can easily be incorporated in the 
Bayesian approach. Recently, particle filter, also known as 
Sequential Monte Carlo Methods, have become popular tools 
to solve tracking problems (Doucet et al. 2001; Ristic et al. 
2004). The popularity stems from their simplicity, flexibility, 
and systematic treatment of non-linearity and non-Gaussian. 
This technique is a numerical method based on simulation 
and to use discrete hidden Markov chain for modeling, the 
system model describes the evolvement of the unknown state 
(target) over time and the measurement model associates the 
available measurements to the target state. Using the past and 
present measurements, basis on prior information, we can 
perform the prediction and update step, provide an 
approximate distribution for the target state. These have 
significantly increased   mobile robots in tracking, navigation, 
map building etc. (Thrun et al. 2005). 

This paper applies particle filter to implement the state 
estimation and multi-sensor data fusion, and presents a new 
data fusion algorithm. It is organized as follows. In Section II, 
the sensor system of the mobile robots is introduced; the data 
fusion technique is discussed and the target tracking 
formulations are explained. In Section III, we propose the 
detailed algorithm and data model. The simulation results are 
given in Section IV followed by the conclusion in Section V. 

2. DATA FUSION AND TARGET TRACKING 

2.1  Sensor Systems 
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The sensor systems are the medium of the robots probe the 
environment and it is the prominent embodiment about 
robots’ intelligence. In Fig. 1, the robots have these sensors: 
ultrasonic sensors; laser measurement system and vision 
system.  

In order to simplify the algorithm, due to the particularity of 
vision sensors, only ultrasonic and laser sensors are used in 
this paper. 

2.2  Data Fusion 

Data fusion for estimation, or estimation fusion, is the 
problem of how to best utilize useful information contained 
in multiple sets of data for the purpose of estimation an 
unknown parameter or process. These measurements may be 
of different types or include conflicting information. The 
multiple sets of measurements are usually but not necessarily 
obtained from multiple sensors. Even if the measurements 
coming from single sensors, we can artificially treat them 
coming from different locations and view it as the fusion 
problem. In this sense, estimation itself is fusion by fusing 
the prior and posterior information, and filtering is fusion by 
fusing the prediction and current measurement. 

Depending on whether the raw measurements are sent to the 
fusion center or not, there are two basic estimation 
architectures: centralized and distributed (also referred to as 
measurement fusion and track fusion in target tracking, 
respectively). As in Fig. 2(a), 2(b) show, for measurement 
fusion, all raw measurements are sent to the fusion center; for 
track fusion, each sensor only sends the processed data to the 
fusion center. 
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2.3  Target Tracking Formulations 

A state space approach (as in Fig. 3) is used to formulate the 
tracking problem. In this framework, the unknown 
kinematics of the target is called the state. Supposing the 
sequence of the state is belong to one-order Markov process, 
the evolution of the target state kx with time k is described 
by a system model as in 

11 )( ++ += kkk wxfx                               (1) 

where kx is a vector of size xn , xx nn RRf : is a known 

nonlinear function of the state, 1+kw is an additive, 
independent and identically distributed process-noise vector 
of dimension xn  with covariance matrix 1kQ + . 

The target measurement vector l
kz  of size ln  is obtained by 

using the thl ( Ll ,...,1= ) sensor, and it is related to kx by the 
measurement model 

( )l l l
k k k kz h x v= +                                 (2) 

where l
kh  is a known nonlinear measurement function for the 

thl  sensor and l
kv  is an additive independent and identically 

distributed measurement noise sequence vector of size ln  

with covariance matrix l
kR . The system and measurement 

models in (1) and (2) are collectively called the dynamic 
model. 

 

In sensor networks, the type of sensors may be the same or 
different, so there exists cross-sensor and cross-modality data 
fusion to derive the composite measurement at the fusion 
center and its corresponding likelihood density function (Wu 
et al. 2006). As shown in Fig. 4, the signals using the same 
type denoted as ),...,,( 21

m
N

mmm ZZZZ = have the same 

modality. Because data elements in mZ are collected by 
different sensors at different locations, they will contribute 
collectively in the determination of source location. In the 
application these sensors are dependent. As such, cross-
sensor data fusion is usually embedded in the measurement 
model and incorporated into the derivation of likelihood 
function. The multiple modality data ),...,,( 21 LZZZZ =  
comes from different types of sensors and they contribute 
complementary to the estimation. We refer this type of data 
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fusion as cross-modality data fusion. These sensors work 
independently and the data fusion can be formulated as in   

)()...()()( 21 xZpxZpxZpxZp L=                 (3) 

Z )( xZp

1Z mZ LZ

mZ1
mZ2

m
NZ

 

3. DATA MODEL AND ALGORITHM 

From a Bayesian perspective, the tracking problem is to 
recursively evaluate the maximum a posterior (MAP) 
distribution 1:( )k kp x z , given a sequence of measurement 1:kz . 
It is assumed that the initial probability density for the 
state, 0( )p x , is available. Then, in principle, 1:( )k kp x z may 
be obtained recursively in two stages: the prediction stage 
and the update stage. The prediction stage involves using the 
system model to obtain the estimate of the state at the next 
time interval. Then in the update stage, the likelihood density 
function can be calculated using the measurement model to 
update the state generated at prediction stage. The two stages 
can be formulated as 

∫ −−−−− = 11:1111:1 )()()( kkkkkkk dxzxpxxpzxp        (4) 

)(
)()(

)(
1:1

1:1
:1

−

−=
kk

kkkk
kk zzp

zxpxzp
zxp                   (5) 

Principally, using above model and equation, for a given 
initial state and measurement sequences, we can evaluate 
states at any time instance k . Unfortunately, most of the 
presented nonlinear filtering methods (EKF, UKF and DDF), 
which are based on local linearization of the nonlinear system 
equations or local approximation of the probability density of 
the state variables, have yet been universally effective 
algorithms for dealing with both nonlinear and non-Gaussian 
system. For these nonlinear and non-Gaussian problems, the 
sequential Monte Carlo method was investigated (Doucet et 
al. 2001; Gordon et al. 1993).The sequential Monte Carlo 
filter can be loosely defined as a simulation-based method 
that uses a Monte Carlo simulation scheme in order to solve 
on-line estimation and prediction problems, also known as 
particle filter. 

3.1  Particle Filter 

According to Monte Carlo methods (Metropolis et al. 1949), 
assume that we are able to draw N identical independently 
distributed random samples, also named particles, 

{ }NiX i
k ,...,1,)( =  from )( :1kk zxp , the PDF of the state can 

be approximated as 

∑
=

−≈
N

i

i
kkkk xxNzxp

1

)(
:1 )()1()( δ                  (6) 

where )( )(i
kk xx −δ denotes the Dirac delta function. 

Unfortunately, it is usually impossible to sample efficiently 
from the posterior distribution )( :1kk zxp at any time. An 
classical solution consists of using the importance sampling 
(IS) which draw N independent samples from the importance 
function )(⋅q , so the )( :1kk zxp is approximated by 

 ∑
=

−≈
N

i

i
kk

i
kkk xxzxp

1

)()(
:1 )(~)( δω                  (7) 

where the normalized importance weight ( )i
kω are given by 

∑
=

=
N

i

i
k

i
k

i
k

0

)()()(~ ωωω                               (8) 

 If the samples )(i
kx were drawn from the importance function 

)( :1kk zxq , then the importance weights can be calculated as 
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Assume that the importance function is chosen such that 

)(),()( 1:11:0:11:0:1:0 −−−= kkkkkkk zxqzxxqzxq             (9) 

The weights are recursively updated as 
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Prediction, update and evaluation of importance weights 
constitute the sequential importance sampling (SIS). In any 
SIS framework after recursions, it can be proved that the 
variance of the weights increase systematically over time 
with the consequence that we associate unit weight to one 
particle and zero to the other. This degeneracy problem can 
be monitored by increasing the number of particles. But this 
method has no benefit for real-time applications. So the 
ordinary solutions are to choose the importance function and 
to use a resampling operation. 

In order to get good estimation, the distribution of importance 
function should be close to the posterior distribution of the 
true state, so the variance of the importance weights should 
small as soon as possible, and having proved that, as to 
Markovian system, the optimal importance function is  

),(),( 1:11 kkkkkk zxxpzxxq −− =                     (11) 
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N. Gordon proposes the strategy of resampling to control the 
degeneracy problem (Gordon et al. 1993). This resampling 
probabilistically replicates particles with high weights and 
discards particles with low weights. SIS and resampling 
constitute the SIR particle filter. The resampling is an 
optional step based on weights and it could bring the 
impoverishment problem. In order to check whether 
resampling is necessary or not, a threshold criterion is 
defined, eff thN N< , with the threshold thN  and the effective 

sample size effN defined by ∑
=

=
N

i

i
keffN

1

2)( )~(/1 ω .  

3.2  System Model 

In the tracking scenario of Fig. 1, there are two Pioneer 2 
mobile robots, one is the observing robot, its position is fixed 
and it can probe another mobile robot (target) moving 
trajectory using the laser sensor. The state variable of the 
target at time k  is defined as ( , , )T

k k k kx yχ θ= , here, 

let kx , ky , kθ represent the position and heading angle of the 
target in the Cartesian coordinates. During the observed robot 
(target) is moving, there exists an obstacle (wall), the 
distance is measured by the ultrasonic sensors. 

 The dynamics of the mobile robot can be modelled by two 
parts, the rotation and the translation. The rotation and its 
uncertainty can be modelled as 

),(1 rotationrotationkk N σμδθθθ ++=+                   (12) 

where 
x
yatan

Δ
Δ

=δθ denotes the changes in angle of the 

target at time k . Assume the noise is the independent and 
identically distributed Gaussian random process. 

The translation has two sources of errors: the actual travelled 
distance and the changes in orientation during the forward 
translation (drift). The dynamics are defined in this model: 

1 ( , )k k drift driftNθ θ δθ μ σ+ = + +                      (13) 

1 1( ( , )) cos( )k k translation translation kx x Nδρ μ δρ σ δρ θ+ += + + × × × (14) 
1 1( ( , )) sin( )k k translation translation ky y Nδρ μ δρ σ δρ θ+ += + + × × × (15) 

Also assume the noise is the independent and identically 
distributed Gaussian random process. We use the format 
below to denote the (12),(13),(14) and (15) 

1 ( , )k k kx x x Nδ μ σ+ = + +                               (16) 

where kxδ represents the changes in the distance and 

orientation at time k . 

For the sake of simplicity and effectiveness, we choose the 
SIR particle filter for the estimation of the state. The 
importance function and update equation are 

)(),( )(
11

)(
1

i
kkk

i
kk xxpzxxq +++ →                        (17) 

( ) ( ) ( )
1 1 1

i

( ),    1i i i
k k k kp z xω ω+ + += =∑                         (18) 

3.3  Measurement  Model 

Although the tracking procedure in Fig. 1 can be applied 
under quite general measurement models, the assumption of a 
practical model is necessary for the simulation analysis. 

There are 16 ultrasonic sensors mounted on a ring around the 
Pioneer 2 so that a 360° environment can be explored. 
Assume the position of the obstacle (wall) is known and its 
projection on the Cartesian coordinates is one line which can 
be denoted as y hx d= + , so the distance is measured that 
leads to the following measurement model about the 

thn ultrasonic sensor  

2 2 2

2 2 2
1 1 1

n
k k k

h dz x y
h h h

⎛ ⎞ ⎛ ⎞−
= + +⎜ ⎟ ⎜ ⎟

+ + +⎝ ⎠ ⎝ ⎠
      (19) 

The measurement of ultrasonic ring is denoted using one 
vector 

TNus zzzz ),...,,( 21=                       (20) 

The measurement model about the laser sensor is 
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            (21) 

where ( , )s sx y  is the position of the observing robot which is 
fixed. Also, the appropriate noise will be added on these 
measurement models and it belongs to the independent and 
identically distributed Gaussian random process. The system 
model and the measurement model are independent. The 
equation to update the importance weight for fusing the 
multi-modality measurement data is given by 

                            )()( )()()( i
k

lasi
k

usi
k xzpxzp=ω                    (22) 

3.4  Algorithm Implementation 

Here summarizing the algorithm implementation for target 
tracking in sensor networks using ultrasonic and laser sensors. 
The Cross- Sensor and Cross- Modality (CSCM) data fusion 
algorithm is presented below. 

Step1:  Initialization: Randomly generate an initial pose of 
mobile robot, Nix i ,...,2,1,)( = , in location space, It is 
assumed that a mobile robot move on the plane. 

Step2: Prediction: for each particle Ni :1= , draw 
( ) ( )

1
i i

k k kx x xδ −= + . 
Step3: Determine active neighborhood by threshold of 

received sensor signals to generate vector usz  and 
lasz . 
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Step4: Update the weights ( ) ( ) ( )( ) ( )i us i las i
k k kp z x p z xω = and 

normalize the weights. 
Step5:  Compute the expectation of the state of the target   

( ) ( )

1

1ˆ( )
N

i i
k k k

i

E x x
N

ω
=

= ∑ . 

Step6:  Compute the effN  and perform particle resampling 

whenever eff thN N<  

4. SIMULATION AND RESULTS 

Given a particle distribution, we need to find the state which 
defines with accuracy the target position. We use 3 different 
methods: For weighted particle set N

i
i

t
i

tx 1
)()( )},{( =ω , firstly, 

the best particle (the )( j
tx such that )max( )()( i

t
j

t ωω =  ) be 

used; secondly, the weighted mean ( ∑ =
=

N

i
i

t
i

tt xx
1

)()( ω ) and, 

lastly, the robust mean ( εω <−= ∑ =
)()(

1
)()( j

t
i

t
N

i
i

t
i

tt xxandxx ). 

Each method is of its advantages and disadvantages: the best 
particle introduces a discretization error, while the weighted 
mean fails when faced with multi-modal distribution; the best 
method is the robust mean but it is also the most 
computationally expensive. In cases where the target is 
surrounded of objects whose characteristic is similar, the best 
method is to use as state that defines the target position the 
best particle. 

4.1  Single Sensor 

1. Target tracking using ultrasonic sensor only: tracking 
result as shown in Fig. 5(a), 5(b), 5(c), 5(d). 

2. Target tracking using laser sensor only: tracking result 
as shown in Fig. 6(a), 6(b), 6(c), 6(d). 

4.2  Multi- Sensor Data Fusion 

Target tracking using ultrasonic and laser sensors, tracking 
result as shown in Fig. 7(a), 7(b), 7(c), 7(d). 

4.3  Results 

In this paper, we have two data fusion approaches for moving 
target tracking. The performance under 3 different cases is 
compared. The results are shown on Table 1. Our particle 
filter algorithm is run with 500 particles and 100 experiments. 
Performance is measured in terms of the Root Mean Square 
Error (RMSE), defined as: 

∑ ∑
= =

−=
S

i

N

m

true
k

mi
k

mc

mc

xx
NS

RMSE
1 1

2, )(11               (20) 

where mi
kx , is the estimated target state (position and heading 

angle) at time k for thm run. 100mcN = is the total 
independent runs. 25=S is the number of steps. Hence,  by 
fusing multi-information coming from multi-sensors, we 
were able to obtain much better tracking results, its mean 
square error are smaller than tracking using single sensor 
only. Also from the Fig. 5(a), 6(a) and 7(a) (the moving 
mobile robot is at the same position), we could get the 
conclusion intuitively. What is more, the estimation based on  
our algorithm is better than EKF algorithm, but the EKF has 
much less computational load than the particle filter. 
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Fig. 5(a) tracking using 
ultrasonic sensor, the 
yellow line is the wall 

Fig. 5(b) X state 
estimation 

Fig. 5(c) Y state 
estimation 

Fig. 5(d) Theta state 
estimation 

Fig. 6(a) tracking using 
laser sensor, the green dot 

is the observing robot 

Fig. 6(b) X state 
estimation 

Fig. 6(c) Y state 
estimation 

Fig. 6(d) Theta state 
estimation 
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Table 1.    Performance comparison using EKF and our PF algorithm 

RMSE Sensors Algorithms Time (s) x  y  θ  

EKF 10.1143 4.4961e-004 5.9919e-004 1.8586e-005 Ultrasonic Sensors (US) 
PF 12.8085 6.2778e-005 5.2895e-005 1.6088e-006 

EKF 7.9536 8.720e-005 7.4365e-005 6.5030e-006 Laser 
PF 10.5551 2.8555e-006 5.8685e-006 6.2522e-007 

EKF 12.1047 7.5947e-005 6.7309e-005 5.9097e-006 Fusion of US and Laser 
PF 14.5279 1.5268e-006 2.4359e-006 5.5364e-007 

 

5. CONCLUSIONS 

In tracking application, the target state (e.g. position, velocity, 
acceleration) can be estimated by processing the 
measurements collected from all deployed sensors. The 
estimation performance significantly relies on the accuracy of 
the sensor when data fusion is conducted. In this paper we 
have presented a Cross-Sensor and Cross-Modality (CSCM) 
data fusion algorithm based on sequential Monte Carlo 
methods. By fusing multi-information coming from multi-
sensors, integrating different state-space models, we can track 
the moving mobile robot. In the simulation experiments, we 
compare different cases and the results show the feasibility 
and the effectiveness of the algorithm. Our methods can be 
extended to multi-target tracking, which is our future work. 
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