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Abstract: In this paper, diagnosis of actuator/component faults for networked control systems
(NCSs) with transfer delays is investigated. First, the linear NCSs with transfer delays are
modelled by T-S discrete-time systems with input delays. Next, under certain conditions, a
stable adaptive observer is designed for the purpose of fault diagnosis. An extension to a class
of nonlinear systems is then made. Finally, a motor example is given to illustrate the efficiency
of the proposed method.

1. INTRODUCTION

In networked control systems (NCSs), a controller and
spatially distributed sensors/actuators are grouped into
network nodes and communicate by exchanging packet-
based messages via a network. NCSs have several advan-
tages over the classical control systems, such as reduced
installation and maintenance costs, and are thus of large
practical interest. However, NCSs require novel control
designs to account for networks presence in the closed loop.
Modelling, analysis, and design of NCSs have received
increasing attention in recent years, see Krtolica et al.
(1994); Nešić et al. (2003); Nešić et al. (2004); Silva et al.
(2007); Walsh et al. (2001); Walsh et al. (2002); Zhang
et al. (2001); Zheng et al. (2006).

Fault can always lead to degradation of the system per-
formance. Fault detection and diagnosis (FDD) and fault
tolerant control (FTC) procedures are designed to guar-
antee that the system goal is still achieved in spite of
the faults. Fruitful results can be found in several books
Blanke et al. (2003); Chen et al. (1999); Gertler (1998)
and many papers, e.g. Berdjag et al. (2006); Chowdhury
et al. (2006); Nguang et al. (2007); Nguang et al. (2006)
. FDD for NCSs have attracted much attention recently.
For some representative works on fault detection (FD) of
NCS, we refer the readers to Kambhampati et al. (2006);
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Sauter et al. (2006); Ye et al. (2004); Zhang et al. (2006);
Mao et al. (2007) and the references therein. However, to
the best of our knowledge, until now, few results have been
reported about fault estimation (FE) for NCSs.

The challenges of model-based FE for NCSs are twofold:
1) there is a lack of appropriate model, especially for
nonlinear NCSs. It is difficult for NCSs (in particular
for nonlinear NCSs) fault estimation to find a model
with sufficient accuracy, under the conditions of network-
induced delays and packets loss; and 2) now, in most
related work, the NCSs are modelled as discrete-time
systems with delays. However, some control theories, such
as Lyapunov stability analysis or adaptive observer design
for discrete-time systems are not so matured as that
for continuous-time systems, and using the techniques
developed from continuous systems to deal with discrete
systems is not a simple task.

Our objective in this paper is to propose an observer-based
FE method for NCSs. The main contributions of this paper
is extension the FE result of linear NCSs to a kind of
nonlinear NCSs, on which few results are available so far.

The rest of this paper is organized as follows. System
description and the modelling method for the NCSs are
presented in Section 2. The adaptive observer based fault
estimation is derived in Section 3. An extension to a class
of nonlinear systems is made in Section 4. An application
example is given in Section 5, followed by some concluding
remarks in Section 6.
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Fig. 1. The block of the networked control system with FTC

2. SYSTEM DESCRIPTION

Consider a NCS as shown in Fig. 1, the continuous-
time, state-space model of the linear time-invariant plant
dynamics can be described by the following standard form:

ẋ(t) = Ax(t) + Bu(t) + Ef(t) (1)

y(t) = Cx(t) + Df(t) (2)

where x ∈ Rn denotes the state vector, u ∈ Rm is the
control input vector, y ∈ Rr is the measurable output
vector. The pair (A,C) is observable and rank(D) = q,
q ≤ r. It is assumed that the fault vector f(t) ∈ Rq is
norm bounded, i.e. ‖ f(t) ‖≤ f0, where f0 ≥ 0.

The sampling period of the NCS is T , sensors are time-
driven, controller and actuators are event-driven. In NCSs,
the sensors data packets reach the controller, and the
controller data packets arrive at the actuators via network
channel, whose load and limited communication band-
width can cause transfer delays. The network-induced de-
lays include the sensors-controller delay τsc and controller-
actuators delay τca. Then, the overall network delay, which
is also the transfer delay, can be computed by τ = τsc+τca.

Assumption 1 (Zheng et al. (2006)). The transfer delay of
the data packet, which is received by the actuator at the
instant kT , is τk(∈ N ) periods and max(τk) = n.

Similarly as that in Zheng et al. (2006), considering the
effect of delay τ and sampling period T , the above plant
model is transformed into a T-S discrete-time model under
the Assumption 1:

x(k + 1) =
n

∑

i=1

µi(k)

{

Āx(k) + B̄u(k − i) + Ēf(k)

}

(3)

y(k) = Cx(k) + Df(k) (4)

where x(k) = x(kT ), y(k) = y(kT ), f(k) = f(kT ),

Ā = eAT , B̄ =
∫ T+1

T
eAtBdt, Ē =

∫ T

0
eA(T−t)Edt. Fur-

thermore, we can obtain that the pair (Ā, C) is observable
and ‖ f(k) ‖≤ f0, with f0 ≥ 0. µi(k) is the mem-
bership function, representing the probability of τk = i,
i.e., µi(k) = Prob(τk = i). It satisfies

∑n
i=1 µi(k) = 1,

0 ≤ µi(k) ≤ 1, ∀i = 1, 2, . . . , n. More details about this
modelling method can be found in Zheng et al. (2006).

Remark 1 . We use the form in T-S model to describe

the input signal as
n
∑

i=1

µi(k)B̄u(k − i), which means in

current time, the input could be one from the set {u(k −
i), i = 1, . . . , n} and µi(k) represented the probability of
u(k − i).

3. AN ADAPTIVE DIAGNOSTIC OBSERVER
DESIGN

The fault detection observer can be designed as follows:

x̂(k + 1) =

n
∑

i=1

µi(k)

{

Āx̂(k) + B̄u(k − i)

+K[ŷ(k) − y(k)]

}

(5)

ŷ(k) = Cx(k) (6)

where x̂(k) ∈ Rn is the observer state vector. K is selected
such that (Ā−KC) is a stable matrix. If there is no fault,
the estimation error will converge to zero. The proof of
convergence of the observer error dynamics is omitted due
to the page limit.

In order to assure the sensitivity of the residual, r(k) =
y(k) − ŷ(k), to the fault, the related transfer function
D + C[sI − (A−KC)]−1E should be non-zero. Moreover,
the residual evaluation function is selected as (Zhong et al.
(2005)):

J(r) =

k=k0+L
∑

k=k0

rT (k)r(k)

where k0 denotes the initial evaluation time instant. L
denotes the evaluation time steps. Based on this, the
occurrence of faults can be detected by

J(r) = 0, no fault occurs
J(r) 6= 0, a fault has occurred

}

Prior to the design of an adaptive diagnostic observer, the
following assumption is also made.

Assumption 2 . There exist positive definite matrices P ∈
Rn×n, Q ∈ Rn×n and a matrix K ∈ Rn×r such that

2(Ā − KC)T P (Ā − KC) − P + 3(D†C)T D†C = −Q

where D† is the left-inverse of the matrix D.

Remark 2 . The existence condition of the matrix D† is
that the dimension of the output should not be smaller
than that of the fault, i. e. q ≤ r.

To diagnose the actuator/component fault after its detec-
tion, the following observer is constructed

x̂(k + 1) =
n

∑

i=1

µi

{

Āx̂(k) + B̄u(k − i) + Ēf̂(k)

+K[y(k) − ŷ(k)]

}

(7)

ŷ(k) = Cx̂(k) + Df̂(k) (8)

where x̂(k) ∈ Rn is the observer state vector and f̂(k) is
an estimate of f(k).

Denote

ex(k) = x(k) − x̂(k), ey(k) = y(k) − ŷ(k), (9)

ef (k) = f(k) − f̂(k) (10)

then it can be obtained that
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ex(k + 1) = (Ā − KC)ex(k) + (Ē − KD)ef (k) (11)

ey(k) = Cex(k) + Def (k) (12)

The following theorem produces a convergent adaptive
diagnostic algorithm for estimating the fault f .

Theorem 1. Under Assumption 2, the observer described
by (7) and (8) and the following fault estimation algorithm

f̂(k + 1) = ΓD†ey(k) − Γθf̂(k) (13)

where Γ = ΓT > 0 and θ is chosen such that

λmin(Q) − λmax[(D†C)T ΓD†C] > 0

and

λmin(Γ−1) − λmax[2(Ē − KD)T P (Ē − KD)

+(θ + 1)2Γ + (θ2 + 1)Γ2] > 0

can guarantee that the system (11) - (12) is stable.

Proof. Consider the following Lyapunov function

V (k) = eT
x (k)Pex(k) + eT

f (k)Γ−1ef (k) (14)

From (13), we can obtain

ef (k + 1) = f(k + 1) − f̂(k + 1)

= f(k + 1) − ΓD†ey(k) + Γθf̂(k)

= f(k + 1) + Γθf(k) − ΓD†ey(k) − Γθef (k)

Further, according to (11) - (12), its difference with respect
to time is

∆V (k + 1)

= V (k + 1) − V (k)

= eT
x (k + 1)Pex(k + 1) − eT

x (k)Pex(k)

+eT
f (k + 1)ef (k + 1) − eT

f (k)ef (k)

= eT
x (k)(Ā − KC)T P (Ā − KC)ex(k)

+2eT
x (k)(Ā − KC)T P (Ē − KD)ef (k)

+eT
f (k)(Ē − KD)T P (Ē − KD)ef (k) − eT

x (k)Pex(k)

+[f(k + 1) + Γθf(k)]T Γ−1[f(k + 1) + Γθf(k)]

+(Cex(k) + Def (k))T (D†)T ΓD†(Cex(k) + Def (k))

+θ2eT
f (k)Γef (k) − 2[f(k + 1) + Γθf(k)]T θef (k)

−2[f(k + 1) + Γθf(k)]T D†(Cex(k) + Def (k))

+2θeT
f (k)ΓD†(Cex(k) + Def (k))

−eT
f (k)Γ−1ef (k) (15)

It is easy to show that

2uMv ≤
1

µ
uT Mu + µvT Mv, u ∈ Rn, v ∈ Rn (16)

holds for any constant µ > 0 and a positive definite matrix
M .

According to Assumption 2 and from (15) - (16), one can
further obtain that

∆V (k + 1)

≤ eT
x (k)[2(Ā − KC)T P (Ā − KC) − P

+3(D†C)T D†C + (D†C)T ΓD†C]ex(k)

+eT
f (k)

{

2(Ē − KD)T P (Ē − KD) + (θ + 1)2Γ

+(θ2 + 1)Γ2 + (
θ

σ1
+

θ

σ2
)Iq×q − Γ−1

}

ef (k)

+[f(k + 1) + Γθf(k)]T (Γ−1 + (σ1 + σ2 + 1)Iq×q)

×[f(k + 1) + Γθf(k)]

≤ −c1 ‖ ex(k) ‖2 −c2 ‖ ef (k) ‖2 +c3f
2
0 (17)

where

c1 = λmin(Q) − λmax[(D†C)T ΓD†C] > 0

c2 = λmin(Γ−1) − (
θ

σ1
+

θ

σ2
)

−λmax[2(Ē − KD)T P (Ē − KD) + (θ + 1)2Γ

+(θ2 + 1)Γ2] > 0

c3 = λmax[(Γ−1 + (σ1 + σ2 + 1)Iq×q)(θΓ + Iq×q)
2] > 0

Γ = ΓT > 0 is a weighting matrix. σ1 and σ2 are chosen
such that c1 > 0 and c2 > 0.
On the other hand, from (14), we have

V (k) ≤ λmax(P ) ‖ ex(k) ‖2 +λmax(Γ−1) ‖ ef (k) ‖2(18)

Substituting (18) into (17) yields

∆V (k) ≤ −α1V + c3f
2
0 (19)

where α1 = min(c1,c2)
max[λmax(P ),λmax(Γ−1)] . It can be seen that

the following inequality holds for (ey(k), f̂(k)) ∈ S1, with

S1 =

{

(ey(k), f̂(k))

∣

∣

∣

∣

λmin(P )
2‖C‖ ‖ ey(k) ‖2 +ρ1

2 ‖ f̂(k) ‖2>

ρ1f
2
0 +

c3f2

0

α1

}

, ρ1 = 1 − ‖D‖2λmin(P )
‖C‖

V (k) ≥ λmin(P ) ‖ ex(k) ‖2 + ‖ ef (k) ‖2

≥
λmin(P )

2 ‖ C ‖
‖ ey(k) ‖2 +ρ1 ‖ ef (k) ‖2

≥
λmin(P )

2 ‖ C ‖
‖ ey(k) ‖2 +ρ1[

1

2
‖ ef (k) ‖2 − ‖ f0 ‖2]

≥
c3f

2
0

α1

From the above inequality and (19), it can be seen that

∆V (k) < 0 for (ey(k), f̂(k)) ∈ S1

As a result, the dynamic system described by (11) and
(12) is stable. This completes the proof.

Corollary 1 . The pair (ey(k), f̂(k)) is uniformly bounded
and converges to S̄1 exponentially at a rate greater than

e−α1k, with S̄1 =

{

(ey(k), f̂(k))

∣

∣

∣

∣

λmin(P )
2‖C‖ ‖ ey(k) ‖2 +ρ1

2 ‖

f̂(k) ‖2≤ ρ1f
2
0 +

c3f2

0

α1

}

.
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Remark 3 . The estimation errors of the fault and the
state are uniformly bounded and can be made small by
choosing proper matrices Γ, Q and θ, see Jiang et al.
(2002). Furthermore, the accurate estimation of the fault
and the state can be obtained if the fault is constant (i.e.
‖ f(k + 1) − f(k) ‖= 0) after some transient period.

4. EXTENSION TO NONLINEAR SYSTEMS

In the above sections, we assume that the system is linear.
However, many industrial systems are nonlinear in nature.
Therefore, the development of nonlinear fault detection
and diagnosis schemes plays a significant role in practical
applications. In this section, we extend the fault diagnosis
algorithms in above sections to a class of nonlinear NCSs.

4.1 System description

Consider a NCS as shown in Fig. 1, and the continuous-
time, state-space model of the nonlinear time-invariant
plant dynamics can be described as follows:

ẋ(t) = Ax(t) + g(t, x(t), u(t)) + Ef(t) (20)

y(t) = Cx(t) + Df(t) (21)

where g(·, ·, ·) is a nonlinear continuous function which is
Lg Lipschitz with respect to its second arguments. It is
assumed that g(t, 0, 0) = 0, ∀t ∈ R, other notations are
the same as those in section 2.

Under Assumption 1 and Euler approximate method,
similar to that in Section 2, system (20) - (21) can be
discretized as follows:

x(k + 1) = x(k) + T

{

Ax(t)

+
n

∑

i=1

µi(k)g(k, x(k), u(k − i)) + Ef(k)

}

=
n

∑

i=1

µi(k)

{

Āx(k) + Tg(k, x(k), u(k − i)) + Ēf(k)

}

y(k) = Cx(k) + Df(k)

with Ā = In×n + TA, Ē = TE.

Remark 4 . The order terms greater than 2 of the above
Euler approximate method can be omitted in practice,
since the sampling period T guarantees the accuracy of
the modelling, see Nešić et al. (1999). From the theoretical
point of view, this term could be considered as the mod-
elling uncertainty with the bound determined from the
corresponding physical vector. Many estimation schemes,
e.g. observer, neural network are applicable on such uncer-
tainty. Since the robust fault estimation is not the focus
in this paper, the terms are omitted here.

4.2 Fault diagnosis

Similar to those in Section 3, the following observer is
constructed

x̂(k + 1) =
n

∑

i=1

µi(k)

{

Āx̂(k) + Tg(k, x̂(k), u(k − i))

+Ēf̂(k) + K[y(k) − ŷ(k)]

}

(22)

ŷ(k) = Cx̂(k) + Df̂(k) (23)

where x̂(k) ∈ Rn is the observer state vector and f̂(k) is
an estimate of f(k).

Using the same notations of ex(k), ey(k) and ef (k) as in
Section 3, the observation error and output error equations
are given by

ex(k + 1) = (Ā − KC)ex(k) + (Ē − KD)ef (k)

+
n

∑

i=1

µi(k)TG(ex(k), u(k − i)) (24)

ey(k) = Cex(k) + Def (k) (25)

where

G(ex(k), u(k − i)) , g(x(k), u(k − i)) − g(x̂(k), u(k − i))

Further G(ex(k), u(k − i)) ≤ Lgex(k).

Assumption 3 . There exist positive definite matrices P ∈
Rn×n, Q ∈ Rn×n and a matrix K ∈ Rn×r such that

3(Ā − KC)T P (Ā − KC) + 3T 2L2
gP − P

+3(D†C)T D†C = −Q

where D† is the left-inverse of the matrix D.

Theorem 2. Under Assumption 3, the observer described
by (22) and (23) and the following diagnostic algorithm

f̂(k + 1) = ΓD†ey(k) − Γθf̂(k) (26)

where Γ = ΓT > 0 and θ is chosen that

λmin(Q) − λmax[(D†C)T ΓD†C] > 0

and

λmin(Γ−1) − λmax[2(Ē − KD)T P (Ē − KD)

+(θ + 1)2Γ + (θ2 + 1)Γ2] > 0

can guarantee system (24) - (25) is stable.

Proof. Consider the following Lyapunov function

V (k) = eT
x (k)Pex(k) + eT

f (k)Γ−1ef (k) (27)

According to (24), (25) and (26), its difference with respect
to time is

∆V (k + 1)

= V (k + 1) − V (k)

= eT
x (k + 1)Pex(k + 1) − eT

x (k)Pex(k)

+eT
f (k + 1)ef (k + 1) − eT

f (k)ef (k)

= eT
x (k)(Ā − KC)T P (Ā − KC)ex(k) − eT

x (k)Pex(k)

+eT
f (k)(Ē − KD)T P (Ē − KD)ef (k)

+T 2[
n

∑

i=1

µiG(ex(k), u(k − i))]T P

×[
n

∑

i=1

µiG(ex(k), u(k − i))]
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+2TeT
x (k)(Ā − KC)T P (

n
∑

i=1

µiG(k, ex(k), u(k − i)))

+2eT
x (k)(Ā − KC)T P (Ē − KD)ef (k)

+2T (
n

∑

i=1

µiG(k, ex(k), u(k − i)))T P (Ē − KD)ef (k)

+[f(k + 1) + Γθf(k)]T Γ−1[f(k + 1) + Γθf(k)]

+(Cex(k) + Def (k))T (D†)T ΓD†(Cex(k) + Def (k))

+θ2eT
f (k)Γef (k) − 2[f(k + 1) + Γθf(k)]T θef (k)

−2[f(k + 1) + Γθf(k)]T D†(Cex(k) + Def (k))

+2θeT
f (k)ΓD†(Cex(k) + Def (k)) − eT

f (k)Γ−1ef (k)

According to Assumption 3 and (16), one can further
obtain that

∆V (k + 1) ≤ −c11 ‖ ex(k) ‖2 −c12 ‖ ef (k) ‖2 +c13f
2
0

(28)

where

c11 = λmin(Q) − λmax[(D†C)T ΓD†C] > 0

c12 = λmin(Γ−1) − (
θ

σ3
+

θ

σ4
)

−λmax[3(Ē − KD)T P (Ē − KD) + (θ + 1)2Γ

+(θ2 + 1)Γ2] > 0

c13 = λmax[(Γ−1 + (σ3 + σ4 + 1)Iq×q)(θΓ + Iq×q)
2] > 0

σ3 and σ4 are chosen such that c12 > 0 and c13 > 0.
On the other hand, from (27), we have

V (k) ≤ λmax(P ) ‖ ex(k) ‖2 +λmax(Γ−1) ‖ ef (k) ‖2(29)

Substituting (29) into (28) yields

∆V (k) ≤ −α12V + c13f
2
0 (30)

where α11 = min(c11,c12)
max[λmax(P ),λmax(Γ−1)] . It can be seen that

the following inequality holds for (ey(k), f̂(k)) ∈ S1, with

S1 =

{

(ey(k), f̂(k))

∣

∣

∣

∣

λmin(P )
2‖C‖ ‖ ey(k) ‖2 +ρ1

2 ‖ f̂(k) ‖2>

ρ1f
2
0 +

c13f2

0

α1

}

, ρ1 = 1 − ‖D‖2λmin(P )
‖C‖

V (k) ≥ λmin(P ) ‖ ex(k) ‖2 + ‖ ef (k) ‖2

≥
λmin(P )

2 ‖ C ‖
‖ ey(k) ‖2 +ρ1 ‖ ef (k) ‖2

≥
λmin(P )

2 ‖ C ‖
‖ ey(k) ‖2 +ρ1[

1

2
‖ ef (k) ‖2 − ‖ f0 ‖2]

≥
c13f

2
0

α11

From the above inequality and (30), it can be seen that

∆V (k) < 0 for (ey(k), f̂(k)) ∈ S1

As a result, the dynamic system described by (24) and
(25) is stable. This completes the proof.

Corollary 2 . The pair (ey(k), f̂(k)) is uniformly bounded
and converges to S̄1 exponentially at a rate greater than

e−α11k, with S̄1 =

{

(ey(k), f̂(k))

∣

∣

∣

∣

λmin(P )
2‖C‖ ‖ ey(k) ‖2 +ρ1

2 ‖

f̂(k) ‖2≤ ρ1f
2
0 +

c13f2

0

α1

}

.

5. AN ILLUSTRATIVE EXAMPLE

One of the modes from a switched reluctance motor (SRM)
system investigated in Spong et al. (1987) is employed to
illustrate our approach. x = [θm, ωm]T is the state, where
θm and ωm denote the angular position and velocity of the
motor.

The simplified system model is expressed as follows:

θ̇m = ωm

ω̇m = −
κe

Jm

sin(θm) −
b

Jm

ωm +
c

Jm

u

where Jm denotes the inertia of the motor. κe > 0 is the
elasticity constant. u is the voltage applied to the motor,
with b and c being the related constants.

The parameters are Jm = 0.935, κe = 0.311, b = 2.23,
c = 35.31. We further have

A =

[

0 1
0 −2.385

]

, B =

[

0
37.765

]

,

g(x) =

[

0
−0.333 sin(x2)

]

, C = [ 1 2 ]

The actuator fault is considered with E = [−1 − 2]T ,
D = 1, as follows:

f(t) =

{

0 0s ≤ t < 2s
sin(4πt) 2s ≤ t < 10s

Assume that the sampling time T = 0.01s, n = max(τk) =
3, µ1 = 0.2571, µ2 = 0.4776, µ3 = 0.2653. After
discretizing, we obtain a T-S model: Rule i(i = 1, 2, 3):
if τk is i, then the NCS model is

[

x1(k + 1)
x2(k + 1)

]

=

[

0 0.01
0 −0.02385

] [

x1(k)
x2(k)

]

+

[

0
−0.00333 sin(x2)

]

+

[

0
37.765

]

u(k − i)

+

[

−0.01
−0.02

]

f(k)u(k)

y(k) = [ 1 2 ]

[

x1(k)
x2(k)

]

+ f(k)u(k)

The matrix K is chosen as

K =

[

0.03
−0.018

]

Let’s take Γ = 0.16, θ = 0.0281. Fig. 2 shows the fault

estimation performance, from which we can see that f̂(k)
follows f(k) rapidly with a very small overshoot.

6. CONCLUSION

In this paper, we discuss the fault estimation problem for
NCSs with both linear and a kind of nonlinear plants.
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The considered NCSs are modelled as T-S systems, which
is suitable for adaptive observer-based fault estimation.
Then, we use the Lyapunov function to prove that the
proposed fault diagnosis method can make the estimation
error converge to the given region. Simulation results of a
motor system are given to verify the effectiveness of the
proposed method.

Further, the purpose of the designed fault estimation
method is to achieve the active fault-tolerant control. Ref.
Nešić et al. (1999) has provided a sufficient condition for
stabilization of NCSs via discrete-time approximations,
which is used to model the NCSs. So the FE method
proposed in this paper can be employed to reconfigure the
controller to recover the system performance, that is also
our future work.
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D. Nešić, A. R. Teel, and P. V. Kokotović. Suffcient
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