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Abstract: This paper considers feedforward control of a system which is described by transfer
functions with marginally stable inverses. We present three different feedforward control
strategies. Two of them relies on an ‘ideal’ design which is derived in the noise-free case,
whereas the third is based on Wiener filtering theory. The control strategies are compared
and evaluated for different signal models and in the presence of measurement noise. We show
that the performance can be substantially improved by using the (optimal) Wiener feedforward
controller.
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1. INTRODUCTION

When some disturbances that enters a system are mea-
sureable it is often advantageous to apply feedforward
control. In ideal cases, the effect of these disturbances can
then be totally eliminated before they reach the output.
However, for this to happen a perfect model of the system
is needed and the ideal feedforward controller may turn
out to be unstable or noncausal and therefore has to be
approximated.

In this paper we consider the problem of feedforward
control for systems with marginally stable inverses. This
is problematic since the poles of the inverses cannot be
mirrored into the stable region. Especially, we illustrate a
general Wiener feedforward technique by use of a specific
example. We assume perfect models but noisy data, which
is a way to robustify the design.

2. BACKGROUND

Systems with marginally stable inverses appear when mod-
eling propagation of mechanical waves and sound. Also,
positive real transfer functions between collocated actua-
tors/sensors of undamped vibrating beams are marginally
stable and have marginally stable inverses. This fact is a
consequence of the positive realness, which implies that
the poles and zeros are interlacing along the imaginary
axis [Preumont, 2002].

For systems with marginally stable inverses, the control
problem is challenging since the controller is required to
have very high gain at certain frequencies. In particular,
sensor noise may be amplified and it fundamentally limits
the performance of feedforward control.

Here, we consider an example of feedforward control for
extensional (longitudinal) waves in a bar, as shown in
Figure 1. At two sections, the bar is equipped with strain
gauge pairs. These gauges are arranged to measure only
extensional waves. Also, along a segment of the bar, a pair

Fig. 1. Bar with two strain gauge pairs, one actuator pair
and feedforward control for one-way transmission
from left to right.

of piezo-electric actuators, electrically and mechanically in
parallel, are attached. The idea with this configuration of
bar, sensors and actuator is to apply feedforward control
so that waves traveling from the sensors towards the first
bar-actuator interface will be fully reflected while waves
traveling in the opposite direction, towards the second
bar/specimen interface, will be transmitted undisturbed.
Therefore, waves traveling from the sensors towards the
first bar/actuator interface will be considered measurable
disturbances which are to be suppressed through feedfor-
ward control.

The concept of such a device was originally introduced
in Nauclér et al. [2007] and referred to as a ‘mechanical
wave diode’. For example, two such devices could be
arranged to isolate a region from incoming disturbances.
Furthermore, if disturbances arise within this region, they
are transmitted out of the region without exciting the
control system. The contribution of this paper lies in more
general control strategies compared to the one reported
in Nauclér et al. [2007]. Especially, an approach based on
Wiener smoothing is shown to have superior performance.

2.1 Notation

The following notational conventions are used in this
paper.
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T sampling period
τ time delay (in samples)

q−1 backward shift operator, q−1y(t) = y(t − T )
nP degree of polynomial P
P = P (q−1) p0 + p1q

−1 + · · · + pnP q−nP

P ∗ p∗0 + p∗1q + · · · + p∗nP qnP (reciprocal poly.)
x scalar
x vector
X matrix

When appropriate, the complex variable z is substituted
for the forward shift operator q. The polynomial arguments
q−1, z−1 are sometimes omitted in order to simplify the
notation. The zeros of the polynomial P (z−1) are the
solutions to znP P (z−1) = 0.

3. SYSTEM MODELING

In Figure 1, A, E and ρ denote cross-sectional area,
Young’s modulus and density, respectively. These quan-
tities differ for different sections of the bar. For given
properties of the bar and actuator materials, the cross-
sectional areas A1 and A2 are assumed to be chosen so
that impedance matching is achieved. Therefore, the waves
v̄ and v traveling back and forth in the structure are
transmitted undisturbed through the actuator region if
no control action is applied. The wave motion in the bar
can be expressed in terms of the Fourier transform of the
normal force as

N(ξ, ω) = V (ω)e−iωξ + V̄ (ω)e−iωξ (1)

where ξ is a transformed axial coordinate with dimension
of time [Nauclér et al., 2007], V (ω) and V̄ (ω) are the
Fourier transforms of v(t) and v̄(t), respectively. In the
time domain, (1) means that waves propagates through
the bar without damping and that superposition holds.

In Nauclér et al. [2007], we extensively describe the elec-
tromechanical modeling of the wave diode system. Here,
we will briefly review the final modeling in discrete time,
where it is assumed that the time delays ta, tm and tc are
integer multiples of of the sampling interval T . We label
these multiples as τa, τm and τc, respectively, so that ta =
τaT , etc. This means that we can use the backward shift
operator q−1 so that, e.g., q−τan(t)=n(t − τaT )=n(t − ta).

Generally, the waves represented by v and v̄ overlap in
the time domain. Therefore, the disturbance v cannot
be measured directly. However, the waves traveling back
and forth in the bar can be separated if n1 and n2 are
measured strains at two different bar sections ξ1 = −tm
and ξ2 = tm as in Figure 1 [Lundberg and Henchoz, 1977].
The v̄ component carried by n1 and n2 can by removed by
the filtering operation

no(t) = q−τmn1(t) − q−3τmn2(t). (2)

The fact that v̄ is indeed filtered out can be seen by
equating (2) while assuming noisy measurements,

no(t) = q−τm [qτmv(t) + q−τm v̄(t) + w1(t)]

− q−3τm [q−τmv(t) + qτm v̄(t) + w2(t)] (3)

= B1(q
−1)v(t) + w(t) (4)

with

B1 = 1 − q−4τm

w(t) = q−τmw1(t) − q−3τmw2(t).
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Fig. 2. Block diagram of the wave diode system. B1 and
B2 are polynomials with all zeros on the unit circle.

Here, w(t) is the assembled effect of the two noise sources
w1 and w2. Equation (3) follows from the wave equation
(1) and how n1 and n2 are defined in Figure 1. In the
sequel, no is treated as a ‘virtual’ measured signal that
only depends on v and w, and not on v̄. This signal is used
as input signal to the feedforward controller. The output
from the controller u(t) is fed to the actuator. It has the
input-output relation

y(c)(t) = B2(q
−1)u(t)

where

B2(q
−1) =

1

2

(
1 − q−2τa

)
,

which is derived in Jansson and Lundberg [2007] and
modified to discrete time in Nauclér et al. [2007]. The
signal y(c) denotes the part of the output signal y that
is deduced from the control action. The part of the output
that originates from the disturbance transmission in the
bar, y(t), is a pure time delay of v,

y(t)(t) = q−(τc+τa)v(t), (5)

according to (1) and the bar configuration in Figure 1,
where y(t) = y(c)(t)+y(t)(t) is defined at the 2nd interface.
Finally, we model the time delay that occurs in the
feedforward link due to hardware limitations etc. In order
to prevent a need for signal prediction in the feedforward
filter, this time delay is not allowed to be larger than the
disturbance transmission delay, which is (τc + τa)T , see
(5). Therefore, these time delays are put in relation and
the control loop delay is modeled as (τc + τa − m)T , with
m ≥ 0.

By use of the relations introduced so far the system can be
schematically realized as shown in Figure 2, with the single
input v(t) and single noise source w(t). The measured
signals n1 and n2 are ‘hidden’ in no as described by (2)–(4).
The expressions for the output signal and control signal as
functions of the disturbance and measurement noise can
then be written as

y(t) = [1 + qmB2FB1] q
−(τc+τa)v(t)

+ B2Fq−(τc+τa−m)w(t) (6)

u(t) = qmFB1q
−(τc+τa)v(t) + Fq−(τc+τa−m)w(t), (7)

where B1 and B2 have marginally stable inverses.

The following values of the system parameters are chosen
for illustrations and numerical examples:

T = 5 µs, {τa, τm, τc} = {2, 8, 200}.

These values coincide with the ones employed in Nauclér
et al. [2007].
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3.1 Signal Modeling

The disturbance v(t) and the measurement noise w(t) are
modeled as ARMA processes,

v(t) =
C(q−1)

D(q−1)
ṽ(t) w(t) =

M(q−1)

N(q−1)
w̃(t)

with driving noise variances λ2
ṽ and λ2

w̃, respectively. It is
assumed that v(t) and w(t) are mutually independent.

These models are quite general. One can employ ARMA
models for modeling of stochastic signals as well as
deterministic-like signals, such as steps, pulses etc. as dis-
cussed in Ljung [1999] and Nauclér et al. [2007]. In this
paper we will treat two cases for numerical examples,

Case (i) Case (ii)
C = 1 M = 1 C = 0.1 M = 0.5
D = 1 N = 1 D = 1 − 0.9q−1 N = 1 − 0.5q−1.

The first case treats disturbance and measurement noise
with constant spectra, whereas the second case treats a
disturbance of low frequency content and a noise source
with a relatively broader bandwidth.

3.2 Ideal Feedforward Controller

The ideal feedforward filter, as derived in Nauclér et al.
[2007] is

F (q−1) = −
q−m

B1B2
=

−2q−m

(1 − q−4τm) (1 − q−2τa)
, (8)

which performs perfectly in the noise-free case, yielding
y(t) = 0, see (6). However, if measurement noise is present
the output variance will grow linearly with time. This is
due to that the poles of (8) are located on the unit circle,
and the measurement noise will contribute to the output
as a random walk process after passing (8). The same
problem is apparent for the control signal, u(t). Therefore,
the ideal design needs to modified to be useful in a realistic
scenario where measurement noise is present.

4. FEEDFORWARD DESIGN

In this section three different ways of designing asymp-
totically stable feedforward filters are presented. The first
two techniques utilize the structure of the ideal design and
are therefore referred to as ’fixed feedforward structures’.
The third feedforward design is instead based on Wiener
filtering techniques.

The first approach was originally introduced and analyzed
in Nauclér et al. [2007], whereas the other two are novel
for this paper.

4.1 Fixed Feedforward Structures

The two fixed feedforward approaches are both based on
modifying the ideal design (8) by moving its poles towards
the origin to make the filter asymptotically stable. The
modification is

F (q−1) =
−2q−m

(1 − r1q−4τm) (1 − r2q−2τa)
,

where r1 and r2 are real numbers in the interval [0, 1).
These parameters are design variables that can be adjusted

to for example minimize some cost function. The criteria
we utilize are based on computing the variances of y(t)
and u(t). In order to perform this it is useful to first realize
the system in state-space form. Such a realization has the
structure

x(t + T ) = Φ(r1, r2)x(t) + Γ

[
ṽ(t)
w̃(t)

]

[
y(t)
u(t)

]

= Hx(t)

(9)

where the dependence of r1, r2 on Φ is stressed. The state-
space realization can be obtained using e.g. some kind
of canonical form. Of course, (9) will also depend on the
signal models for v(t) and w(t).

The, the output variance and the control signal variance
can be computed as Söderström [2002]

E

[
y2(t) y(t)u(t)

y(t)u(t) u2(t)

]

= HPHT

where P is the covariance matrix of the state vector x,
which is computed by solving the Lyapunov equation

P = ΦPΦT + Γ

[
λ2

ṽ(t) 0
0 λ2

w̃(t)

]

ΓT . (10)

In (10) the assumption that v(t) and w(t) are mutually
independent is utilized. This procedure of variance com-
putation will also be useful in Section 5, where the different
control strategies are evaluated.

4.2 Fixed one-DOF Design

In the first approach for feedforward design, all poles of the
feedforward filter are constrained to be placed at the same
distance to the origin. This is achieved by minimization of
the criterion

J1 = Ey2(t) s.t. r2 = r
τa/2τm

1 . (11)

Due to the coupling between r1 and r2 this filter has only
one degree of freedom (DOF) and is therefore referred to
as a fixed one-DOF structure. The constraint to place all
poles on the same circle is one way to make the feedforward
filter asymptotically stable. If r1 and r2 are treated as
independent design variables it turns out that Ey2(t) will
decrease as r2 approaches 1. However, the output variance
is not defined for r2 = 1, since this would cancel common
poles and zeros on the unit circle, c.f. (6). In addition,
r2 = 1 would cause u(t) to be a random walk process with
a variance that grows unbounded.

The minimum point of (11) is found in a numerical search
procedure. The equation (10) is repeatedly solved for
different values of r1 and r2. Due to the coupling between
the two parameters the optimization is carried out in one
dimension.

In Figure 3(a) the result of such a procedure is shown for
case (i). For purpose of illustration the output signal is
decomposed in a signal part and a noise part (c.f. (6)),

y(t) = yv(t) + yw(t),

and their respective variances as functions of r1 are shown
in the figure. It portrays the tradeoff between disturbance
rejection and measurement noise sensitivity. The variance
of the signal part decreases as r1 approaches 1, while at the
same time the variance of the noise part rapidly increases.
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Fig. 3. Case (i). (a) Output variance as a function of r1 and
(b) cost function J2 in a contour plot as a function of
r1 and r2. SNR = 20 dB.

In the example, the SNR is set to 20 dB and the minimum
value of the cost function is obtained for r1 = 0.914 and
r2 = 0.989.

4.3 Fixed two-DOF Design

Another way to guarantee the feedforward filter to be
asymptotically stable is to penalize the control signal in
the criterion to minimize. Such a cost function is

J2 = Ey2(t) + ρEu2(t),

where ρ > 0. The amount of penalty on the control signal
determines how close r2 should be to 1. A small value
of ρ gives 2τa number of poles close to the unit circle
and vice versa. The optimization procedure is carried out
in a similar fashion as for the one-DOF structure. The
difference is that also Eu2(t) is employed for each new set
of {r1, r2} and that the optimization is carried out in two
dimensions, since the parameters are treated as indepen-
dent design variables. Therefore, the obtained feedforward
filter is referred to as a fixed two-DOF structure.

For case (i), a contour plot of the cost function is shown in
Figure 3(b). Here, ρ = 10−3 and SNR = 20 dB are chosen.
The value of the cost function for different level curves are
shown in the plot and the minimum point is obtained for
r1 = 0.904 and r2 = 0.941.

For both of the two fix feedforward structures the optimum
values of r1 and r2 will depend on the SNR. For high noise

levels, their values will decrease to diminish the effect of
the noise and vice versa.

4.4 Design based on Wiener Filter Theory

The Wiener filter procedure is different from the other two
design principles in the sense that no prior feedforward
structure is utilized. The Wiener filter is designed to
optimally minimize the cost function

J3 = Ey2(t|t + m) + ρEu2(t|t + m),

where m ≥ 0 is used as a fixed lag smoothing parameter to
possibly improve the performance of the feedforward filter.

Wiener filters are usually designed to recover some desired
signal from noisy measurements. The classical approach
to realize such a filter is to utilize the statistical relation
between the desired signal and the measured signal by
employing the Wiener-Hopf equations [Hayes, 1996]. Other
methods include variational arguments and the completing
the squares approach [Ahlén and Sternad, 1994]. For the
wave diode system, the difficulty is that it is not possible
to pose a Wiener problem in a usual way. One cannot find
two correlating signals that can be used to produce an
asymptotically stable feedforward filter.

Instead, the cost function is evaluated using frequency
domain relations and we notice that the obtained structure
can be utilized to produce a Wiener solution for the
feedforward filter. Expressing the output variance and
control signal variance by use of Parseval’s relation yields

Ey2(t|t + m) =

1

2πi

∮

|z|=1

(1 + zmB2FB1) (1 + zmB2FB1)
∗
Φv

dz

z

+
1

2πi

∮

|z|=1

B2B
∗
2FF ∗Φw

dz

z

Eu2(t|t + m) =
1

2πi

∮

|z|=1

FF ∗B1B
∗
1Φv

dz

z

+
1

2πi

∮

|z|=1

FF ∗Φw
dz

z

and the cost function is readily evaluated,

J3 =
1

2πi

∮

|z|=1

(
Φv + FzmB2B1Φv + B∗

1B∗
2z−mΦvF ∗

+F [B2B
∗
2B1B

∗
1Φv + B2B

∗
2Φw + ρ (B1B

∗
1Φv + Φw)] F ∗

)dz

z

,
1

2πi

∮

|z|=1

(
Φv − FΦzv − ΦvzF

∗ + FΦzF
∗
)dz

z
. (12)

In (12), the spectra Φz and Φvz are defined as

Φz = B2B
∗
2B1B

∗
1Φv + B2B

∗
2Φw + ρ (B1B

∗
1Φv + Φw)

= (B1B
∗
1Φv + Φw) (B2B

∗
2 + ρ) (13)

Φvz = −B∗
1B∗

2z−mΦv (14)

The signal z(t) has no physical interpretation that could
be shown in e.g. Figure 2. It is rather an instrument
in formulating the Wiener solution for minimization of
the cost function J3. The structure in (12) appears when
formulating the Wiener problem by using the completing
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the squares approach [Ahlén and Sternad, 1994]. The
‘direct’ Wiener solution,

F (z−1) = Φvz(z
−1)Φ−1

z (z−1),

is generally unrealizable since it is non-causal. The realiz-
able Wiener filter is instead obtained by first computing
an innovations representation of z(t) and then extracting
the causal part ([ ]+) of a filter [Söderström, 2002].

The innovations representation and its spectrum can be
written as

z(t) = H(q−1)ε(t), Φz = HH∗λ2
ε

where the innovations sequence ε is white with variance λ2
ε

and the asymptotically stable minimum phase filter H are
determined by use of spectral factorization. Inserting the
expressions for the spectra of v(t) and w(t) in (13) yields

(
B1B

∗
1CC∗

DD∗
λ2

ṽ +
MM∗

NN∗
λ2

w̃

)

(B2B
∗
2 + ρ) = HH∗λ2

ε,

(15)
where H must have the structure

H =
β

DN
.

The structure of H is determined by setting the left
hand side of (15) on common denominator form. The
polynomial β has all its roots strictly inside the unit circle
and can be computed by two spectral factorizations; one
for each factor of (15),

B1B
∗
1CC∗NN∗λ2

ṽ + MM∗DD∗λ2
w̃ = β1β

∗
1λ2

ε1
(16)

B2B
∗
2 + ρ = β2β

∗
2λ2

ε2
, (17)

where β = β1β2 and λ2
ε = λ2

ε1
λ2

ε2
. Then, the filter that

minimizes J3 is [Söderström, 2002, Ahlén and Sternad,
1994]

F (z−1) =

[

Φvz

{
H∗

}−1 1

λ2
ε

]

+

H−1

= −
λ2

ṽ

λ2
ε

[
B∗

1B∗
2z−mCC∗N∗

Dβ∗

]

+

DN

β
. (18)

The causal bracket [ ]+ in (18) can be evaluated by solving
a Diophantine equation [Ahlén and Sternad, 1994]. This
can be seen by writing the expression as a sum of a causal
and strictly anti-casual part,

[
B∗

1B∗
2z−mCC∗N∗

Dβ∗

]

+

=

[
Q

D

]

+

+

[

z
L∗

β∗

]

+
︸ ︷︷ ︸

=0

, (19)

where Q and L∗ are polynomials in z−1 and z, respectively,
of degree

nQ = max{nC + m, nD − 1}

nL = max{nB1 + nB2 + nC + nN − m, nβ} − 1.

The Diophantine equation is obtained by expressing the
right hand side of (19) on common denominator form
(ignoring the brackets),

B∗
1B∗

2z−mCC∗N∗ = β∗Q + zDL∗, (20)

and the optimal filter is obtained using (18) and (19),

F (z−1) = −
λ2

ṽ

λ2
ε

Q(z−1)N(z−1)

β(z−1)
. (21)

The Diophantine equation (20) will have a unique solution
due to the construction of Q and L∗, as described in Ahlén
and Sternad [1989].

A remark regarding the choice of ρ: It can be seen from
(17) that ρ = 0 generates a feedforward filter with poles on
the unit circle. This is due to the fact that β then would
have a factor B2, which leads to a feedforward filter that
is only marginally stable when (21) is computed. Thus,
ρ = 0 is not a permitted choice.

This design strategy is directly applicable to more general
models. One needs only to modify (6) and (7) and carry
out the above calculations.

5. NUMERICAL EXAMPLES

In this section the different feedforward control strategies
are evaluated and compared for different SNR values.
The one-DOF, two-DOF and Wiener feedforward filters
are denoted F1, F2 and F3, respectively. For F2 and F3,
ρ = 10−3 is chosen. The Wiener feedforward filter is
evaluated for pure filtering (m = 0) and smoothing with
m = 32. This value appears to yield a reasonable tradeoff
between performance and time delay requirements.

The result for case (ii) is reported in Figure 4. The (a)-
parts of the figure shows the normalized output variance
as a function of the SNR in dB scale. The interpretation
should be that the feedforward control is efficient for
SNR values that yield outputs below 0 dB. If the output
quantity reaches above 0 dB, the control loop amplifies the
disturbance v(t) and the wave diode becomes useless.

The (b)-part of the figure depict the normalized cost
function measure [Ey2(t) + ρEu2(t)]/Ev2(t). Here, the
Wiener filter F3 should give better performance than F1

and F2. This is due to the fact that it in some sense has
the ‘truly optimal’ structure.

The two feedforward filters based on Wiener filtering yield
the best performance in terms of cost function evaluation.
The Wiener filter with fixed lag smoothing gives the lowest
value since this filter utilizes ‘future’ data.

In terms of output variance minimization, the Wiener
filters also give the best overall performance. For high
SNR values the one-DOF feedforward filter F1 gives very
low output variance. It may even beat the Wiener filter
structures. This is to the expense of a very high control
signal variance. Notice that F1 is not designed to take the
magnitude of the control signal into account. The effect
of this can be seen in Figure 4 (b) where the variance
of the control signal dominates for high signal to noise
ratios. Here, F1 clearly gives a substantial performance
degradation compared to the other design techniques.

The overall performance of the two-DOF filter F2 lies
somewhat in-between F1 and F3. It performs similar to
F1 for low to moderate SNR values. However, it lacks F1:s
drawback of a substantial control signal variance for high
SNR.

Another issue is robustness against modeling errors. In
Figure 5, the case of inaccurate signal models are evalu-
ated. The system is here operating with the signal models
of case (ii), whereas the feedforward design is carried
out under the assumption of case (i). Therefore, Figure
5 should be compared to Figure 4 since both figures re-
ports results from identical systems. It can be seen that
the performance of the feedforward filter is only slightly
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Fig. 4. Case (ii). Evaluation of (a) the output variance and
(b) the cost function with control signal penalty.

degraded when wrong signal models are utilized and that
the different design strategies keep their joint grading. A
circumstance that perhaps can be seen a bit ambiguous is
that the cost function measure for F1 actually is a bit im-
proved in Figure 5 compared to Figure 4. The explanation
is that the control signal is not accounted for in the design
of F1, see (11).

6. CONCLUSIONS

In this paper, the results reported in Nauclér et al. [2007]
are extended with more general types of feedforward
control strategies. An apparent motivation for the work
is to investigate how much can be gained by utilizing
an optimal design strategy that does not presume a pre-
determined model structure. In order to accomplish this, a
criterion with control signal penalty is introduced, which
allows optimal feedforward control design based on Wiener
filtering. The technique is general and can be used for
systems that contains transfer functions with marginally
stable inverses. This is in contrast to the previous work
that only considered output variance minimization with
constraint on the pole locations for a pre-determined
feedforward structure.

The conclusion is that it is worthwhile to employ the
Wiener filter structure. The main achievement is that the
output variance can be kept low for a wide range of SNR
values and at the same time keeping the control signal
variance at moderate levels.
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Fig. 5. Robustness examination. Design based on case (i),
whereas the true system applies to case (ii).

REFERENCES

A. Ahlén and M. Sternad. Optimal deconvolution based on
polynomial methods. IEEE Trans. on Acoustics Speech
and Signal Processing, 37:217–226, 1989.

A. Ahlén and M. Sternad. Derivation and design of
Wiener filters using polynomial equations. In C.T.
Leondes, editor, Control and Dynamic Systems, Vol
64: Stochastic Techniques in Digital Signal Processing
Systems, pages 353–418, USA, 1994. Academic Press.

M.H. Hayes. Statistical Signal Processing and Modeling.
J. Wiley & Sons, Inc, USA, 1996.

A. Jansson and B. Lundberg. Piezoelectric generation of
extensional waves in a viscoelastic bar by use of a linear
power amplifier: Theoretical basis. Journal of Sound
and Vibration, 306:318–332, 2007.

L. Ljung. System Identification. Prentice–Hall, Upper
Saddle River, NJ, USA, 2nd edition, 1999.

B. Lundberg and A. Henchoz. Analysis of elastic waves
from two-point strain measurement. Experimental Me-
chanics, 17:213–218, 1977.

P. Nauclér, B. Lundberg, and T. Söderström. A mechan-
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