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Abstract: This paper concerns a swing-up control problem for an n-link revolute robot in a
vertical plane with its first joint being passive and the rest being active. The objectives of this
paper are: 1) to design a controller under which the robot can be brought into any arbitrarily
small neighborhood of the upright equilibrium point, where all links of the robot remain in
their upright positions; 2) to attain a global analysis of the motion of the robot under the
controller. To achieve the above challenging objectives, first, this paper addresses how to devise
iteratively a series of virtually composite links for designing a coordinate transformation on the
angles of all active joints. Second, this paper constructs a novel Lyapunov function based on the
transformation, and proposes an energy based swing-up controller. Third, this paper carries out
a global analysis of the motion of the robot under the controller, and establishes some conditions
on control parameters for achieving the swing-up control objective. This paper provides insight
into the energy or passivity based control to underactuated multi-degree-of-freedom systems.

1. INTRODUCTION

Recent years, many researchers have studied underactu-
ated mechanical systems, which possess fewer actuators
than degrees of freedom. Such mechanisms arise in several
ways, e.g., the intentional designs as the pendulum type
robots in Hauser and Murray [1990], Spong and Block
[1995]; rigid robots with elastic joints/flexible links in De
Luca et al. [2001]; robots with actuator failure in Arai
et al. [1998]. Since these systems usually have nonholo-
nomic second-order constraints, their control problems are
challenging, see Grizzle et al. [2005], Ortega et al. [2002].

There are many researches on 2-DOF (degree of freedom)
pendulum type robots, e.g., Åström and Furuta [2000],
Hauser and Murray [1990], Spong [1995]. The energy based
control approach, which has been developed in the seminal
works of Fantoni et al. [2000], Kolesnichenko and Shiriaev
[2002], Spong [1996], has been shown theoretically effective
for solving the swing-up control problem for the Pendubot
in Fantoni et al. [2000], Kolesnichenko and Shiriaev [2002]
and the Acrobot in Xin and Kaneda [2007a].

Note that the complete analysis of the swing-up control
for a 3-link planar robot in a vertical plane with its first
joint being passive and the rest being active, has not been
reported in Spong [1996]. A swing-up control problem was
studied in Xin and Kaneda [2007b] for this 3-link planar
robot. Different from the 2-DOF case, it is shown in the
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above paper that it is difficult to analyze the motion of
the 3-link robot under the swing-up controller designed by
using the Lyapunov function which contains the energy of
the robot, the angles and angular velocities of two active
joints. To overcome this difficulty, Xin and Kaneda [2007b]
treated the links 2 and 3 as a virtually composite link
and proposed a coordinate transformation of the angles of
two active joints. Moreover, based on the transformation,
a new Lyapunov function was constructed for designing
an energy based swing-up controller and for achieving a
global analysis of the motion of the 3-link robot under the
controller.

In this paper, we investigate how to extend the design and
analysis for the 3-link robot in Xin and Kaneda [2007b] to
a general n-link planar robot with passive first joint. The
objectives of this paper are: 1) to design a controller under
which the robot can be brought to any arbitrarily small
neighborhood of the upright equilibrium point, where all
links remain in their upright positions; 2) to attain a global
analysis of the motion of the robot under the controller.

For the n-link robot, first, we address how to devise a
series of virtually composite links in an iterative way for
designing a coordinate transformation on the angles of all
active joints, which is a main contribution of this paper.
Second, we construct a Lyapunov function based on the
transformation, and propose a swing-up controller. Third,
we carry out a global analysis of the motion of the robot
under the controller. Indeed, by using the devised virtually
composite links, we succeed in revealing the relationship
between the closed-loop equilibrium points and a control
parameter, and we establish some conditions on control
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parameters for achieving the swing-up control objective.
This is another main contribution of this paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Model of an n-Link Underactuated Robot

Consider an n-link revolute robot with passive first joint
shown in Fig. 1, where for the ith (i = 1, . . . , n) link, mi

is its mass, li is its length, lci is the distance from joint i
to its center of mass (COM), and Ii is the inertia moment
around its COM.
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Fig. 1. An n-link underactuated planar robot.

Partition the generalized coordinate vector q as q =[
q1 q

T
a

]T
, with qa = [ q2 . . . qn ]T. The motion equations

of the robot are:

M11q̈1 +M1aq̈a +H1 +G1 = 0, (1)

Ma1q̈1 +Maaq̈a +Ha +Ga = τ, (2)
where

M(qa) =
[
M11 M1a

Ma1 Maa

]
(3)

is a symmetric positive definite inertia matrix containing
only qa; H1 ∈ R and Ha ∈ R

n−1 contain Coriolis and
centrifugal terms, G1 ∈ R and Ga ∈ R

n−1 contain
gravitational terms, and τ = [ τ2 . . . τn ]T ∈ R

n−1 is the
input torque vector produced by n− 1 actuators at active
joints 2, . . ., n.

The energy of the robot is expressed as

E(q, q̇) =
1
2
q̇TM(qa)q̇ + P (q), (4)

where P (q) is the potential energy and is defined as

P (q) =
n∑

i=1

migYGi =
n∑

i=1

βi sin
i∑

j=1

qj , (5)

where g is the acceleration of the gravity, YGi is the Y -axis
coordinate of the COM of link i, and

βi := milcig +
( n∑

j=i+1

mj

)
lig, for i = 1, . . . , n. (6)

Note that P (q), G1(q), and Ga(q) satisfy

G1(q) =
∂P

∂q1
, Ga(q) =

∂P

∂qa
. (7)

2.2 Problem Formulation

Consider the following upright equilibrium point:

q1 =
π

2
(mod 2π), qa = 0, q̇ = 0, (8)

where the equality of passive joint angle q1 holds modulo
2π, that is, q1 is treated in S1, which denotes a unit circle;
and active joint angle vector qa is treated in R

n−1.

For E(q, q̇), q̇a, and qa, if we can design τ such that

lim
t→∞E(q, q̇) = Er, lim

t→∞ q̇a = 0, lim
t→∞ qa = 0, (9)

where Er :=
∑n

i=1 βi is the energy of the robot at the
upright equilibrium point, then from the analysis of Case
1 in Section 5, we know that the robot can be swung
up to any arbitrarily small neighborhood of the upright
equilibrium point.

A Lyapunov function candidate for designing such τ is

VA =
1
2
(E − Er)2 +

1
2
kD q̇

T
a q̇a +

1
2
kP q

T
a qa, (10)

where scalars kD > 0 and kP > 0 are control parameters.
However, similar to the discussion in Xin and Kaneda
[2007b], we find that it is difficult to complete the motion
analysis of the robot under the controller designed via such
VA. Thus, to devise a Lyapunov function for designing τ
and fulfilling the motion analysis for the robot, we shall
propose a coordinate transformation on qa.

3. VIRTUALLY COMPOSITE LINKS AND
COORDINATE TRANSFORMATION

For links 2 to n of the robot shown in Fig. 1, we devise
n−1 virtually composite links (VCLs) described as follows:
for i = 2, · · · , n, we consider links i to n of the robot as
VCL i, which starts from joint i, and whose COM is the
same as the joint COM of links i to n, see Fig. 2. Although
the definition of VCL n as link n of the robot is a little
abuse of words of virtually composite link, under such a
definition, we can construct VCLs iteratively. Indeed, for
i = 2, · · · , n− 1, we can see that VCL i is a composite
link of link i and VCL i+ 1, see Fig. 3. This facilitates
expressing the results in this paper in a concise and unified
way.

For VCL i shown in Fig. 3, we define:

lci: the distance between joint i and the COM of VCL i;
qi: the angle of VCL i with respect to link i− 1;
θi+1: the angle of VCL i with respect to link i.

If lci = 0, that is, VCL i shrinks to a point at joint i, then
neither qi nor θi+1 can be well defined. To avoid occurrence
of such case, we make the following assumption, which is
discussed further at the end of this section.

Assumption 1: lci > 0 holds for all [ qi+1 . . . qn ] ∈ R
n−i.
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Fig. 2. Links i to n and a VCL i.

Consider the following coordinate transformation on qa:

qa := [ q2 . . . q̄n ]T . (11)

We shall derive qa in terms of qa. For 2 ≤ i ≤ n, since qi
is the angle of link i with respect to link i − 1, from the
definitions of qi and θi+1, we obtain

qi = qi + θi+1, for 2 ≤ i ≤ n, with θn+1 = 0. (12)

We express θi+1 in what follows by using the fact that VCL
i is a composite link of link i and VCL i+1. First, we use a
Cartesian coordinate system (xi, yi) with its origin at joint
i and its x-axis lying on link i, see Fig. 3. Since in these
coordinates the coordinates of COMs of link i and VCL
i + 1 are (lci, 0) and (li + lc(i+1) cos qi+1, lc(i+1) sin qi+1),
respectively, letting (xci, yci) be the coordinates of the
COM of VCL i, we obtain

(xci, yci) =
(βi + βi+1 cos qi+1, βi+1 sin qi+1)

mig
, (13)

where
βi := milcig, (14)

where mi :=
∑n

j=imj is the mass of VCL i.

Next, from (13), we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin θi+1 =

yci

lci

=
βi+1 sin qi+1

βi

,

cos θi+1 =
xci

lci

=
βi + βi+1 cos qi+1

βi

,

(15)

which yields

θ̇i+1 = wi+1q̇i+1 + vi+1β̇i+1, for 2 ≤ i ≤ n− 1, (16)

where

wi+1 :=
βi+1(βi+1 + βi cos qi+1)

β2
i

, vi+1 :=
βi sin qi+1

β2
i

. (17)

Next, to treat β̇i+1, we derive the following iterative rela-
tion between βi and βi+1 from (14) and lci =

√
x2

ci + y2
ci:

βi = h(βi, βi+1, qi+1), for 2 ≤ i ≤ n− 1, with βn = βn,(18)

where
h(a, b, z) :=

√
a2 + b2 + 2ab cos z. (19)

Thus, we obtain

β̇i = pi+1q̇i+1 + fi+1β̇i+1, (20)

where

pi+1 := −βiβi+1 sin qi+1

βi

, fi+1 :=
βi+1 + βi cos qi+1

βi

. (21)

Using (20) and β̇n = 0, we can express θ̇i+1 in (16) as

θ̇i+1 = −
n−1∑
j=i

φi(j+1)q̇j+1, for 2 ≤ i ≤ n− 1, (22)

where φi(j+1) is a function of qa and its expression is
omitted due to page limitations.

When qi+1 = 0, that is, link i and VCL i+1 are stretched
straight out, it is reasonable to define
θi+1 = 0, when qi+1 = 0, for 2 ≤ i ≤ n− 1. (23)

Thus, θi+1 can be determined by (22) and (23).

To summarize, as to qa and qa, owing to (12) and (23),
qa = 0 ⇐⇒ qa = 0 (24)

holds. As to q̇a and q̇a, from (12) and (22), we have

q̇a = Φ(qa)q̇a, (25)

where Φ(qa) is the following upper triangular matrix:

Φ(qa) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 φ23 · · · φ2i · · · φ2n

0 1 · · · φ3i · · · φ3n

...
... · · · ... · · · ...

0 0 · · · 1 · · · φin

...
... · · · ... · · · ...

0 0 · · · 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

Finally, as to Assumption 1, from (14) and (18), we know
that lci = 0 holds if and only if βi = βi+1 and cos qi+1 =
−1. Thus, lci �= 0 holds for all qa ∈ R

n−1 if

iq

_

i
q
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Fig. 3. Links i− 1 and i; VCLs i and i+ 1.
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βn−1 �= βn, βk >

n∑
j=k+1

βj , for 2 ≤ k ≤ n− 2. (27)

Note that a 4-link robot with mj = m, lcj = lj/2 = l/2
for 1 ≤ j ≤ 4 is an example of the robots satisfying (27).

4. SWING-UP CONTROLLER FOR THE ROBOT

We take the following Lyapunov function candidate:

V =
1
2
(E − Er)2 +

1
2
kD q̇

T
a q̇a +

1
2
kP q

T
a qa. (28)

Instead of qa in VA, we use qa in V . Obviously, from (24),
we know that limt→∞ V = 0 is equivalent to (9).

Taking the time-derivative of V along the trajectories of
(1) and (2), and using Ė = q̇Ta τ and using q̇a = Φ−1q̇a
owing to (25), we obtain

V̇ = q̇Ta

(
(E − Er)τ + kD q̈a + kP Φ−Tqa

)
.

where Φ−T denotes (Φ−1)T. If we can choose τ such that

(E − Er)τ + kD q̈a + kP Φ−Tqa = −kV q̇a (29)

holds for some constant kV > 0, then we have

V̇ = −kV q̇
T
a q̇a ≤ 0. (30)

We discuss under what condition (29) is solvable with
respect to τ for any (q, q̇). From (1) and (2), we obtain

M̂aaq̈a = τ − Ĥa − Ĝa, (31)

where Ĥa := Ha −Ma1M
−1
11 H1, Ĝa := Ga −Ma1M

−1
11 G1,

and

M̂aa := Maa −Ma1M
−1
11 M1a > 0.

Substituting (31) into (29) yields

Λ(q, q̇)τ = kD(Ĥa + Ĝa) − M̂aa(kV q̇a + kP Φ−Tqa), (32)

where

Λ(q, q̇) := kDI + (E(q, q̇) − Er)M̂aa(qa), (33)

where I denotes an identity matrix of size (n−1)×(n−1).
Therefore, when

det Λ(q, q̇) �= 0, for ∀q, ∀q̇ (34)

holds, the following controller obtained from (32) has no
singular points for any (q, q̇):

τ = Λ−1
(
kD(Ĥa + Ĝa) − M̂aa(kV q̇a + kP Φ−Tqa)

)
. (35)

We are ready to present the following theorem.
Theorem 1. Consider the robot in (1) and (2). Suppose
that kD > 0, kP > 0, and kV > 0 hold. Then the controller
(35) has no singular points for any (q, q̇) if and only if

kD > max
qa

{
(Er + ψ(qa))λmax

(
M̂aa(qa)

)}
, (36)

where λmax(M̂aa) denotes the maximal eigenvalue of M̂aa,

ψ(qa) =
( n∑

i=1

β2
i + 2

n−1∑
i=1

n∑
j>i

βiβj cos
j∑

k=i+1

qk

)1/2

. (37)

In this case,

lim
t→∞V = V ∗, lim

t→∞E = E∗, (38)

lim
t→∞ qa = q∗a, , lim

t→∞ qa = q ∗
a , (39)

where V ∗, E∗, q∗a and q ∗
a are some constants. Moreover, as

t → ∞, every closed-loop solution (q(t), q̇(t)) approaches
the following invariant set:

W =
{

(q, q̇) | q̇21 =
2(E∗ − P (q1, q∗a))

M11(q∗a)
; qa ≡ q∗a

}
. (40)

Proof. See Appendix A.

5. MOTION ANALYSIS OF THE ROBOT

We shall characterize the invariant set W in (40) by ana-
lyzing the convergent value V ∗ of the Lyapunov function
V in (28). Since limt→∞ V = 0 is equivalent to (9), we
analyze two cases of V ∗ = 0 and V ∗ �= 0, separately.

Case 1: V ∗ = 0

From (28) and (24), we have E∗ = Er, q ∗
a = 0, and q∗a = 0.

Thus, from (40), we obtain

q̇21 =
2Er

M11(0)
(1 − sin q1). (41)

Therefore, the closed-loop solution (q(t), q̇(t)) approaches
the following invariant set as t→ ∞:

Wr = {(q, q̇) | (q1, q̇1) satisfies (41); qa ≡ 0}. (42)

Since (41) is a homoclinic orbit (see the definition in Sastry
[1999], p.44) which converges to the equilibrium point
(q1, q̇1) = (π/2, 0) as t→ ∞,(q1(t), q̇1(t)) will have (π/2, 0)
as an ω-limit point, that is, there exists a sequence of times
tn (n = 1, . . . ,∞) such that tn → ∞ as n → ∞ for which
limn→∞(q1(tn), q̇1(tn)) = (π/2, 0). Hence, the robot can
enter any arbitrarily small neighborhood of the upright
equilibrium point as t→ ∞.

Case 2: V ∗ �= 0

Using E ≡ E∗, qa ≡ q∗a, qa ≡ q ∗
a , and (29), we can show

that E∗ �= Er and τ is a constant vector τ∗ satisfying:
kP q

∗
a + (E∗ − Er)ΦT(q ∗

a )τ∗ = 0,with E∗ �= Er. (43)

We are ready to present the following lemma.
LEMMA 1. Consider the invariant set W defined in (40).
Let (q(t), q̇(t)) ∈ W . If V ∗ �= 0 holds, then q1(t) is a
constant in the invariant set W . In other words, q(t) ≡ q∗
holds in the invariant set W .

Proof. See Appendix B.

Putting q ≡ q∗, into (1), (2) and (4), we obtain
G1(q∗) = 0, τ∗ = Ga(q∗), E∗ = P (q∗). (44)

Define the following equilibrium set:
Ω = {(q∗, 0) | q∗ satisfies (43) and (44) }. (45)

We are ready to present the following theorem.
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Theorem 2. Consider the robot in (1) and (2). Suppose
that kD satisfies (36), kP > 0 and kV > 0 hold. Then
under the controller (35), as t → ∞, the closed-loop
solution (q(t), q̇(t)) approaches

W = Wr ∪ Ω, with Wr ∩ Ω = ∅, (46)

where Wr is defined in (42), and Ω is the set of equilibrium
points defined in (45).

6. ON CLOSED-LOOP EQUILIBRIUM POINTS

Note that all closed-loop equilibrium points are those in
the set Ω and the upright equilibrium point. If the set
Ω contains a stable equilibrium point in the sense of the
Lyapunov stability, then the robot can not be swung up
arbitrarily close to the upright equilibrium point from
some neighborhoods close to the stable equilibrium point.

Since for any given kP the set Ω contains at least one
element of the downward equilibrium point, where all links
remain in their downward positions, we aim at providing
some conditions on kP such that the set Ω does not contain
any other equilibrium point. We present a main result of
this paper by the following theorem with its proof given
in Appendix C.
Theorem 3. Consider the robot in (1) and (2). Suppose
that kD satisfies (36), and kV > 0 holds. If kP satisfies

kP > max
2≤i≤n

kmi, (47)

where

kmi := 2Erβi−1

⎛⎝ n∑
j=i

βj

⎞⎠/⎛⎝ n∑
j=i−1

βj

⎞⎠ , (48)

then under the controller (35),

1) Ω in (45) contains only the downward equilibrium
point;

2) the downward equilibrium point is unstable in the
closed-loop system;

3) the closed-loop solution (q(t), q̇(t)) approaches
W = Wr ∪ {(−π/2, 0, · · · , 0, 0, · · · , 0)} (49)

as t→ ∞, where Wr is defined in (42).

Note that conditions on kp in (47) for n = 2 and n = 3
coincide with that for the Acrobot in Xin and Kaneda
[2007a] and that for the 3-link robot in Xin and Kaneda
[2007b], respectively.

7. CONCLUSIONS

The control objective of this paper is to swing up an
n-link planar robot in a vertical plane with a passive
first joint to any arbitrarily small neighborhood of the
upright equilibrium point. In this paper, first, we addressed
how to devise a series of virtually composite links in an
iterative way for designing a coordinate transformation
on the angles of all active joints. Second, we constructed
a Lyapunov function based on the transformation for
designing a swing-up controller. We also provided the
necessary and sufficient condition for nonexistence of any
singular points in the controller for the robot starting from

any initial state. Third, we attained a global analysis of the
motion of the robot under the devised controller. Indeed,
we showed that starting from any initial state, the state of
the robot will eventually approach either any arbitrarily
small neighborhood of the upright equilibrium point, or a
certain equilibrium point belonging to the set Ω in (45).
With the advantage of the coordinate transformation, this
paper attained the condition on the control parameter
kP such that the set Ω contains only the downward
equilibrium point, which is shown to be unstable under
the proposed controller.

This paper provided insight into the energy or passivity
based control to underactuated multi-DOF systems. More-
over, the design and analysis in this paper can be extended
to the swing-up control problem of an n-link robot in
a vertical plane with any single passive joint among all
joints. Thus, this paper contributes to fault tolerance of
fully-actuated n-DOF manipulators when a joint actuator
fails.

Appendix A. PROOF OF THEOREM 1

First, we analyze (34) in what follows. Using E(q, q̇) ≥
P (q), Er ≥ P (q), and M̂aa(qa) > 0, we obtain

Λ(q, q̇) ≥ (kD − (Er − P (q))λmax(M̂aa)
)
I.

where I is an (n− 1)× (n− 1) identity matrix. Therefore,
a sufficient condition such that (34) holds is

kD > max
q
f(q); f(q) = (Er − P (q))λmax

(
M̂aa(qa)

)
. (A1)

We show that (A1) is also a necessary condition such
that (34) holds. To this end, for any given kD satisfying
0 < kD ≤ maxq f(q), we just need to show that there exists
an initial state (q(0), q̇(0)) at which Λ(q, q̇) is singular.
Let b ∈ R

n be a value of q which maximizes f(q), that
is, b = arg maxq f(q). Owing to kD ≤ f(b), there exists
d ∈ R

n such that
1
2
dTM(ba)d =

f(b) − kD

λmax

(
M̂aa(ba)

) ≥ 0,

where ba = [ 0 I ] b. Thus, for an initial state (q(0), q̇(0))
= (b, d), we have

kD +
(
E
(
q(0), q̇(0)

)− Er

)
λmax

(
M̂aa

(
qa(0)

))
= kD +

(1
2
dTM(ba)d+ P (b) − Er

)
λmax

(
M̂aa(ba)

)
= 0.

This yields

det
(
kDI +

(
E
(
q(0), q̇(0)

)− Er

)
M̂aa

(
qa(0)

))
= 0.

Thus, (34) has singular points if kD ≤ maxq f(q).

In what follows, we show that (36) is equivalent to (A1).
Note that for any q which maximizes f(q) in (A1),

∂f(q)
∂q1

= −∂P (q)
∂q1

λmax

(
M̂aa(qa)

)
= 0 (A2)

must hold. This yields ∂P (q)/∂q1 = G1(q) = 0. Under the
condition G1(q) = 0, using P (q) in (5) and G1(q) = 0 in
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(7), computing P 2(q) = P 2(q) + G2
1(q), we can express

P (q) in terms of qa as follows:
P (q) = ±ψ(qa), when G1(q) = 0, (A3)

where ψ(qa) is defined in (37). Therefore, substituting
P (q) = −ψ(qa) into (A1), we can see that (36) is a
necessary and sufficient condition such that (34) holds.

Second, let W be the largest invariant set in Γ =
{(q, q̇) | V̇ = 0}. From V̇ ≤ 0 in (30), using LaSalle’s
theorem, we know that every (q(t), q̇(t)) approaches W as
t→ ∞. Since V̇ = 0 holds identically in W , owing to (30),
V and qa are constant in W . Moreover, from (11) and (28),
we know that qa and E are also constant in W . This proves
(38) and (39). Substituting qa = q∗a and E = E∗ into (4)
yields W expressed in (40).

Appendix B. PROOF OF LEMMA 1

Note that qa(t) ≡ q∗a holds in the invariant set W in (40).
According to Theorem 1, we just need to show that if
V ∗ �= 0 holds, then q1(t) is constant in the invariant set
W .

Since qa(t) ≡ q∗a, there exists no relative motion among the
links 2 to n, in this case, we can we consider links 2 to n as
a composite link, that is, the robot can be treated as the
Acrobot (a 2-link robot with pass first joint). Moreover,
the relative angle between link 1 and the composite link is
q ∗
2 and the torque on joint 2 is τ∗2 .

We proceed the proof similarly as we did for the Acrobot
in Xin and Kaneda [2007a] . The detail is omitted due to
space limitations.

Appendix C. PROOF OF THEOREM 3

Consider an equilibrium point (q∗, 0) of Ω in (45). Using
q ∗
2 and ΦT(q ∗

a ), we can rewrite (44) and (43) as

β1 cos q∗1 + β∗
2 cos(q∗1 + q ∗

2 ) = 0, (C1)

kP q
∗
2 + (P (q∗) − Er)τ∗2 = 0, (C2)

kP q
∗

i + (P (q∗) − Er)
(
τ∗i +

i−1∑
j=2

φji(q ∗
a )τ∗j

)
= 0, (C3)

P (q∗) �= Er, (C4)
where i in (C3) satisfies 3 ≤ i ≤ n.

As to Statement 1), we carry out the proof by induction
via the following two steps:

Step 1: For i = 2, we show that if

kP > km2 = β1

n∑
j=2

βj , (C5)

then only (q∗1 , q
∗
2 ) = (π/2, 0) and (q∗1 , q

∗
2 ) = (−π/2, 0)

satisfy (C1) and (C2).

Step 2: Suppose that we have proved the following
statement: For i = k − 1, if kP > max2≤j≤k−1 kmj , where
kmj is defined in (48), then{

q∗1 = π/2, or q∗1 = −π/2,
q ∗
j = 0, for 2 ≤ j ≤ k − 1. (C6)

We show that for i = k, if kP > kmk also holds, then
q ∗
k = 0 also holds.

The detailed description of these two steps are omitted
due to space limitations.

As to Statement 2), we omit its proof due to page
limitation. As to Statement 3), it is direct consequence
of Statement 1) and Theorem 2.
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K. J. Åström and K. Furuta, “Swinging up a pendulum by
energy control,” Automatica, vol. 36, no. 2, pp. 287–295,
2000.

A. De Luca, S. Iannitti, R. Mattone, and G. Oriolo, “Con-
trol problems in underactuated manipulators,” Proceed-
ings of IEEE/ASME International Conference on Ad-
vanced Mechatronics, pp. 855–861, 2001.

I. Fantoni, R. Lozano, and M. W. Spong, “Energy based
control of the Pendubot,” IEEE Transactions on Auto-
matic Control, vol. 45, no. 4, pp. 725–729, 2000.

J. W. Grizzle, C. H. Moog, and C. Chevallereau, “Nonlin-
ear control of mechanical systems with an unactuated
cyclic variable,” IEEE Transactions on Automatic Con-
trol, vol. 50, no. 5, pp. 559-575, 2005.

J. Hauser and R. M. Murray, “Nonlinear controllers for
non-integrable systems, the Acrobot example,” Pro-
ceedings of American Control Conference, pp. 669–670,
1990.

O. Kolesnichenko and A. S. Shiriaev, “Partial stabilization
of underactuated Euler-Lagrange systems via a class of
feedback transformations,” Systems & Control Letters,
vol. 45, no. 2, pp. 121–132, 2002.

R. Ortega, M. W. Spong, F. Gomez-Estern, and
G. Blankenstein, “Stabilization of a class of underactu-
ated mechanical systems via interconnection and damp-
ing assignment,” IEEE Transactions on Automatic Con-
trol, vol. 47, no. 8, pp. 1218–1233, 2002.

S. Sastry, Nonlinear Systems: Analysis, Stability, and Con-
trol. Springer, New York, 1999.

M. W. Spong and D. J. Block, “The Pendubot, a mecha-
tronic system for control research and education,” Pro-
ceedings of the 34th IEEE Conference on Decision and
Control, pp. 555–556, 1995.

M. W. Spong, “The swing up control problem for the
Acrobot,” IEEE Control Systems Magazine, vol. 15, no.
1, pp. 49–55, 1995.

M. W. Spong, “Energy based control of a class of underac-
tuated mechanical systems,” Proceedings of 1996 IFAC
World Congress, vol. F, pp. 431–435, 1996.

X. Xin and M. Kaneda, “Analysis of the energy based
swing-up control of the Acrobot,” International Journal
of Robust and Nonlinear Control, vol. 17, no. 10, pp.
1503–1524, 2007a.

X. Xin and M. Kaneda, “Swing-up control for a 3-DOF
gymnastic robot with passive first joint: Design and
analysis,” IEEE Transactions on Robotics and Automa-
tion, vol. 23, no. 6, pp. 1277–1284, 2007b.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7677


