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Abstract: In this paper we introduce a new control strategy for linear time invariant (LTI) systems 
with a single time delay. The delay appears within the feedback control logic. Earlier research on 
this class of systems determines the delay intervals for stable operations, exhaustively, exactly and 
completely. The newly developed inverting control logic suggests a very practical procedure of 
reversing the sign of the feedback control gain, in order to enlarge the stable delay intervals. This 
gives some additional capabilities to control system designer. The sign inversion idea is based on a 
critical mathematical feature of LTI-TDS (Time Delay Systems) which was first recognized under a 
paradigm called the Cluster Treatment of Characteristic Roots (CTCR). Several example case 
studies demonstrate the practicality and the advantages of the new control law. 
Copyright © 2002 IFAC 
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1. INTRODUCTION AND MOTIVATION 
 
Time delayed systems have been attractive for researchers 
for several decades (Cooke and van den Driessche 1986; 
Stepan 1989; Chen, Gu and Nett 1995; Gu and Niculescu 
2001; Niculescu 2001). Earlier studies mainly focused on 
stability assessment problem. Infinite dimension of the linear 
time invariant (LTI) time delayed dynamics due to the 
transcendentally in the equations is notoriously complex to 
analyze. From the stability analysis angle, earlier 
investigations provided enormous insight. There is however, 
very limited control synthesis studies in the literature on time 
delayed systems, again mainly due to the notoriety of the 
problem (Niculescu 2001; Filipovic and Olgac 2002; 
Insperger and Stépán 2005). Author’s group has contributed 
in this field, both from the stability analysis and the control 
synthesis aspects of the research (Olgac and Sipahi 2002; 
Olgac, Ergenc and Sipahi 2005; Sipahi and Olgac 2005; 
Olgac and Sipahi 2006; Sipahi and Olgac 2006; Fazelinia,  
 
 
* Author was affiliated with University of Connecticut when the 
work was done. 

Sipahi and Olgac; Ergenc, Olgac and Fazelinia, 2007). This 
manuscript presents a new synthesis prospective for control 
of the time delayed systems. 
We consider a general class of LTI-TDS (linear time-
invariant, time delayed systems) where the delay is attributed 
to the feedback control: 

 uBAxx +=&                                  (1) 
where x ( 1×n ) is the state vector, ( )1×mu , nm ≤ , is the 
control, A  and B  are matrices of appropriate dimensions. 
Taking a full-state feedback control law as ( )τ−= txKu , 
K ( nm× ) being the feedback gain matrix and τ  the delay 
which occurs in the feedback line, the system dynamics in (1) 
becomes: 

 ( )τ−+= tBxAxx& , +ℜ∈τ , KBB =          (2) 

Author’s group studied broadly, the stability robustness of 
this dynamics against uncertain (but constant) delays. (Olgac 
and Sipahi 2002; Olgac and Sipahi 2004; Sipahi and Olgac 
2005; Olgac and Sipahi 2006; Sipahi and Olgac 2006) as 
well as the strategies for stabilizing (or disturbance rejecting) 
control (Olgac, Ergenc and Sipahi 2005). 
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i) Our stability robustness investigations uncovered some 
interesting properties associated with the zeros of the 
characteristic equation corresponding to (2): 

( ) ( )sessCE ττ −−−= BAIdet,                   (3) 

The underlying paradigm which enables this analysis is 
called the Cluster Treatment of Characteristic Roots (CTCR). 
It uses two crucial properties to create an exact and 
exhaustive map of the stability robustness of (2) in the 
domain of +ℜ∈τ . This result is interesting from the 
stability analysis as the CTCR methodology delivers the 
complete set of stable operating delays. 

ii) We also developed and experimentally demonstrated a 
control strategy for (2), which we named the “Delay 
Scheduling Control” (Olgac, Ergenc and Sipahi 2005; Olgac, 
Sipahi and Ergenc, 2007). The philosophy in Delay 
Scheduling Control is that we intentionally increase the 
delay, τ , i.e., we reschedule it, in order to improve the 
control performance. For instance, if the system is unstable 
with the present delay, we search for a larger delay which 
returns the system to stability. For some cases increasing the 
present delay can even improve disturbance rejection 
capability. In either objective one needs a crisp description of 
the delay regions that system operates stably, which we call 
the “stability pockets”, especially for large delays. Since the 
CTCR procedure provides this information precisely, the 
control system designer has a better decision making ability 
as to which delay value, τ , can be scheduled for stability. 
 
The new control strategy we present in this paper is in a 
different direction altogether. It is primarily based on a 
unique feature of the imaginary spectrum of (3) (proposition 
II in (Olgac and Sipahi 2002)). Leaving the description of 
this feature to the following section we state the end result 
here. The idea is to switch the control gain B to B−  (i.e., a 
single sign inversion) in (2) depending on the feedback 
delay, τ . The expectation is that using B  or B−  in control 
we enlarge the stability pockets in the delay domain. This is 
an advantage, as the control designer now has broader range 
of selection for “delay scheduling” and potentially better 
control performance can be achieved using these extended 
regions.  
 
The main motivation is this paper is to improve the control 
performance for a general class of LTI-TDS as in (1). And 
the novel contribution is in the suggestion of inverting the 
gain B to B− . We explain the key properties of the system 
(1), in section II, along with the highlights of CTCR. In 
section III the new control logic is presented, as well as the 
mathematical reasoning behind it. Section IV entails a set of 
example case studies. 
 
 

2. AN OVERVIEW OF THE CTCR PROCEDURE 
 
Cluster Treatment of Characteristic Roots (CTCR) offers a 
unique approach to the TDS stability analysis. In essence, the 
CTCR method collects (i.e., “clusters”) the infinitely many 
characteristic roots of the system into a small number of 

groups with some common clustering features. Very 
importantly, these clusters contain exhaustively, all the 
possible imaginary characteristic roots of equation (3). The 
key finding of the CTCR paradigm is that, the number of 
such clustered groups are proven to be small (therefore easy 
to handle) (Olgac and Sipahi 2002; Sipahi and Olgac 2003; 
Olgac and Sipahi 2006). Since the stability switching (from 
stable to unstable or vice versa) can only take place at an 
imaginary root, a systematic process naturally emanates from 
this point on revealing completely the stability outlook of the 
system, as we will describe later in the text. 
 
The CTCR methodology also creates an explicit function, 
NU , for the number of unstable characteristic roots of the 
system, which is a function of τ only. This unique function 
declares the, so-called, stability pockets in +ℜ∈τ  domain, 
wherever 0=NU . Interested reader is recommended to 
look at (Olgac and Sipahi 2002; Sipahi and Olgac 2003; 
Olgac and Sipahi 2006) for the details and relevant examples. 
 
The most critical step in CTCR is to do with the 
determination of the “clustering features”. What are they? 
How are they found? The answers to these questions are 
based on two propositions, which were not recognized until 
the authors’ first publication (Olgac and Sipahi 2002). That 
publication offers an interesting structure and discipline 
guiding the imaginary root formations of the system. They 
are stated below without proofs. 

 
Proposition I:The time-delayed dynamics (2) can exhibit 
only a bounded number of purely imaginary characteristic 
roots ikω± , Mk ...1=  for all possible +ℜ∈τ . This 

number, M, is upper bounded by 2n (Sipahi and Olgac 2006). 
These imaginary characteristic roots may be single or 
multiple roots. Nevertheless there are infinitely many 
occurrence of imaginary root crossings at each of these kω ’s 
for M sets of time delays with infinite members. These 
delays, in each set, are equidistantly spread with 

kk ωπτ /2=∆  in between, ( lkτ , Mk ...1= , ...2,1,0=l ) 
starting from 00 >kτ , Mk ...1= .♦ 
In short, equation (2), when BA,  are fixed, has countably 
infinite characteristic roots, for a given delay, τ . Call this 
infinite set of roots, )(τσ , which is the spectrum of equation 
(3). If for a 00 >kτ value, kk ωπτ /20 0 << , 

iC kk ωτσ ±=∩ 0)(  (i.e., there is an imaginary root), then the 
same root will appear at ,/20 jkk ωπτ +  ...2,1,0=j . In 

other words, ,)/2( 0
0 iCj kkk ωωπτσ ±=∩+ ...2,1,0=j . 

will also hold. More importantly, the total number of such 
0kτ  delays (each resulting in an imaginary spectrum), M, is 

bounded by 2n (Sipahi and Olgac 2006; Ergenc, Olgac and 
Fazelinia In print, 2007). Exhaustively finding this small set 
of 0kτ ’s will “cluster” the delay values of interest for 
stability switchings. 
 
Proposition I distinguishes the M  sets of τ  values, each one 
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of which yields at least a pair of imaginary roots. The exact 
values of τ  that correspond to these potential stability 
switching points ( lkτ , Mk ...1= , ...2,1,0=l ) are needed 
completely. Notice that these time delays form an array with 
dimensions of ∞×M  because of the above explained 
periodicity of kωπ /2 . Nevertheless they can be grouped into 
M distinct clusters each of which is designated by a root 
crossing point, ikω . These crossing points are the 1st 
identifiers of the root clusters. In other words, the system (2) 
may be resonant at M  frequencies at the most, and these 

kω ’s can be calculated exhaustively. How to find the root-
crossing frequencies, kω , ,...1 Mk =  is a complex task on 
its own. The previous publications of the authors utilized an 
interesting Möbius class transformation, that is called the 
Rekasius substitution (Olgac and Sipahi 2002). We also 
published a dedicated comparison study on this task (Sipahi 
and Olgac 2006). We wish to stress that this question is a 
topic of on-going research. 

 
Proposition II: Root tendency invariance property 
The infinitely many characteristic roots which cross the 
imaginary axis at any one of the M locations  for different 
(and periodically separated) delay values have a unique root 
sensitivity (either from stable to unstable, or vice versa) for 
increasing values of τ . This root sensitivity is represented 
by root tendency, which is defined as 

 
lk
k isk

sRT
ττ
ωτ =

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= Resgn , Mk ...1= , ...2,1,0=l  

kRT , is invariant with respect to the time delays that cause 
the particular root crossing.♦ 
 
What Proposition II implies is that at a designated root 
crossing point ikω  (remember that, there are only M  of 
them), for all the equidistant and countably infinite time 
delays, the roots have a unique crossing direction. This 
unique feature kRT  is called the 2nd identifier of the root 
clusters. Those crossing points ikω  with 1+=kRT are 
clustered as destabilizing vs. those with 1−=kRT as 
stabilizing. In short, the M imaginary roots can cross either in 
M stabilizing or destabilizing directions, as the delay τ  is 
scanned from 0 to ∞ (keeping in mind that, there are 
infinitely many crossings at each ikω ). 
 
The CTCR methodology deploys these two propositions for 
clustering the characteristic roots, as described in (Olgac and 
Sipahi 2002; Sipahi and Olgac 2003)  generating a stability 
table. This table is sorted in ascending values of lkτ  
( ,...1 Mk =  ...1,0=l ).  The root cluster identifiers, the 
crossing frequencies ( kω ) and the respective root tendencies 
( kRT ), can also be given on the table, along with the number 
of unstable roots ( NU ) in all the intervals of τ . The 
intervals of τ  where 0=NU  are obviously the stable 
regions. Such regions are exhaustively determined with their 
exact bounds in τ  domain. 
 

Just to assist the reader, some highlights from (Olgac and 
Sipahi 2002) are given here: The quantity of NU is a 
function of delay τ  and it is explicitly given in the following 
form: 

∑
=

⋅⋅
∆
−

Γ+=
m

k
kk

k

k RTUNUNU
1

1
1 ),()()0()( ττ

τ
ττ

τ    (4) 

where )0(NU  is the number of unstable roots when 
0=τ , ),( 1kU ττ  is a  step function in τ  with the step taking 

place at 1kτ  

⎪
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1

1
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k

k
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for
for

U  

=Γ )(x Ceiling function of x , Γ  returns the smallest integer 
greater than or equal to x   
This expression ( )τNU  requires only the knowledge of the 
following: 
i) ( )0NU   
ii) 1kτ , Mk ..1= , the smallest τ  values corresponding to 
each ω  ( M of them) as per Proposition I 
iii) kk ωπτ 2=∆ , Mk ..1=  
iv) 

k
RT , Mk ..1=  the invariant root tendencies, as per 

Proposition II. 
 
This stability analysis methodology is exciting because it 
reveals the stability pockets entirely. Such information can be 
used as a “delay scheduling” tool.  Assume that the state 
information is available to the controller with a particular 
time delay, which makes (2) unstable. The control logic may 
still be used maintaining stability, simply by imposing further 
prolonged delay on purpose, until the total delay reaches the 
next stable region. This is proposed as an intelligent 
management of time delay or a “delay scheduling” strategy, 
which gives the controller a unique ability. This control logic 
is in contrast to the well-known “gain scheduling” procedure. 
The new control strategy takes it from this point on. 

 
 

3. NEW CONTROL STRATEGY: “INVERTING 
CONTROL” 

 
The premise is to enlarge the stable operating delay intervals 
simply by selecting the feedback control gains as B and 

B− depending on the existing delay. The reason for this 
suggestion is as follows: according to the proposition II in 
CTCR a destabilizing characteristic root crossing for a delay 
setting, say 0τ , repeats itself at ωπτ k20 + , K,2,1=k  
infinity many times. Again all of theses root crossings take 
place at iω  with 1+=RT . The delay values corresponding 
to these destabilizing crossings are periodically spaced with 

ωπ2 . If we expect any stable region in between 0τ  and 
ωπτ k20 +   there has to be a stability crossing in that 

interval (i.e., with 1−=RT ) say at ττ ∆+0 , where 
ωπτ 20 <∆< . The idea of increasing the delay artificially 

by ωπ  could bring the delay value exactly in the middle of 
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two successive destabilizing crossings. Obviously this 
selection does not guarantee stability but an interesting 
practicality appears. If one looks at the new characteristic 
equation (with ωπττ +→  replacement): 

0det, =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−=⎟

⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +− s

essCE ω
π

τ

ω
πτ BAI       (5) 

one can see that equation (5) has is ω= as a root if B is 
replaced by B− . It is trivial to prove that is such a case (5) 
and (3) become identical, thus they will share all the zeros. 
Conversely, if one substitutes B with B−  in (3), the new 
system will exhibit imaginary crossings of iω , for the delay 
value of ωπτ +  instead of τ . That is, if ( )τ−+= tBxAxx&  
has a characteristic root at iω  for delay τ , with 1+=RT , 

( )τ−−= tBxAxx&  has the same characteristic roots for delay 
ωπτ + , with again the 1+=RT . This property holds for 

all ωτ ,  occurrences, where the notation ••,  implies that 
the first argument (i.e., the delay) causes a crossing 
frequency of the second argument. In essence BB −→  
inversion simply translates all the root crossing values of the 
delay by one half of the corresponding period ωπ2 . 
Expectation is that the stable/unstable regions will also be 
translated so the if a delay value τ  is unstable for the control 
gain matrix B , it may now be stable when B− is used 
instead.  
 
Since CTCR explicitly, exactly and exhaustively declares the 
stability distribution in the delay space one can efficiently 
obtain the superimposed stability tableau for B  and  B−  
control gains. The user can easily select either B  or B−  as 
the control gain matrix so that the stability will be assured. 
Obviously there will be delay values for which either B  nor 

B−  control law would render stability. Nevertheless the 
stable operating delay intervals for B  and B−  will be 
guaranteed to complement each other by enlarging the delay 
intervals of stability. This enlargement is the primary benefit 
of the Inverting Control logic. Since it involves nothing 
other that a sign inversion it is very practical. In the 
following section we present some case studies to illustrate 
the main idea behind this control strategy.. 

 
4. CASE STUDIES 

 
We demonstrate the effectiveness of “Inverting Control” 
logic over two example case studies. 

 
4.1 Case 1:   Consider a single-degree-of-freedom system 
(such as a simple pendulum in (Olgac, Ergenc and Sipahi 
2005)) which is controlled using a time delayed PD 
(proportional and derivative) feedback law. The 
corresponding system and control matrices are: 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
46.196.58

10
A , ⎥

⎦

⎤
⎢
⎣

⎡
=

56.13
0

B , [ ]1.01=K  (6) 

and the characteristic equation  

( ) ( ) 0560.13356.1957.58458.1, 2 =++++= − sessssCE ττ  (7) 

The stable interval of delay can be obtained via CTCR using 
the implicit function ( )τNU  (Number of Unstable roots) in 
(4). It imparts the stability intervals in τ  domain as follows: 
 

Stability 
pockets τ  range 

1 [0,       0.17] 

2 [0.46,  0.92] 

3 [1.38,  1.66] 

4 [2.31,  2.40] 

Table 1. Stability table for the system in (7) 

When we deploy the “inverting control” logic (by simply 
changing the sign of B ) the new characteristic equation 
becomes: 

( ) ( )
( ) 0560.13356.1957.58458.1

det,
2 =+−++=

+−=
−

−

s

s

esss

essCE
τ

ττ BAI
   (8) 

Again CTCR generates the stability tableau as  

Stability 
pockets τ  range 

1 [0,         0.54] 

2 [0.92,    1.29] 

3 [1.85,    2.03] 

Table 2. Stability table for (6) with “inverting control”  

The overlay of Table 1 and 2 is depicted in Fig. 1 which 
shows the advantage of mixing B , B−  controls for different 
values of delays. The system is controlled in this mode to 
expand the range of delay for which the stability is assured. 
 
 

Figure 1.  The stable operating intervals of delay  
B (red, thin), -B (blue, thicker), combined (green, thickest)

Combination 

-B 

B 
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Just to give an idea to the reader on the numerical efficiency: 
the Tables 1 and 2 are obtained in 1.8 sec of CPU time (on a 
Pentium(R) 4 CPU 3GHz with 1GB of RAM). 
 
4.2 Case 2:   We take another example from (Olgac, Sipahi 
and Ergenc, 2007), using 

            

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
=

89.043.30021.3
1000
033.2046.161.79
0010

A  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

28.20
00
056.13
00

B , ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

0301.0
01.001

K     (9) 

This system represents two interconnected simple penduli 
with motors deploying the necessary control torques. The 
characteristic equations for B and B− (inverted control) are 
given as: 

( )
( ) ( ) 037.9208.96507.2239.20

72.235744.11535.11135.2,
22

234

=++++

++++=
−− ss eess

sssssCE
ττ

τ  

( )
( ) ( ) 037.9208.96507.2239.20

)10(72.235744.11535.11135.2,
22

234

=+++−

+−++=
−− ss eess

sssssCE
ττ

τ  

CTCR efficiently determines the stability outlook of Table 3. 
Again the combination of the stability tables for two settings 
B  and B−  are displayed in Figure 2. The advantage of the 
inverting control is obvious.  
 
Just for the numerical efficiency point of view, we provide 
the CPU time needed to obtain the Table 3 as 2.3 sec. 

 
Stability 
pockets τ  range (B) τ  range (-B): 

 inverting control
1 [0,       0.14] [0,       0.50] 

2 [0.51,  0.85] [0.57,  0.68] 

3 [0.93,  1.22] [1.16,  1.20] 

4 [1.81,  2.23] [1.28,  1.76] 

5 [3.11,  3.38] [2.46,  2.58] 

6  [2.71,  2.84] 

7  [3.76,  3.92] 

Table 3. Stability tables for example case 2. 

 

 
 

 
CONCLUSIONS AND FUTURE WORKS 

 
The “inverting control” is a control law to increase the stable 
operating intervals of the systems with feedback delays. The 
procedure takes advantage of the strength of a paradigm: 
Cluster Treatment of Characteristic Roots (CTCR). It is 
numerically very efficient, and the only critical change in the 
control structure is the sign reversal of the control matrix 
B for different delay values. This is a straightforward task. 
The ongoing work along the “inverting control” idea includes 
experimental validation of the method, and deployment of 
complex cases for higher order systems and with multiple 
independent delays. 
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