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Abstract: A new approach for fault detection and isolation (FDI) of Networked Control Systems (NCSs) 
is proposed in this paper. The paper first regards NCSs with unknown network-induced delay as a Jump 
Markov linear system (JMLS) with unknown input, then gives a Bayesian estimation of the JMLS based 
on Unknown Input Kalman filter (UIKF), and finally uses the estimation results to detect and isolate faults 
based on Log-likelihood ratio (LLR) approach. Simulation example shows that the method is robust to 
random networked induced-delay and unknown input. 

 

1. INTRODUCTION 

In recent years, more and more attention has been paid to the 
study of Networked Control Systems (NCSs). Networked 
Control System is a feed back control system wherein the 
control loop is closed via a real-time network (Zhang et al. 
2001). In spite of many advantages of NCS, the introduction 
of network also brings new problems and challenges, such as 
network-induced delay, packet drop, and quantization 
problems.  

Although a great many of literatures have discussed the 
control of NCSs (Lian et al. 2003; Zhang et al. 2005), we can 
find only a limited number of contributions about FDI of 
NCSs. As shown in (Nilsson 1998), there is no essential 
difference between state filter for NCSs and the classical 
standard Kalman filter if we can use some means, such as 
time stamp, to get the delay time. Therefore, it is more 
challenging to deal with the FDI of NCSs with unknown delay. 
(Ye and Ding 2004) proposed to use Taylor Expansion to 
approximate the influence of unknown delay and introduced a 
Parity Space based FD approach to generate residuals, in 
which the controller and actuator are event-driven, and the 
time delay is smaller than one sample period of the sensor. 
(Zheng et al. 2006) proposed a FD approach based on Takagi-
Sugeno Fuzzy-Model, in which the actuator is time-driven, 
and the delay is an integer multiple of the sampling period.  

In this paper, a new method for fault detection and isolation 
(FDI) of NCS with random and unknown network-induced 
delay and unknown input, which is supposed to be integer 
multiple of the sampling period, is proposed. 

Since as shown in (Lin et al. 2000; Zhang et al. 2005), an 
NCS can be modeled as a Markov Jump Linear System 
(JMLS), and the state estimation problem of Markov jump 
linear system (JMLS) has been intensively discussed since 
1970s (Ackerson and Fu, 1970, Jaffer et al. 1971, Yaakov 
1978; Kim 1994), we may study the problem of FDI of NCS 
based on the state estimation of JMLS. 

However, since NCS in this paper is assumed to have 
unknown input, and fault isolation is also achieved by treating 

some of the faults as unknown input, but all of the existing 
approaches for state estimation of JMLS are based on Kalman 
Filter, which can not deal with systems with unknown input, 
in this paper, Unknown Input Kalman Filter (UIKF) proposed 
by (Darouach et. al., 1995) will be used to give the Bayesian 
estimation of JMLS, based on which an approach for FDI of 
NCS will be further proposed. To our knowledge, so far, there 
is no literature that introduces the idea of UIKF into JMLS 
and designs a filter for a JMLS with unknown input.  

2. PROBLEM FORMULATION AND PRELIMINARIES 

2.1 PROBLEM FORMULATION 

Assume that the sensors and the actuators are clock-driven 
and the controller is event-driven (Zheng et al. 2006). Because 
of the network-induced delay, in each sample period the 
actuators may receive more than one control signals from 
controller, whereas the actuators use the latest one.  Since the 
actuators are clock-driven, the network-induced delay from 
sensors to actuators through controller is integer multiple of 
the sampling period.  As in many literatures (e.g. (Lin et al. 
2000), (Zheng et al. 2006) etc), we assume that the delay 
constructs a Markov chain.  

By introducing system and measurement noises into the NCS 
model of (Zheng et al. 2006), an NCS can be modeled as 
follow: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

+=
+++−+=+

kvkCxky
kwkFfkEdkBukAxkx kτ1   ( 1 ) 

where x(k) is the state vector, ( )kku τ−  is the control input 
vector accepted by actuators at the instant k; d(k) is the 
unknown input vector; y(k) is the plant output vector; f(k) is 
the fault vector; w(k) and v(k) are system noise and 
measurement noise respectively, which are Gaussian white 
noises with known covariance W and V. Suppose that the 
distribution of initial state x(0) is Gaussian and known, and 
x(0) w(k) and v(k) are mutually independent. The network- 
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induced delay at the instant k is kτ  periods. Suppose that kτ  
is bounded, i.e. ( ) 1max −= skτ , and kτ is a discrete-time, time-
homogeneous, s-state, first-order Markov chain with transition 
probabilities: ( )jjp kkji === + ττ |Pr 1,
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Then the NCS model ( 1 ) can be written as  

( ) ( ) ( ) ( ) ( ) ( ) ( )
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which is a JMLS model with unknown input and fault. Our 
aim is to obtain the approximate a posteriori density of x(k) 
under a fault free hypothesis, and then achieve the target of 
FDI. 

2.2  Brief  introduction to State Estimation of Jump Markov 
Linear System 

JMLSs are linear systems whose parameters evolve with time 
according to a finite state Markov chain (Doucet et al. 2001). 
In some literatures, JMLS is also called switching linear 
dynamic system（ SLDS） . Let kr , ,2,1=k , denote a 
discrete time s-state Markov chain with known transition 
probabilities matrix ][ ijp=π , where 

( ) sjijrjrp kkij ,1,,|Pr 1 ==== +
. A JMLS can be modeled 

as:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎩
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where the noise w(k) and v(k) are Gaussian white noise with 
known covariance W and V respectively. This model is a 
generalized form. In different applications, the system 
matrixes that are switching are different, for example, ( )krF  
and ( )krG  are switching in (Ackerson and Fu, 1970); ( )krC  is 
switching in (Jaffer et al. 1971) and (Yaakov 1978). As shown 
in ( 2 ), the input matrix ( )1+krB  is switching in our paper,. 

The main target of using the Bayesian filter for JMLS is to 
recursively find the joint a posteriori density ( )( )kk yrkxp :1|, , 
such as in (Ackerson and Fu, 1970; Jaffer et al. 1971; Yaakov 
1978; and Kim 1994). Although there are some detailed 
differences in these literatures, they have the same framework 
and essential idea.  

Let ( ), 1:| ,k i k kk I i yμ μ = , ( ), 1:| ,k i k kk I i yΓ Γ = , and ( )ik,α , ( )isk
, 

( )kni 1= , denote the known mean, covariance, the 
weight, and the Markov chain state of the ith Gaussian term at 
instant k respectively. Then the procedures in the literatures 
mentioned above to obtain the joint a posteriori density at 

instant k+1 from the density at instant k can be summarized as 
follow: 

Step 1:  Obtain ( )1, , 1: 1 11 | , ,k i j k k kk I i y r jμ μ+ + +′ ′ + = = , 

( )1, , 1 1: 1 11 | , ,k i j k k kk I i y r j+ + + +′ ′Γ Γ + = = , for ( )kni 1= , 1j s= , 
at instant k+1, by using ( ) skn ×  parallel Kalman filters, where 
s means the Markov chain has s states.  

Step 2: Calculate the likelihoods ( )1 1: 1| , ,k k k kp y I i y r j+ += = , for 
( )kni 1= , 1j s= ; 

Step 3: Calculate the weights ( )1, ,k i jα ′ +  for ( )kni 1= , 
1j s= , according to the likelihoods obtained in Step 2 and 

the transition probability matrix for Markov chain (i.e. π). 

Step 4: Let ( )ΓΦ ,μ  denote a Gaussian function with mean μ 
and covariance Γ. Although the a posteriori density can be 
calculated by 

( )( ) ( ) ( )
( )

1: 1 1, , 1, ,
1 1

1 | 1, , ,
n k s

k k i j k i j
i j

p x k y k i jα μ+ + +
= =

′ ′ ′+ = + Φ Γ∑∑       ( 4 ) 

to avoid the problem of exponentially increasing computation 
and memory,  an approximate a posteriori density can be 
calculated by  

( )( ) ( ) ( )
( )1

1: 1 1, 1,
1

1 | 1, ,
n k

k k i k i
i

p x k y k iα μ
+

+ + +
=

+ ≈ + Φ Γ∑  

where ( )1,k iα + , 1, 1,,k i k iμ + +Γ  are obtained by combining and/or 
neglecting some Gaussian terms in ( 4 ). There are many 
different methods for Step 4, such as (Ackerson and Fu, 1970; 
Jaffer et al. 1971; Yaakov 1978; Yaakov and Marcus, 1980; 
and Kim, 1994). In this paper, one method given in (Yaakov 
and Marcus, 1980) is adopted, in which we’ll neglect the 
Gaussian terms with small weights when the number of the 
Gaussian terms exceeds a prior decided constant integer.  

2.3  Brief introduction of Unknown input Kalman Filter 

The standard Kalman filter assumes that all the system 
parameters and inputs are known, and it may fail in the 
presence of parametric uncertainties or unknown inputs. So 
(Darouach et al. 1995) proposed a method to design a Kalman 
filter robust to system’s unknown input. Suppose that the 
system with unknown input is  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

+=
+++=+

kvkCxky
kwkFdkBukAxkx 1                 ( 5 ) 

where d(k) is the unknown input vector, and the meanings of 
the other variables and matrixes are the same as standard 
Kalman filter. 

The algorithm for state estimation in (Darouach et al. 1995) 
can be summarized as: 
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3. FDI for NCSs 

3.1 basic idea 

As shown in Sec. 2.1, an NCS can be modeled as a JMLS 
with unknown input and fault, i.e. ( 2 ). Since state estimation 
of JMLS based on Kalman filter can not deal with unknown 
input, we will use UIKF technique to design filters for ( 2 ), 
which are robust to unknown input and a subset of faults, to 
achieve the goal of fault detection and fault isolation. And the 
Log-likelihood Ratio (LLR) method (Li and Kadirkamanathan 
2004) is finally adopted to complete the FDI system. 

3.2  Bayesian filter for NCS based on UIKF 

The filter for JMLS introduced in Sec. 2.2 is designed in the 
framework of Bayes’ rule. It uses Kalman filter to obtain the 
conditional density ( )( )11:1 ,,|1 +++ kkk riykxp  from ( )( )kk iykxp ,| :1

, 
because in the Gaussian linear case Kalman filter is equivalent 
to Bayesian a posteriori estimation (Ho and Lee 1964). 

 As a result, when we try to use UIKF to perform state 
estimation of JMLS with unknown input (UIJMLS), we have 
to answer the question whether the UIKF is also equivalent to 
Bayesian a posteriori estimation. As shown in (Darouach et al. 
1995), the estimation result ( 6 ), i.e. 1/ 1ˆk kx + + ,  is a minimum 
mean-square error (MMSE) estimation  of x(k +1) in system 
( 5 ) given y up to k+1, which means that 1/ 1ˆk kx + +  and x

kkP 1/1 ++  
are as same as the mean and covariance of x(k +1) 
respectively, given y up to k+1. Since in the Gaussian linear 
case, the mean and covariance can uniquely determine the 
density, the above fact means that the result of UIKF is 
equivalent to Bayesian a posteriori estimation in the Gaussian 
linear case.  

Similar to the procedure for state estimation of JMLS based 
on KF in Sec. 2.2, the main target now becomes to recursively 
find the a posteriori density of the state ( )( )kk yrkxp :1|,  for 
system ( 2 ) with unknown input. Again, let ( )kk yiIkx :1,|ˆ = , 

( )kk yiIkP :1,| = , ( )ik,α  and ( )isk
 denote the mean, covariance, 

weight, and Markov chain state of the ith Gaussian term 
( ( )kni 1= ) at instant k respectively, by using UIKF, the 
estimation procedure can be summarized as follow: 

Step 1: Obtain ( )1:11 ,,|1ˆ ++ ==+ kkk yjriIkx , 

( )1:11 ,,|1 ++ ==+ kkk yjriIkP , for ( )kni 1= , 1j s= , at 
instant k+1, by using ( ) skn ×  parallel UIKFs. 

Step 2:  Calculate the likelihood of part of the new 
measurement given the measurement up to instant k. This is 
the main difference between standard JMLS filter and the 
filter considering unknown input. Because of the existence of 
unknown input d(k), it becomes impossible to obtain the 
margin density of ( )( )kykyp :1|1+ , and only the margin density 
of a part of the new measurement, i.e. Ty(k+1), where T is the 
basis of the left null space of CF , can be obtained now 
(Keller et al. 1996). In (Keller et al. 1996), the likelihood of 
Ty(k+1) given the history measurement is:  

( )

( ) ( ) ( )
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Step 3: Calculate the weights ( )1, ,k i jα ′ +  for ( )kni 1= , 
1j s= . Since there is  

( )( )

( )( ) ( )( )
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∑
==
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ij
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kk
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we can conclude that ( )1, ,k i jα ′ +  is equal to 

( )1:11 |,Pr ++ == kkk yiIjr , which can be further written as 

( ) ( )
( ) ( ) ( )

( )kc
ikiIjryiIjrTyp

yiIjrjik

kkkkkk

kkk

,|Pr,,|
|,Pr,,1

1:111
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where 

( ) ( )
( )

∑
=

++ ===
skn

ji
kkkk yiIjrTypkc

,

1,
:111 |,,             ( 9 ) 

In ( 8 ), the numerator’s first part have been obtained in step 2. 
Its second part is equal to ( )( )isrjr kkk ==+ |Pr 1

, which is the 
prior knowledge of the Markov chain, and its third part is the 
weight obtained at instant k. As a result, we can get all the 

( ) skn ×  weights for the Gaussian terms at instant k+1. And the 
denominator c(k) is the sum of the numerator for ( )kni 1=  
and 1j s= . 

Step 4: Perform the same neglecting and/or combining 
operation as that in Step 4 of Sec. 2.2. 

After these four steps, ( )1:11 ,|1ˆ ++ =+ kk yiIkx , 

( )1:11 ,|1 ++ =+ kk yiIkP , ( )ik,α , and ( )isk 1+  for ( )kni 1= , 
which composed the approximate a posteriori density 

( )( )1:11 |,1 +++ kk yrkxp , are obtained, and the procedure is closed. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7296



 
 

 

Up to now, we have completed the task of design a Bayesian 
filter for NCS, which can approximately estimate the a 
posteriori density of the system’s state vector.  

3.3 FDI strategy 

Assume that there are nf faults, and they won’t happen 
simultaneously. For the purpose of fault isolation, we can 
divide f into two subsets, i.e. 1

if R∈  and 1fn
if R −∈ , which 

are composed of the ith fault, and the other faults respectively.  
Then the NCS model ( 2 ) becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

+=

+++++=+ +

kvkCxky
kwkfFkfFkEdkUrBkAxkx iiiik 11   ( 10 ) 

We may define nf+1 parallel filters for NCS based on the 
method discussed in Sec. 3.2, i.e. filter i, i=0,1…nf, by using 
the method in Sec. 3.2. Among them, filter i, denoted by iM , 
is robust to both unknown input d and the ith fault ( )kf i , and 
filter 0, denoted by 0M , is only robust to unknown input d.  

According to the The LLR approach (Li and 
Kadirkamanathan 2004), we may further define nf likelihood 
ratio 

( ) ( )( )
( )( )∑

= −

−=
k

rj j

ijk
r Myjyp

Myjyp
iS

01:1

1:1

,|
,|

ln               ( 11 ) 

where the likelihood ( )( )ij Myjyp ,| 1:1 −  is the one step ahead 
output prediction density based on the NCS filter iM , 
i=0,1,…nf.  

According to LLR approach (Li and Kadirkamanathan 2004), 
in the presence of fault h, the likelihood based on filter hM  
won’t change obviously, but the likelihoods based on other 
filters will decrease. As a result, the LLR ( )hS k

r
 will positively 

drift away and take the greatest value among the LLRs 
defined by ( 11 ).  

However, as explained in Step 2 of Sec. 3.2, since there is 
unknown input, we can only get the conditional margin 
density of ( )1+kTy . So ( 11 ) should be modified as 
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where ( )jci  is the likelihood of the filter iM , which can be 
calculate according to equation ( 9 ). The decision function 
vector is defined as: 

( ) ( ) ( ) ( )[ ]
( ) ( )iSk

kkkk
k
jkjNki

n f

≤≤+−
=

=

1

21

maxγ

γγγγ
                ( 13 ) 

If the maximal element in the decision vector is larger than 
the threshold, we can judge that the fault corresponding to it 
occurs. 

Remark: Because the dimensions of the nf+1 NCS filters are 
different, the mean values of log-likelihoods ( )( )jciln are also 
different. Therefore, we should subtract the mean value of 

( )( )jciln  from it. Then the mean value of LLR will be near 
zeros in the fault free case.  

4.  Simulation Example 

To illustrate the fault detection algorithm, an example is given 
in this section. Suppose that the matrixes of system ( 1 ) are: 
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And the parameters of the Markov chain are: 

( ) [ ]3.04.03.00
3571.04179.0225.0
3571.04179.0225.0
065.035.0

=

⎥
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⎦

⎤
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⎡
=

π

π  

Figure 1 gives the unknown inputs d1 and d2 and faults f1 and 
f2. f1 is an abrupt fault while f2 is an incipient fault. The 
simulation curve of decision element ( )k1γ  (dashed curve) and 
decision element ( )k2γ  (solid curve) are depicted in figure 2 
and figure 3. As shown in figure 1, fault 1 happens at instant 
310, and fault 2 at instant 700. From Figure 2, it can be seen 
that ( )k1γ  and ( )k2γ  both exceed the threshold at instant 310, 
but since ( )k1γ  is greater than ( )k2γ , we can conclude that 
fault 1 occurs. Similarly, figure 3 shows that ( )k2γ  exceeds 
threshold and is greater than ( )k1γ  after fault 2 occurs, so we 
can conclude that fault 2 has occurred. Further, from Fig.2 
and Fig.3, it can be seen that neither of the curves of decision 
element is affected by the unknown input d(k). For 
comparison, figure 4 gives the result of the decision vector via 
UIKF without considering the switching, i.e. the unknown 
network-induced delay. We can see that the UIKF lose its 
validity. 
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Fig. 1 Unknown input and fault 
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Fig. 2 Fault detection and isolation result by LLRs for the first 
fault 
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Fig. 3 Fault detection and isolation result by LLRs for the 
second fault 
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Fig. 4 Fault detection and isolation result by LLRs using 
UIKF instead of the NCS UIKF filter  

5.  Conclusion 

A new method for fault detection and isolation (FDI) of 
Networked Control Systems (NCSs) based on Bayesian 
estimation of JMLS, UIKF and LLR is proposed in this paper. 
This method is robust to network-induced delay, and 
traditional unknown input.  Simulation example shows the 
effectiveness of the method. 
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