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Abstract: Substrate-handling robots for semiconductor and flat-panel-display manufacturing applications 

possess undesirable structural flexibilities and frictional effects which erode closed-loop stability and deteriorate 

tracking performance. In this study, advanced control and identification techniques are applied to cope with 

these control challenges. The techniques include sensorless modal stabilization, observer-corrector control 

strategy, iterative learning control approach and neural-network-based perturbation estimation. The 

fundamentals of the techniques are reviewed and the resulting performance improvements are demonstrated 

experimentally. 

 

1. INTRODUCTION 

The existing manufacturing technologies for semiconductor 
integrated circuits and flat panel displays include processing of 

silicon wafers and glass panels, referred to as substrates, in fully 
automated vacuum cluster tools, which are serviced by one or 

more robots (Caveney and Hofmeister 1998, Davis and Brooks 
1988, Hendrickson 1993, Davis and Hofmeister 1997). Typical 

operations performed by the robots include elementary rotational 

and straight-line moves, which are often combined and blended 
into more complicated planar or three-dimensional trajectories in 

order to comply with complex workspace geometries (Hosek and 
Elmali 2001, 2003). 

Increasing complexity, strict space constraints and limited 

weight of moving components required for high-speed 
performance and low power consumption lead to compromised 

structural stiffness of the robots. As a result, the rigid body 

dynamics of the robots is often accompanied by a number of 
position-dependent lightly-damped vibration modes (resonance 

conditions) which interfere with traditional control techniques 
developed for rigid robots, causing undesirable oscillations, 

affecting overall stability, and leading to limited control 

performance. Implementation of low-pass filters and band-reject 
filters, an approach often adopted in the engineering practice to 

cope with structural resonances, is not effective for high-
performance robots since low-pass filters introduce amplitude 

distortion and destabilizing phase lag, which deteriorates control 
performance, and band-reject filters are not suitable for 

applications where the resonance conditions shift during 

operation, change due to regular wear and tear, or vary because 
of production inconsistency. Therefore, alternative control 

methods, which do not increase the hardware complexity (no 
additional sensors and actuators) and do not demand excessive 

computational capacity, are needed for high-performance 

industrial applications. 

The robots typically hold the substrate subject to processing by 

means of a vacuum-operated suction-type or edge-contact 

gripper. In order for the vacuum lines to pass through revolute 
joints with unlimited rotation, such as in the case of the wrist 

joints of robot arms with articulated end-effectors, the joints 
incorporate a system of passages with seals between the rotating 

components of the joints. Similarly, electrical signals for 

substrate sensors and scanners (mappers) mounted on the robot 

end-effectors are routed through the robot joints using multiple 
slip-rings. The seals and slip-rings introduce undesirable friction. 

Additional sources of friction, dry and viscous, are associated 
with pre-loaded bearings of the robot arm. The frictional effects 

negatively affect tracking and settling performance of the robot. 

This paper presents an overview of innovative methods 
developed and/or applied by the authors to address the above 

control challenges. In Sections 2 and 3, two control concepts, 

sensorless modal stabilization and observer-corrector control, are 
utilized to reduce undesirable effects of resonance conditions. In 

Sections 4 and 5, additional two techniques, iterative learning 
control approach and neural-network-based perturbation 

estimation, are applied to cope with undesirable frictional 

effects. The fundamentals of each of the methods are reviewed 
and the resulting performance improvements are demonstrated 

experimentally. 

2. SENSORLESS MODAL STABILIZATION 

A control approach based on sensorless modal stabilization 

(Hosek 2001a) is a method suitable for robots where undesirable 

structural flexibilities introduce vibration modes within the 
required bandwidth of operation of the motion controller, 

resulting in destabilization of the closed-loop system. In contrast 
to conventional methods where the frequency components 

corresponding to the undesirable vibration modes are filtered out 
in the control loop (e.g. Friedland 1996, Levine 1996a), the key 

idea in this approach is to use a composite controller which 

consists of a trajectory-tracking section for the rigid-body 
dynamics complemented by a vibration-damping compensator 

for the flexible dynamics of the robot. The vibration damping 
compensator requires information on the states of the dominant 

flexible dynamics. Since direct measurements of these states are 

not available in a majority of applications, they need to be 
replaced by approximate estimates. A reduced-order state 

observer is employed for this purpose. 

As an example, the control method is applied to a three-link 
SCARA-type MagnaTran 77 robot for flat-panel-display 

manufacturing applications (inset in Fig. 1). While the first two 
links of the robot, the upper arm and forearm, are driven 
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independently by a pair of motors, a belt arrangement is 
employed to maintain radial orientation of the end-effector 

regardless of the position of the first two links. The inevitable 

elasticity of the belt arrangement introduces a problematic 
vibration mode, the frequency of which varies substantially with 

the radial extension of the arm (Fig. 2a). 

A simplified block diagram of the composite controller is 

presented in Fig. 1. The trajectory-tracking controller and 

vibration-damping compensator are referred to as motion 
controller and stabilizing controller, respectively, in the figure. 

The following nomenclature is adopted: ‘R’ and ‘T’ represent 
the commanded (reference) trajectory in terms of the polar 

coordinates of the end-effector, ‘θr1’ and ‘θr2’ denote the 

commanded trajectory converted to angular positions of the 
motors, ‘τ1’ and ‘τ2’ are torques exerted by the motors, ‘θ1’ and 

‘θ2’ stand for angular positions obtained from the motor 
encoders, and ‘e’ denotes angular displacement of the end-

effector from its equilibrium position. 

The trajectory-tracking controller operates based on position and 
velocity feedback using a standard implementation of the 

computed torque technique (e.g. Fu et al. 1987). It comprises a 
rigid-body model of the robotic manipulator complemented by a 

PD compensator with a disturbance observer for each of the 

motors (a disturbance observer is used in place of a conventional 
I-control for improved tracking and prompt elimination of steady 

state errors). 

The purpose of the vibration-damping compensator is to enhance 

damping characteristics of the dominant flexible dynamics, in 

this particular case associated with the elastic belt arrangement, 
improving overall stability properties of the system. The 

compensator design is based on the state formulation of the 
linearized robot dynamics. It is selected in the form of state 

feedback from the displacement and velocity of the robot end-

effector (PD control). The control gains are determined using a 
pole-placement technique complemented by LQR optimization 

to obtain a unique solution. They are selected so that the closed-
loop system, i.e., the robot with the composite controller, is 

stable in the required workspace. 

The vibration-damping compensator requires information on the 
states of the flexible dynamics which is subject to control, in this 

particular case the dynamics of the end-effector of the robotic 
arm. Since direct measurements of these states are not available 

in practice, they need to be replaced by approximate estimates. A 

reduced-order state observer is employed for this purpose. The 
state estimation is based on an approximate theoretical model of 

the robotic manipulator. The observer is designed with a limited 
bandwidth selected so that it satisfactorily tracks the dynamics of 

interest but does not respond to higher-frequency inputs 
associated with unmodeled dynamics and measurement noise. 

The state observer and vibration-damping compensator can be 

employed only when the flexible dynamics subject to control is 

observable and controllable. In order for the robotic manipulator 
to operate in its entire workspace, a mechanism is implemented 

which allows the arm to move through or hold in positions 
where the flexible dynamics is unobservable and uncontrollable. 

In this particular application, the unobservable and 
uncontrollable positions coincide. Consequently, the state 

observer and vibration-damping compensator can be turned off 

in the neighborhood of the unobservable and uncontrollable 
positions, and activated again when the robot moves outside of 

this zone. In order to avoid initial step change in the observer 
output, which may result from the inputs being non-zero at the 

time of activation of the observer, the state vector of the observer 

must be initialized so that the desired initial observer output is 
obtained. Activation of the vibration-damping compensator is 

delayed with respect to the state observer in order to allow the 

initial transient of the observer output to decay. This mechanism 
guarantees smooth transition to full operation of the vibration-

damping compensator. 

The stabilizing effects of the vibration-damping controller are 

demonstrated in terms of the response of the closed-loop system 
to nonzero initial conditions imposed on the flexible dynamics 

associated with the elastic belt. The tip of the end-effector of the 

arm is displaced from its equilibrium position while the robot is 
commanded to stay in a specified radial position. The 

displacement of the end-effector induces errors in the positions 
of the robot encoders which are eventually eliminated by the 

disturbance observers, resulting in deformation of the belt. The 

end-effector is released at this point. Fig. 2b indicates instability 
of the closed-loop system when the vibration-damping 

compensator is not used (eventually, a limit cycle is reached 
since the motor torques are limited). Substantial stability 

improvements are observed with the vibration-damping 
controller activated. 

The tracking performance of the composite control system is 

tested for a simple straight-line move in the radial direction. A 
comparison of the control performance with and without the 

vibration-damping controller is presented in Fig. 3. The graphs 

indicate that the stability and, consequently, the tracking 
performance of the robotic manipulator improve considerably 

when the vibration-damping compensator is implemented. 

In summary, the practical contribution of the sensorless modal 
stabilization concept consists in improved stability and control 

performance. These improvements are achieved with no 
additional sensory and/or actuation arrangements that would lead 

to undesirable increase of hardware complexity. Detailed 
information on the controller design and state observer 

implementation, including a complete test report, is provided in 

Hosek (2001a). 

3. OBSERVER-CORRECTOR CONTROL 

The observer-corrector control strategy (Hosek 2001b; Hosek et 

al. 2001, 2003) has been developed for applications where 
undesirable resonance conditions appear at frequencies above 

the minimum bandwidth necessary for required operation of the 

robot. In this approach, the system subject to control is viewed in 
terms of its dominant dynamics, which is essential to achieve 

required functionality, and the resonance properties associated 
with higher-order dynamic effects, which are imposed on the 

dominant dynamics and considered to be unnecessary and 

undesirable for proper operation. The objective is to extract the 
dominant dynamics essential for operation of the robot with 

minimal amplitude and phase distortion of feedback signals. For 
this purpose, a substitute feedback signal is synthesized using a 

unique arrangement of a band-limited state observer and a low-
pass filter corrector. The synthetic signal is then used as a 

controller input, effectively reducing destabilizing effects of 

unmodeled dynamics of the robot. 

A conceptual block diagram of the observer-corrector 
arrangement is depicted in Fig. 4, where ‘r’ denotes the reference 

signal, ‘e’ is the control error, ‘u’ refers to the control action, ‘d’ 
is external disturbance, ‘n’ stands for measurement noise, ‘y’ is 

the output of the robot, ‘yo’ represents the output of the state 
observer, ‘yc’ is the output of the corrector filter, and ‘ys’ is the 

synthetic    feedback    signal.     The   symbols    may    represent 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6732



 

Fig. 1. Block diagram of composite control system; test 

MagnaTran 77 robot (inset). 
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Fig. 2. Composite control - (a) frequency response of test robot, 

(b) response to nonzero initial conditions. 
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Fig. 3. Composite control - tracking errors, (a) motor 1, 

(b) motor 2. 

Fig. 4. Block diagram of observer-corrector control system; test 

AquaTran 7 robot (inset). 
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Fig. 5. Observer-corrector control - velocity profiles, 

(a) motor 1, (b) motor 2. 
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Fig. 6. Observer-corrector control - tracking errors, (a) motor 1, 

(b) motor 2. 
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either scalar variables or vectors, depending on the number of 
axes of the robot. 

It is assumed that the undesirable resonance conditions of the 

robot (i.e., higher-order dynamic effects) appear at frequencies 

above the bandwidth essential for required operation (i.e., 
dominant dynamics). This allows for the dominant dynamics and 

the undesirable higher-order dynamic effects to be separated in 
the frequency domain. The external disturbance is expected to be 

relatively slow, i.e., of low-frequency contents, in comparison 

with the higher-order dynamics of the robot. The measurement 
noise is assumed to be of high-frequency nature compared to the 

bandwidth of the dominant dynamics. These assumptions are 
realistic for typical robot control applications. They reflect the 

requirement that the bandwidth of the dominant dynamics of the 
robot and the disturbance to be compensated for cannot overlap 

with the frequency contents of the measurement noise in order 

for the control to be effective. In accordance with these 
assumptions, the output of the robot can be decomposed into two 

parts: a component which reflects the dominant dynamics, and a 
component which corresponds to the higher-order dynamics and 

noise. 

Referring still to Fig. 4, the state observer is employed for on-

line estimation of the state and output variables associated with 
the dominant dynamics of the robot. It is designed with a limited 

bandwidth selected so that it satisfactorily tracks the dominant 
dynamics of the robot but does not respond to the higher-

frequency inputs which are associated with the higher-order 

dynamics and measurement noise. The accuracy of the estimated 
output of the robot is limited due to observation errors which 

typically result from modeling imperfections and, as such, are of 
low-frequency nature. 

In order to compensate for the mismatch between the output of 

the state observer and the actual dominant dynamics of the robot, 

the corrector filter is incorporated into the control system, as 
suggested in Fig. 4. It is selected as a linear low-pass filter to let 

through the lower-frequency components corresponding to the 
dominant dynamics and observation errors, and attenuate the 

higher-frequency components of the undesirable dynamics and 
measurement noise. The input of the corrector filter is calculated 

as a difference between the output of the robot and the estimate 

obtained from the state observer. As a result, the components of 
the dominant dynamics of the robot are effectively removed 

from the input of the corrector filter. Since the corrector filter is 
designed to attenuate the undesirable frequency components 

corresponding to the higher-order dynamics and noise, its output 

reduces approximately to the negative of the state observer 
estimation error. 

Finally, the estimated output of the robot obtained from the state 

observer, yo, and the output of the corrector filter, yc, are 
combined to synthesize the substitute feedback signal, ys. At this 

point, the state observer estimation error approximately cancels 

with its negative from the output of the corrector filter, 
producing a synthetic signal which is equivalent to the dominant 

dynamic component in the output of the robot. 

The resulting synthetic signal can be viewed as an output of a 
virtual robot which assumes the dominant dynamics of the actual 

system, but does not exhibit the undesirable higher-order 

dynamic effects. Consequently, the controller can be designed 
practically without taking the higher-order dynamic effects into 

account, which allows for use of conventional control 
techniques, and translates into reduced modeling requirements, 

simplified controller design and shorter development time when 
compared to a complete dynamic analysis. 

The performance of the observer-corrector control strategy is 
tested on a direct-drive wafer-handling robot AquaTran 7 for 

atmospheric and corrosive environments (inset in Fig. 4). The 

robot performs a radial straight-line move. The effects of the 
observer-corrector arrangement in the velocity control loop are 

shown in Fig. 5, where indices 1 and 2 refer to the motors which 
drive the upper arm and forearm, respectively. The raw velocity 

signals are visibly contaminated by undesirable high-frequency 
components (hairline). Conventionally, they would be passed 

through low-pass filters, resulting in significant phase-lag 

distortion (dashed line), and fed back to the controller. In the 
observer-corrector strategy, in contrast, the feedback signals 

originate in the state observer (dotted line), and the low-pass 
filters are employed merely to correct inevitable observation 

errors resulting from modeling imperfections. Combining the 

observed velocities with the outputs of the corrective filters 
yields clean synthetic signals which closely follow the raw 

velocities but do not contain undesirable high-frequency 
components (bold line). The signals show substantially smaller 

errors than the filtered and observed velocities alone. 

In order to quantify the improvement achieved due to the 
observer-corrector mechanism, the control performance is 

compared with an equivalent conventional control approach in 

terms of motor tracking errors. The state observer is 
disconnected in this case. The raw velocity signals are passed 

through low-pass filters and fed back to the controller. The 
control parameters remain the same except for the bandwidth, 

which must be reduced in order to preserve stability and non-
oscillatory behavior of the system. The tracking errors are 

compared in Fig. 6. The graphs indicate that the tracking 

performance of the conventional control (hairline) is improved 
by an order of magnitude by implementing the observer-

corrector mechanism (bold line). 

The test results demonstrate significant improvements of the 
control performance in terms of tracking errors despite the 

presence of numerous position-dependent lightly-damped 
vibration modes. In comparison with conventional low-pass 

filtering, which is often adopted in practice to cope with 

structural resonances, the observer-corrector arrangement 
attenuates frequency components corresponding to the 

destabilizing higher-order dynamics without introducing 
significant amplitude distortion and destabilizing phase lag 

within the bandwidth of operation. Since this attenuation is not 

selective, the strategy is robust against changes in resonance 
frequencies, as long as they remain above the limit for which the 

observer-corrector arrangement is designed. These frequency 
shifts occur due to position dependency of the vibration modes 

and changing load conditions of the robotic manipulator, 
because of regular tear and wear, and result from inevitable 

differences between robots due to manufacturing inconsistency. 

A detailed description of the observer-corrector control strategy, 

including a complete report on the test implementation, can be 
found in Hosek (2001b) and Hosek et al. (2001). The strategy is 

subject to a patent protection (Hosek et al. 2003). 

4. ITERATIVE LEARNING CONTROL 

A technique applicable to robots which exhibit various frictional 

effects and other difficult-to-model phenomena is iterative 

learning control (ILC) (e.g. Bien and Xu 1998). This approach 
requires repetitive behavior of the dynamics of the system and, 

therefore, is suitable for those substrate-handling applications 
where the nature of the robot motion is repetitive, i.e., the robot 

performs identical operations utilizing predefined trajectories 

that do not change. This is often true in cluster tool applications 
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where the robot performs pick and place operations within a 
given set of stations. In this case, each motion starts from an a 

priori known position and ends at another previously known 

destination. 

The above described application fits in the class of ILC because 

(Bien and Xu 1998): (1) Every substrate transfer motion ends in 

a fixed time of duration; (2) A desired output trajectory is known 
a priori over that time of duration; (3) Repetition of the initial 

state is always satisfied; (4) Invariance of the system dynamics is 
ensured throughout the repeated moves; (5) The output error can 

be used in the construction of the control input for the next 

move; (6) There is a unique control input that yields the desired 
output trajectory. 

If the control application fits the characteristics (1) to (6) above 

then the problem is to find a recursive control law that makes the 
output error converge to zero as the number of motion iterations 

increases. Each iteration consists of the motion needed to 
transfer the substrate from one given station to another given 

station. The control signal for the next substrate transfer can be 

computed based on the output error and control of the previous 
transfer. 

In the present application, the ILC is proposed to enhance 

performance of an existing computed-torque controller, as 
shown in Fig. 7. In the computed-torque method (e.g. Fu et al. 

1987), the control law can be viewed in terms of two 
fundamental parts: a model-based portion complemented by an 

error-driven compensator. The model-based portion employs the 

dynamic model of the robotic manipulator to linearize and 
decouple the rigid-body dynamics of the robot so that it can be 

represented by a pair of independent unit inertia moments 
associated with the motors subject to control. 

The performance of the computed-torque motion control 

algorithm is limited by the accuracy of the dynamic model and 
the bandwidth of the error-driven compensator. In order to meet 

performance specifications (e.g., position tracking), the control 

engineer needs to complete the following two steps: (1) Build 
the dynamic model, often based on measured parameters; 

(2) Tune the controller bandwidth, hoping that the performance 
specifications can be met without undesirable excitation of 

flexible dynamics (structural resonances). 

The ILC is utilized to complement the dynamic model to 
compensate for unmodeled effects, such as dry friction, viscous 

damping, parameter uncertainties and other difficult-to-model 

phenomena, thus improving the performance and reducing the 
contribution of the error-driven compensator. As a result, the 

compensator can operate with a lower bandwidth, which reduces 
the risk of excitation of the flexible dynamics. 

The unmodeled effects manifest themselves as disturbances. A 

disturbance signal can be defined by a measure of the 
discrepancy between the actual dynamics and the theoretical 

dynamic model. One way to quantify this signal is to compare 

the actual and predicted accelerations of individual joints of the 
robot as explained in Elmali and Olgac (1992) and Moura et al. 

(1997). This definition is adopted in the present study. 

The actual disturbance is unknown in real time. If the 
disturbance were known, exact information on the robot 

dynamics would be available and, consequently, the robot would 
be able to track the desired trajectory perfectly without any 

contribution of the error-driven compensator. In other words, if 

the dynamics of the robot became perfectly known, no closed 
loop component would be needed in order to track a prescribed 

motion trajectory. 

The fact that the actual disturbance is not known in real time 
does not mean that it cannot become available after the motion 

has finished. This observation is of extreme importance for a 

system that is repetitive. As explained earlier, substrate transfer 
operations are often repetitive tasks. Therefore, it is possible to 

identify the actual disturbances for a given substrate transfer 
operation and utilize this information to substantially reduce the 

tracking errors without the need for changing the bandwidth of 
the error-driven compensator or adjusting the dynamic model 

parameters. 

The fundamental idea of the proposed implementation of ILC 
consists of two basic steps: (1) Recording of the actual 

disturbance during a given motion iteration; (2) Playing the 

learned disturbance in the next motion iteration (Fig. 7). 

The process of recording consists in storing the disturbance 

signal for all the joints in a vector that can be reproduced or 
played at any time after the motion has finished. In the next 

move iteration, the previously recorded disturbance can be used 

in the control law as a correction for the modeling errors. When 
this is done then the recorded vector is no longer a disturbance 

for the current motion since it became known to the controller. 
In other words, the controller learned the unknown disturbance. 

An efficient way of storing the disturbance signals is in terms of 

their FFT coefficients. Conveniently, by truncating the series of 
the FFT coefficients, the frequency spectrum of the disturbance 

signals can be bounded within a desired range, thus eliminating 
unwanted higher frequency noise. 

The actual disturbance cannot be assimilated in a single iteration 

due to the presence of non-repetitive external perturbations. The 
learning algorithm has to be designed such that only the 

repetitive disturbances are recorded and learned. This presents 

some robustness issues associated with the learning process. 
However, the learning rate can be tuned so that the controller can 

gradually assimilate meaningful disturbances without divergence 
of the learning process and, more importantly, keeping the 

global closed loop stability. 

Fig. 8a illustrates one disturbance learning iteration for a radial 
extension move of a SCARA-type AcuTran 3 prototype robot of 

Fig. 7. The thin line is the learned disturbance signal from the 
previous move. The other signal (bold line) represents the non-

learned portion of the disturbance during the next move, referred 

to as residual disturbance in the figure. The key point here is to 
show that the magnitude of the actual disturbances was 

substantially reduced in the next move iteration (residual 
disturbance). This means that the discrepancy between the 

predicted dynamics (dynamic model and learned disturbance) 
and the real robot dynamics was dramatically decreased, i.e., the 

control system learned more about the modeling errors. This is 

possible since the disturbance is recorded in one move iteration 
and feed-forwarded to the controller in the following iteration. 

This learning process can continue through a series of move 
iterations until all disturbance signals are completely assimilated 

(or learned) by the control law. Note that the learned signal does 

not have high frequency components as in the actual signal. This 
is another desirable feature of the proposed algorithm, i.e., it 

only learns meaningful frequency components since it can 
truncate the entire spectrum above a prescribed threshold. 

Fig. 8b shows the practical effect of the learning process in terms 

of the position tracking errors for a radial extension move. The 
tracking errors are measured in the direction normal to the 

commanded path of the robot end-effector. As it can be seen, 
after the learning process takes place (bold line), the peak 
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normal error is reduced from the initial value of 1130 µm down 
to 94 µm. 

In order to illustrate the stability of the learning process, a series 

of radial extend and retract moves was performed to/from the 
same radial location, and the peak tangential error was recorded 

for each move iteration. Fig. 9 shows the peak errors of a series 

of over one thousand of extend and retract moves. The “learning 
phase” can be seen in the first 20 moves, which exhibit 

substantial decrease of the peak tracking errors. After that, the 
learning process reaches a “steady state”. The “learning limit” is 

achieved when there remain no repeatable components to learn. 

A limitation of the ILC approach is the fact that it applies to a 
specific move of the robot. That is, after the learning phase is 

completed, the performance is optimized for that specific move 

utilized in the learning phase. Any changes related to the 
learning trajectory require additional learning. This makes this 

approach impractical for applications where robot station 
coordinates change between the time the robot was shipped from 

the factory to the time it is finally operating in the cluster tool, 

and for applications where trajectories change during operation, 
such as when performing offset pick operations from a substrate 

aligner or place operations with correction offset in systems 
equipped with on-the-fly substrate eccentricity recognition 

(Hosek and Prochazka 2005). 

5. NN-BASED PERTURBATION ESTIMATION 

The limitations of the ILC approach can be avoided by utilizing 
a neural network (NN) for estimation of modeling errors and 

compensation for their effects. This is because a neural network 
is able to predict the behavior of a non-linear function provided 

that its inputs lie anywhere within the training grid (e.g. 

Rojas 1996). 

The key element of the proposed method (Moura and Hosek 

2003) is a neural network incorporated into the motion controller 

as an additional feed-forward component which complements 
the computed-torque scheme, as shown in Fig. 10. The following 

nomenclature is used in the figure: ‘θr’ is vector of reference 
positions, ‘θ’ is vector of actual positions, ‘u’ is vector of control 

signals, ‘uC’ is output of the feedback compensator, ‘uDM’ is 

output of the dynamic model, ‘uNN’ is output of the neural 
network, and ‘M’ denotes inertia matrix of the dynamic model. 

In vectors θ, θr, u, uC, uDM and uNN, each element corresponds to 
one axis of the robot. 

The purpose of the neural network is to compensate for effects 

of dry friction, viscous damping, parameter uncertainties and 
other unmodeled components, referred to as model 

perturbations. In addition to compensation for model 

perturbations, the present application requires the method to 
meet the following objectives: (1) To be compatible with a 

motion controller based on the computed-torque technique; 
(2) To preserve the stability properties of the computed-torque 

motion controller. 

It is assumed that the model perturbations are functions of the 
joint positions, velocities and accelerations. Consequently, these 

variables are selected as the inputs for the neural network. The 

outputs of the network produce the unmodeled feed-forward 
portions of the control signals. The network is designed to 

include two layers, an input layer and an output layer. The input 
layer consists of a set of tangent-sigmoid neurons. The output 

layer comprises a pair of linear neurons. Each output of the 
neural network corresponds to feed-forward signal for one axis. 

The tangent  sigmoid  functions are selected  for  the  input  layer 

because they can model accurately non-linear functions with a 
finite number of discontinuities. The linear functions are chosen 

for the output layer in order to scale the range of the outputs. 

In the proposed approach, the neural network is trained 
incrementally to reproduce the unmodeled portion of the control 

signal based on batches of data recorded over given periods of 

time. In the initial training step, the network learns the output of 
the feedback compensator, uC. Once the initial training step has 

been completed, the resulting weights (NN parameters) are 
implemented, leading to reduction of the control signal produced 

by the feedback compensator. In the subsequent training steps, 

the network learns the remaining unmodeled components of the 
control signal, i.e., uNN

k+1
 should match uC

k
 + uNN

k
, where k 

indicates the training step. Ideally, for a given k > L (L is finite) 
the output of the feedback compensator will be virtually zero 

since the neural network is already outputting the necessary 
control signal. 

The neural network is trained off-line using the Levenberg-

Marquard algorithm (e.g. Levine 1996b). This algorithm is 

selected due to its fast convergence properties. A disadvantage 
of this method is that it requires the inverse of a large matrix. 

However, tests have proven that a LU decomposition method 
(e.g. Press et al. 1990) is adequate for the present application. 

The batch data are collected in real time using a sequence of 
training moves, also referred to as a training grid. 

It should be noted that, in the proposed arrangement, the original 

computed-torque motion controller, comprising a feedback 

compensator and a dynamic-model-based feed-forward 
mechanism, remains intact. This is important to achieve 

acceptable performance of the robot during initial training of the 
neural network. As mentioned earlier, the inputs of the neural 

network are selected to be joint positions, velocities and 
accelerations. In order to preserve the stability of the original 

computed-torque method, the reference inputs are used instead 

of the measured ones. 

The proposed method is applied to the motion control of a five-
axis direct-drive Reliance 8 robot (inset in Fig. 10), used for 

substrate-handling operations in semiconductor manufacturing 
applications. The robot holds the substrates subject to processing 

by means of a vacuum-operated suction-type or edge-contact 
gripper. In order for the vacuum lines to pass through revolute 

joints with unlimited rotation (e.g., the wrist joints associated 

with the two articulated end-effectors), the joints incorporate a 
system of passages with seals between the rotating components 

of the joints. Additionally, electrical signals for substrate sensors 
and scanners (mappers) mounted on the robot end-effectors are 

routed through the joints using multiple slip-rings. The seals and 

slip-rings introduce undesirable friction, which complements 
usual frictional effects associated with pre-loaded bearings of the 

robot arm. 

The control system of the test robot is of distributed type. It 
comprises a pair of controllers that are referred to as main and 

remote. The main controller is in charge of overall trajectory 
planning, and performs feedback control of the motors which 

drive the first two links. The remote controller is installed inside 

of the robot arm to control the end-effector motors, thus 
reducing the number and length of signal lines that need to be 

fed through the links and joints of the arm. The two controllers 
are connected through a communication line that is used for 

transmission of trajectory information, but cannot be utilized to 
share run-time data due to limited speed and reliability-related 

concerns. 
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Fig. 7. Block diagram of iterative learning control; test 

AcuTran 3 robot (inset). 
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Fig. 8. Iterative learning control - (a) learned and residual 

disturbances after one iteration, (b) normal tracking errors. 
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Fig. 9. Iterative learning control - peak tracking errors, 

(a) extend motion, (b) retract motion. 

Fig. 10. Block diagram of control with NN-based perturbation 

estimation; test Reliance 8 robot (inset). 
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Fig. 11. NN-based perturbation estimation - normal tracking 

errors for 1st station, (a) extend motion, (b) retract motion. 
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Fig. 12. NN-based perturbation estimation - normal tracking 

errors for 2nd station, (a) extend motion, (b) retract motion. 
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The robot is challenging to control, particularly due to: (1) High 
friction coupling between the upper and lower end-effectors; 

(2) The distributed control architecture, which does not allow the 

controllers to have real time access to all the states in all the 
joints; due to this limitation it is not possible to utilize an 

accurate model of the dynamic coupling between all joints. The 
limitations above have driven the proposed design of the NN-

based control. 

In the present application, two neural networks are implemented: 
one in the main controller and the other in the remote controller. 
Each network output is trained to provide the necessary feed-

forward control signal to drive the respective robot joints as 

close as possible to their commanded (reference) trajectories. 
The inputs for both networks are identical. For the main 

controller, the outputs correspond to the joint torques of the first 
two links. For the remote controller, the outputs are defined as 

the torques for the two end-effectors. 

In typical operation, the robot is frequently commanded to track 
a trajectory referred to as a via move. The selected (or active) 
end-effector extends and retracts along two line segments, which 

are blended into a smooth path around a common via-point, 

while the other (trailing) end-effector moves simultaneously in 
such a way that its orientation always points toward the shoulder 

joint of the robot (Hosek and Elmali 2003). Two operations of 
this type, each utilizing a distinct path in a different area of the 

robot workspace, are selected for experimental demonstration of 
the proposed control method. 

For testing purposes, the training grid is selected as a sequence 
of moves that are intentionally different from the robot moves 

expected in regular operation (including the two test moves). 

This is to verify the ability of the neural network to predict 
modeling errors for any moves within the training grid, which 

differentiates the NN-based control from the ILC approach. 

Fig. 11 shows the tracking errors perpendicular to the path of the 
active end-effector (normal errors) for an extend and retract 
motion to/from a typical process station. The thin line shows the 

tracking performance using the original computed-torque 
method whereas the bold line represents the neural-network-

based approach. Likewise, Fig. 12 shows the comparative results 

for another station with a different access path elsewhere in the 
workspace of the robot. The experimental results demonstrate 

that the neural network-based approach substantially improved 
the existing computed-torque algorithm. In both cases the 

tracking errors are at least two times better than the original 
performance. 

Further information on the NN-based perturbation estimation 
approach, including more details on the control design, training 

grid and experimental testing, can be found in Moura and 

Hosek (2003). 

6. CONCLUSION 

In this study, four advanced control and identification methods 

were proposed to improve closed-loop stability and tracking 
performance of substrate-handling robots with undesirable 

structural flexibilities and frictional effects. The methods 

included sensorless modal stabilization, observer-corrector 
control strategy, iterative learning control approach and neural-

network-based perturbation estimation. The fundamentals of the 
methods were outlined, and the effectiveness of each of them 

was demonstrated experimentally in an industrial application. 
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