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Abstract: There are a number of competing scientific hypotheses about the structure and parameters
of the human control system concerned with balance. System identification techniques have potential
to distinguish between such competing hypotheses. As a step towards this goal, the data from an initial
series of experiments involving balancing an inverted pendulum by a human via a joystick was analysed
using a recently-developed two-stage continuous-time identification method.
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1. INTRODUCTION

The investigation of physiological control systems in general,
and the control of standing in particular have been the sub-
ject of research over an extended period. One topic of de-
bate is whether physiological control mechanisms can be mod-
elled as technological control systems and, if so, what con-
trol algorithm is used (Fitzpatrick et al., 1996). The so called
proportional-integral-derivative (PID) control algorithm, along-
standing process control algorithm, was suggested some time
ago (Johansson et al., 1988) and has received a lot of atten-
tion recently (Peterka, 2002; Maurer and Peterka, 2005; Pavol,
2005).

Systems with a pure input delay of td sec are common in
technological systems and also seem to be a plausible model for
some physiological control systems. A key insight, attributed
to Smith (Smith, 1959), is that a predictor, based on an
internal system model) can eliminate the time delay from the
feedback loop (though not the overall response) thus reducing
controller design and performance analysis to the delay-free
case. It is plausible that physiological control systems have built
in model-based prediction (McRuer, 1980; Miall et al., 1993;
Wolpert et al., 1998; Bhushan and Shadmehr, 1999; Neilson
and Neilson, 2005; Loram et al., 2006). As the human balance
system is open-loop unstable, some predictors such as that of
Smith (1959) are not applicable; a state-space based approach
akin to that of Kleinman (1969) is used here.

These competing hypotheses must be tested using experimental
data. Given a set of experimental data, two broad classes
of approach can be distinguished: a detailed examination of
(suitably averaged) small sections of data (Loram and Lakie,
2002b), and the more engineering based approach of system
identification (Johansson et al., 1988; Fransson et al., 2003;
Peterka, 2002). This paper suggests the application of a quite

recent two-stage approach to system identification (Gawthrop
and Wang, 2005; Wang and Gawthrop, 2008) which in a sense
combines the two broad classes: the first stage “compresses”
a set of data to yield a non-parametric system model in the
form of either an impulse response or a frequency response;
the second step estimates system parameters from the non-
parametric mode.

Identification of physiological control systems from unper-
turbed measured data has two problems: the controller is em-
bedded in a closed-loop system and the need to estimated dis-
turbance models can both lead to ambiguity in interpretation
of the results. These two pitfalls are avoided here by using an
external measured perturbation to the system and by identifying
the entire closed-loop dynamics.

There are a number of different representations of controllers,
including the transfer function representation based on Laplace
transforms and the state-space approach based on differential
equations. In the context of this paper, it is important that the
controller corresponding to each hypothesis is represented and
implemented within the same control engineering framework
thus avoiding apparent differences solely due to implementa-
tion artifacts. This paper uses a state-space framework within
which PID control and predictive control control are embedded
in a uniform way.

The outline of the paper follows. Section 2 looks at closed-loop
control of an inverted pendulum and derives the corresponding
closed-loop impulse responses for non-predictive and predic-
tive controllers. Section 3 uses the two-stage identification pro-
cess to fit the closed-loop impulse response of the parametrised
predictive controller to the identified impulse response. Section
4 draws some preliminary conclusions.
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Fig. 1. Experimental system

2. SYSTEM AND CONTROL MODELLING

A simple model of human standing is equivalent to the control
of an inverted pendulum (the body) via a spring (tendons and
muscle) (Loram and Lakie, 2002b, Figure 1). It is convenient
to represent such a model by Figure 1(a) where the input u is
the effective input angle θ0 and the output y is the pendulum
angle θp and the length of the pendulum is l. The system can be
modelled with three parameters:

• the inertia about the pivot Jp

• the effective gravitational spring kg and
• the ratio α of the effective spring constant to the gravita-

tional spring.

The feedback structure is given in Figure 1(b) where Hp is the
human controller and d a disturbance signal. The closed-loop
system of Figure 1(b) has one input (d) and two outputs (y and
u).

2.1 Inverted Pendulum

Parameter Value

c 0.850

kp 146

Jp 15.0

Table 1. System parameters

As discussed previously (Loram and Lakie, 2002b), the inverted
pendulum of Figure 1(a) can be modelled by the second order
differential equation:

Jpθ̈− (1− c)kpθ = ckp(u0 +d) (1)

were Jp is the pendulum moment of inertia, kp = mgh the
effective gravitational spring constant, c the stiffness of the
muscle/tendon effective spring, u0 = θ0 the “bias” input and d
an added disturbance that will be used later. It is known (Loram
and Lakie, 2002a) that c < 1 so that (1) represents an unstable
system. Parameter values appear in Table 1.

A standard control engineering approach to introduce controller
integral action (the I of PID) is to augment the system with an
integrator; in this case define a new control signal u

u = u̇0 = θ̇0 (2)

Note that (2) is equivalent to:

u0(t) =
Z t

0
u(t ′)dt ′ +u0(0) (3)

The second order differential equation (1), together with the
new control signal, can be written as the state-space system:

ẋ = Ax+B(u+ ḋ) (4)

y = Cx (5)

where

x =
[

θ̇ θ θ0 +d
]T

(6)

A =

[

0 (1− c)kp ckp

1 0 0
0 0 0

]

; B =

[

0
0
1

]

; C =

[

0
1
0

]T

(7)

2.2 PID control

Give a system in state-space form (4), the standard state-space
controller generates the control signal u by multiplying the
column vector x with the state-feedback row vector k

u = −kx (8)

k = [k1 k2 k3] (9)

Using the standard approach, (9) is substituted into (4) to give:

ẋ = Acx+Bdd (10)

y = Cx (11)

u = −kx (12)

where the closed-loop matrix Ac is given by

Ac = A−Bk (13)

Subject to certain conditions (satisfied in this particular case), k
can be designed to place the closed loop system poles (eigenval-
ues of Ac) anywhere in the complex plane subject to the poles
being either real or in complex-conjugate pairs. In particular, a
k can always be chosen to stabilise the unstable system (1).

There are many possible ways to choose k. In particular,
the Linear-quadratic approach (Kwakernaak and Sivan, 1972)
chooses k to minimise the cost function:

J =
Z ∞

0
xT (t)Qx(t)+Ru(t)2dt (14)

For the purposes of this paper the cost parameters Q and R are
chosen as:

Q =

[

qv 0 0
0 qp 0
0 0 0

]

; R = 1 (15)

The two positive numbers qv and qp weight pendulum angular
velocity and position respectively.

In this particular case, k (16) has three elements and so the
control signal u is given by

u = −[k1θ̇+ k2θ+ k3(θ0 +d)] (16)

Using (1) to replace θ0 on the right-hand side of (16) and and
(2) to replace u on the left-hand side of (16):

θ0 = −[k1θ+(k2 +
1− c

c
k3)

Z

θdt +
Jp

ckp

k3θ̇] (17)

The standard PID controller is of the form:

θ0 = −Kp[θ+
1

Ti

Z

θdt +Td θ̇] (18)

Comparing (18) and (17) gives:

Kp = k1; Ti =
k1

k2 + 1−c
c

k3

; Td =
Jp

ckpk1
k3 (19)

Impulse and frequency response Two useful non-parametric
representations of the closed loop system relating d to y and u
are the impulse responses gy(t) and gu(t). Because the model
(4) includes the derivative of the disturbance d care is needed
when replacing d(t) by the impulse function δ(t) (Lundberg et
al., 2007).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11613



To be compatible with the predictive control considered in
this paper, it is assumed that the system is open-loop for an
infinitesimal time interval after t = 0, the end of this interval is
denoted 0+. Following the analysis of Kailath (1980)(sec. 2.3),
the state of the open-loop system at t = 0+ (4) when d(t) = δ(t)
is:

x(0+) = Bd = AB (20)

If the loop is closed at this point, the initial condition of the
closed loop system (10) becomes Bd and the state evolves as:

x(t) = eActBd (21)

Using (11) and (12), it follows that the closed-loop impulse
response of the system output and input are

gy(t) = CeActBd (22)

gu(t) = −keActBd (23)

2.3 Observer-based PID

PID control in the form of (18) has a serious drawback; it
requires the derivative of the system output y = θ. For this
reason, practical PID controllers use a low-pass filtered version
of this derivative. Exactly the same criticism can be made of
the state-feedback controller (9), and moreover, the third state
contains d which is not available to the controller. For these
reasons, the state feedback is normally used in conjunction
with a state observer. The idea is quite simple, use the system
model (4) to generate an approximation x̂ to the state x and then
feedback the corresponding output error

˙̂x = Ax̂+Bu−L(ŷ− y) (24)

ŷ = Cx̂ (25)

where L is the observer gain vector. Equations (24) and (25) can
be rewritten as

˙̂x = Aox̂+Bu+Ly (26)

where Ao = A− LC. Again, given certain conditions satisfied
here, L can be chosen anywhere in the complex plane subject to
the poles being either real or in complex-conjugate pairs. Again
an LQ approach to choosing L can be used (Kwakernaak and
Sivan, 1972). Here unit measurement noise is assumed whereas
the states are perturbed by noise of variance qo.

The state feedback (9) is replaced by:

u = −kx̂ (27)

Combining (26) and (27), the controller can be rewritten in
standard state-space form as:

˙̂x = Aocx̂+Ly (28)

u = −kx̂ (29)

where Aoc = A−Bk−LC.

Impulse and Frequency Response Defining the state observa-
tion error x̃ = x̂− x, subtracting (4) from (24) gives

˙̃x = Aox̃−Bḋ (30)

ũ = −kx̃ (31)

The closed loop system (10) is replaced by:

ẋ = Acx+Bḋ +Bũ (32)

y = Cx (33)

Defining the combined state of (4) and (30) as

X =

[

x
x̃

]

(34)

equations (10) and (30) can be combined as:

Ẋ = AcoX +Bcoḋ (35)

y = CcoX (36)

u = −kcoX (37)

where:

Aco =

[

Ac −Bk
0 Ao

]

; Bco =

[

B
−B

]

(38)

Cco = [C 0] ; kco = [k k] (39)

Following the approach of Section 2.2.1, the closed-loop im-
pulse response is:

gy = CcoeAcotBdco (40)

gu = −kcoeAcotBdco (41)

where:

Bdco =

[

Bd

−Bd

]

(42)

Similarly, the frequency responses are:

Gy( jω) = Cco[ jωI −Aco]
−1Bdco (43)

Gu( jω) = −kco[ jωI −Aco]
−1Bdco (44)

2.4 Predictive control

As discussed in the introduction, it is plausible that physiolog-
ical control systems have built in model-based prediction. A
state-space formulation of predictive control (similar to that of
Sage and Melsa (1971) and Kleinman (1969)) is now given.

The state-space system (4) is replaced by the following time-
delayed version:

ẋ(t + td) = Ax(t + td)+B(u(t)+ ḋ(t + td)) (45)

y(t + td) = Cx(t + td) (46)

The observer/state-feedback controller (27) is replaced by:

u(t) = −kx̂(t + td |t) (47)

where x̂(t + td |t) is the predicted state given by:

x̂(t + td |t) = eAtd x̂(t)+

Z td

0
eAt ′Bu(t − t ′)dt ′ (48)

Noting that the solution of (45) starting from time t is:

x(t + td) = eAtd x(t)+
Z td

0
eAt ′B(u(t − t ′)+ ḋ(t + td − t ′))dt ′

(49)
It follows that the prediction error x̃(t + td |t) is given by:

x̃(t + td |t) = eAtd x̃(t)+ d̃(t + td) (50)

where:

d̃(t + td) = k

Z td

0
eAt ′Bḋ(t + td − t ′)dt ′ (51)

Combining (45), (47) and (50) gives the closed-loop system:

ẋ(t + td) = Acx(t + td)−BkeAtd x̃(t)−Bd̃(t + td) (52)

y(t + td) = Cx(t + td) (53)

Impulse and Frequency Response In a similar fashion to
Section 2.3.1, define the combined state of (52) and (30) as

X(t) =

[

x(t + td)
x̃(t)

]

(54)

equations (45) and (30) can be combined as:

Ẋ = AcoX +Bcod(ḋ + d̃) (55)

y = CcoX (56)

u = −kcoX (57)
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(a) Vary qp

(b) Vary qv

(c) Vary qo

(d) Vary td

Fig. 2. Theoretical closed-loop disturbance impulse response gy

for predictive control (62).

where:

Aco =

[

Ac −BkeAtd

0 Ao

]

; Bcod =

[

eAtd Bd

−Bd

]

(58)

Cco = [C 0] ; kco =
[

k keAtd
]

(59)

The impulse response of the closed-loop system is computed in
two parts.

(1) When t ≤ td , the control signal is zero and the open
loop system is given by (4) with u(t) = 0. Following the
discussion in Section 2.2.1, the means that:

x(t) = eAtBd (60)

where Bd = AB as given by (20).
(2) When t > td , equation (52). From (60), it follows that

x(td+) = eAtd Bd ; using observer error equation (30) and
the arguments of Section 2.2.1 it follows that x̃(0+) =
−Bd . Hence, from the arguments of section 2.2.1 that
when d = δ and using (54) that the initial condition for
(55) is:

X(0+) = B

[

x(td)+
˜x(0+)

]

=

[

eAtd Bd

−Bd

]

(61)

When d(t) = δ(t), it follows that ḋ(t) = 0 when t > td and so

that, from (51), d̃ = 0. In this case, the impulse responses are
given by (40) and (40) but reinterpreted in terms of this section.

To summarise.

gy(t) =

{

CeAtBd for t ≤ td

CcoeAco(t−td)Bdco for t > td
(62)

gu(t) =

{

−keAtBd for t ≤ td

−kcoeAco(t−td)Bdco for t > td
(63)

The corresponding frequency responses are:

Gy( jω) = C[ jωI −A]−1[I − e−( jωI−A)td ]Bd

+ e− jwtdCco[ jωI −Aco]
−1Bdco (64)

Gu( jω) = −k[ jωI −A]−1[I − e−( jωI−A)td ]Bd

− e− jwtd kco[ jωI −Aco]
−1Bdco (65)

Figure 2 shows the theoretical closed-loop disturbance impulse
response gy for predictive control (62). The three controller de-
sign parameters (15) qp(position weight), qv(velocity weight),
and qo (observer weight) are varied in (a)–(c); the delay td is
varied in (d). The nominal values are qp = qv = qo = 100,
td = 0.18sec. The response is relatively insensitive to the two
controller parameters if above 50; this is because the ultimate
performance is limited by the the time-delay td . The response
is relatively insensitive to observer gain as long as it is large
enough; this is because the states can be accurately observed
within a short time when using a high observer gain. The
response is mainly determined by the time-delay. Ideally, the
response to a disturbance would be zero; therefore the larger
response associated with larger td implies worse performance.
If td > 0, it is impossible to reduce the response to zero. The
impulse responses gu (63) show a similar pattern.

3. DATA ANALYSIS

The experimental setup involved human subjects controlling a
simulated inverted pendulum via a joystick; full detail are given
elsewhere (Loram et al., 2006). All the controllers discussed
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(a) Subject 1 (y)

(b) Subject 1 (u)

(c) Subject 2 (y)

(d) Subject 2 (u)

Fig. 3. Estimated output Angle(y) and input (u). Model-based
estimation (MBE) was used to fit the two controller pa-
rameters (qp and qv) to the output (y) and input (u) impulse
responses derived from the raw data using Frequency Sam-
pling Filters (FSF). The results for two human subjects are
shown.

Subject qp qv td

Subject 1 1.78 28.17 0.18

Subject 2 1.89 11.81 0.18

Table 2. Estimated Controller Parameters.

here are parametrised by the controller gain k (8), (27)& (47)
and the observer gain L (24). There are at least three possible
ways of parameterising the controllers for the model-based
identification of Section 3.

(1) Use the (six) parameters of k and L directly. There are
many other possibilities

(2) Use pole-placement control and use the pole positions as
parameters.

(3) Use a linear-quadratic formulation and use the cost-
function weights as parameters. In the sequel, three pa-
rameters were used:
k the position and velocity were weighted by qp and qv

respectively and the control signal u (not u0) by unity.
L the states were weighted by the unit matrix and the

output by qo.

The simulated and experimental data was analysed using the
two stage approach of Gawthrop and Wang (2005) and Wang
and Gawthrop (2008). In particular:

(1) The closed-loop impulse responses gy and gu were es-
timated using the Frequency-sampling (FSF) Filter ap-
proach (Gawthrop and Wang, 2005). A constrained ver-
sion (Wang et al., 2005) was used to constrain the impulse
responses to be zero a time zero. The use of constraints
in both time and frequency domains to set known values
needs more investigation. In the sequel, the FSF cutoff
frequency was fc = 5Hz and the impulse length was Ts =
5sec – again, more investigation needed.

(2) Controller parameters were fitted using the explicit for-
mulae for gy (62) and gu (63) to compute the impulse

responses for a set of estimated parameters Θ̂. As the
estimation problem is not linear in the parameters, these
estimated parameters were adjusted using a non-linear
optimisation approach due to Kelley (1999) – this method
has the important advantage that upper and lower parame-
ter bounds can be set. The optimisation criterion used was:

J(Θ̂) =
N

∑
i=0

(ĝy(ih,Θ̂)−gy(ih))2 (66)

+(ĝu(ih,Θ̂)−gu(ih))2 (67)

where ĝy(t,Θ̂) and ĝu(t,Θ̂) are the impulse responses

generated from (62) and (63) using the parameters Θ̂ at
time t and h = 0.01sec is the experimental sample interval.
N = 10000 was used here. In the sequel

Θ̂ = [q̂p q̂v t̂d ]
T

(68)

As the responses are quite insensitive to qo, qo = 20 was
fixed. As pointed out by a referee, this fact is proba-
bly related to loop-transfer recovery(LTR) (Maciejowski,
1989).

The results appear in Figure 3 which show that meaningful
impulse responses can be derived from the raw data using the
FSF approach and that these impulse responses can indeed
be fitted with a parametrised predictive controller using the
MBE approach. Similar results were found by using frequency-
domain fitting.
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4. CONCLUSION

The two step identification method has been successfully ap-
plied to data pertaining to human closed-loop control of an
inverted pendulum. These initial results are encouraging, but
more work is needed to draw scientific conclusions. In par-
ticular, the method will be applied to measurements taken on
humans during standing and the impulse repose of controllers
corresponding to alternative strategies derived and compared.

For example, an alternative control strategy, intermittent con-
trol, arises from physiological considerations (Craik, 1947;
Neilson and Neilson, 2005) and again has received recent at-
tention (Loram and Lakie, 2002b; Loram et al., 2006). There
have also been recent publications on intermittent control in
the engineering literature (Ronco et al., 1999; Gawthrop and
Wang, 2006; Gawthrop and Wang, 2007). Intermittent control
involves prediction and is therefore a natural extension of the
predictive control discussed here; future work will embed inter-
mittent control within the analysis and identification methods of
this paper.
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