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Abstract: The errors–in–variables framework concerns static or dynamic systems whose
input and output variables are affected by additive noise. Several estimation methods have
been proposed for identifying dynamic errors–in–variables models. One of the more promising
approaches is the so–called Frisch scheme. This paper decribes three different estimation criteria
within the Frisch context and compares their estimation accuracy on the basis of the asymptotic
covariance matrices of the estimates. Some numerical examples support well the theoretical
results.
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1. INTRODUCTION

The Errors–In–Variables (EIV) framework concerns static
or dynamic systems whose input and output variables are
affected by additive noise. These models play an important
role in several engineering applications like, for example,
time series modeling, direction–of–arrival estimation, blind
channel equalization, and many other signal and image
processing problems; see Van Huffel (1997); Van Huffel and
Lemmerling (2002). Many different solutions have been
proposed for the identification of EIV models. An overview
can be found in Söderström (2007b).

Among these methods, the so–called Frisch scheme is one
of the more interesting. Its roots are in Frisch (1934), with
reference to static problems; the extension to dynamic
systems was proposed in Beghelli et al. (1990). One of the
main difficulties of the method concerns its application to
real cases, when for several reasons (limited number of the
available samples, non–linearities in the system, etc.) the
assumptions behind the scheme are not exactly satisfied.
In these cases the identification procedure does no more
lead to a single solution, unless a selection criterion is
introduced.

One of the first criteria that has shown remarkable robust-
ness properties was originally proposed in Beghelli et al.
(1993) and further in Diversi et al. (2004). This criterion,
denoted here as Frisch–SR, relies on the shift properties
of time–invariant systems and is based on rank deficiency
conditions of the noise–free covariance matrix.

⋆ This research was partially supported by The Swedish Research
Council, contract 621-2005-4207, and The Italian Ministry for Uni-
versity and Research.

Another robust criterion, characterized by a high level
of estimation accuracy, was proposed in Diversi et al.
(2003). This approach, denoted as Frisch–CM, relies on
a comparison between the true and estimated statistical
properties of the EIV system residuals.

A third criterion, characterized by a good compromise
between computational efficiency and estimation accuracy,
was introduced in Diversi et al. (2006). This method,
denoted as Frisch–YW, relies on the properties of the high
order Yule–Walker equations and is characterized by the
same asymptotic properties of the Frisch–SR, as shown in
Hong et al. (2007).

For the three Frisch alternatives, it is of interest to know
which one gives the best estimation accuracy. This paper
compares these criteria on the basis of the asymptotic
covariance matrices of the estimates.

It will be shown that for moderate signal–to–noise ratios
(SNR) no alternative is better than the other, both for the
system parameters and noise variances. On the contrary,
for high SNR the noise variances can, in general, be better
estimated when the Frisch–CM is used.

2. PROBLEM STATEMENT AND NOTATIONS

Consider a linear and single input single output (SISO)
system given by

A(q−1)y0(t) = B(q−1)u0(t), (1)

where u0(t) and y0(t) are the noise–free input and output,
respectively. Further, A(q−1) and B(q−1) are polynomials
described as

A(q−1) = 1 + a1 q−1 + · · · + ana
q−na

B(q−1) = b0 + b1 q−1 + · · · + bnb
q−nb

(2)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 414 10.3182/20080706-5-KR-1001.0341



We assume that the observations are corrupted by additive
measurement noises ũ(t) and ỹ(t). The available signals are
in discrete time and of the form

u(t) = u0(t) + ũ(t), y(t) = y0(t) + ỹ(t). (3)

The following assumptions are introduced.

A1. The dynamic system (1) is asymptotically stable,
observable and controllable.

A2. The polynomial degrees na and nb are a priori known.
A3. The true input u0(t) is a zero-mean stationary er-

godic random signal, that is persistently exciting of
sufficiently high order.

A4. The input noise ũ(t) and the output noise ỹ(t) are
both independent of u0(t) and mutually independent
white Gaussian noise sequences of zero mean, and
variances λu and λy, respectively.

The problem of identifying this EIV system is concerned
with consistently estimating the parameter vector θ0 =
(a1 . . . ana

b0 . . . bnb
)T and the noise variances λu and

λy from the measured noisy data {u(t), y(t)}N
t=1. We

introduce the regressor vector

ϕ(t) = (−y(t − 1) · · · − y(t − na) u(t) . . . u(t − nb))
T

= (−y0(t − 1) · · · − y0(t − na) u0(t) . . . u0(t − nb))
T

+(−ỹ(t − 1) · · · − ỹ(t − na) ũ(t) . . . ũ(t − nb))
T

, ϕ0(t) + ϕ̃(t), (4)

where ϕ0(t) and ϕ̃(t) denote the noise-free part and the
noise contribution part of ϕ(t), respectively. For conve-
nience, we utilize the extended regressor φ(t) and the true
extended parameter vector Θ0 as

φ(t) = (−y(t) ϕT (t))T , Θ0 = (1 θT
0 )T . (5)

In a similar way the extended vectors φ0(t) and φ̃(t) can
be defined. Some further expressions are introduced for
the regressor vector and the system parameter vector,
partitioned as

ϕy(t) = (−y(t − 1) · · · − y(t − na))T ,

ϕu(t) = (u(t) . . . u(t − nb))
T , φy(t) = (−y(t) ϕy(t)T )T ,

θ =

(

a
b

)

, a =







a1

...
ana






, b =







b0

...
bnb






, ā =

(

1
a

)

. (6)

For a general random process x(t), we define its covariance
function rx(τ) as:

rx(τ) = E(x(t)x(t − τ)), τ = 0, ±1, ±2, . . . . (7)

where E is the expectation operator. Further, the cross–
covariance matrix between two random vectors x(t) and
y(t) and the cross-covariance vector between random vec-
tor x(t) and random variable z(t) are denoted as

Rxy = Ex(t)yT (t), rxz = Ex(t)z(t). (8)

3. THREE VARIANTS OF THE FRISCH SCHEME

The Frisch scheme was first proposed by Ragnar Frisch,
Frisch (1934). It was developed to identify dynamic EIV

systems in Beghelli et al. (1990) and was further elabo-
rated in Beghelli et al. (1993); Diversi et al. (2003, 2004,
2006). Consider the relation

φT
0 (t)Θ0 =−A0(q

−1)y0(t) + B0(q
−1)u0(t) = 0. (9)

It follows from (9) that

Rφ0φ0
Θ0 = E(φ0(t)φ0(t)

T )Θ0 = 0. (10)

Hence matrix Rφ0φ0
is singular (positive semidefinite),

with at least one eigenvalue equal to zero. Since it holds
that Rφφ = Rφ0φ0

+ Rφ̃φ̃, relation (10) can also be
expressed as

(

Rφφ − Rφ̃φ̃

)

Θ0 = 0, (11)

where

Rφ̃φ̃ =

(

λyIna+1 0
0 λuInb+1

)

. (12)

The relations (11) and (12) are the basis for the Frisch
method. They constitute a system of na +nb +2 equations
in na + nb + 3 unknowns. The solution of this system of
equations can thus be expressed, in general, as a function
of one variable, for example λu. In fact, if an estimate of
λu is available, the value of λy that satisfies (11) is given
by

λy =λmin(Rφyφy
−Rφyϕu

(Rϕuϕu
−λuInb+1)

−1Rϕuφy
),(13)

where λmin(R) denotes the smallest eigenvalue of R (see
Beghelli et al. (1990)). Therefore, it can be stated that, in
general, the solution of the nonlinear system of equations
(11) and (12) is univocally determined if at least one
additional equation is introduced. In this paper three
alternatives will be considered.

• One choice is to evaluate the Frisch equations for
an extended model by using an additional extended
regressor ϕ(t). This method was proposed in Beghelli
et al. (1993); Diversi et al. (2004).

• The second alternative is to compute residuals and
compare their statistical properties with what can be
predicted from the model, proposed in Diversi et al.
(2003).

• The third alternative is to use the Yule-Walker equa-
tions, proposed recently in Diversi et al. (2006).

For the first alternative, denoted as Frisch–SR, the ex-
tended Frisch equation will be

(Rφ̄φ̄ − R ¯̃
φ

¯̃
φ
)Θ̄0 = 0, (14)

where

φ̄ =

(

φ(t)
ϕ(t)

)

,
¯̃
φ =

(

φ̃(t)
ϕ̃(t)

)

, Θ̄0 =

(

Θ0

0

)

. (15)

The model extension can, for example, mean that an
additional A parameter is appended. In that case, ϕ(t) =
−y(t − na − 1). Another possibility is to append an
additional B parameter, leading to ϕ(t) = u(t − nb − 1).
Furthermore, it is also possible to let ϕ(t) be a vector.
The number of new relations derived will be equal to the
dimension of ϕ(t). In this alternative of the Frisch method,
two functions λy(λu) of type (13) are evaluated, referring
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to the nominal model and the extended one, respectively.
They correspond to two curves in the (λu, λy) plane. The
curves will ideally have one unique contact point, which
defines the estimates, see Figure 1. See Beghelli et al.
(1993); Diversi et al. (2004) for details.

P

B

A

λu

λy

λ̂u

λ̂y(λ̂u)

Fig. 1. Illustration of the principle for the Frisch estimation
using an extended model.

For the second alternative, denoted as Frisch–CM, an
additional relation is given as

d

dλu
VN (λu) |λu=λ̂u

= 0. (16)

The estimated λ̂u is determined as the minimizing element
of the criterion

λ̂u = arg min
λu

VN (λu). (17)

The criterion VN (λu) is defined as

VN (λu) = δT Γδ, (18)

where Γ is a user chosen, positive definite weighting
matrix. The vector δ is

δ =
(

r̂ǫ(1) − r̂ǫ0(1) · · · r̂ǫ(m) − r̂ǫ0(m)
)T

. (19)

Note that r̂ǫ(0)−r̂ǫ0(0) is not used because it automatically
equals to zero Söderström (2007a). The maximum lag m
used in (19) is to be chosen by the user. In expression (19),
r̂ǫ(k) are the sample covariance elements

r̂ǫ(k) =
1

N

N
∑

t=1

ǫ(t, θ̂)ǫ(t + k, θ̂). (20)

where the residuals ǫ(t, θ̂) are defined as

ǫ(t, θ̂) = Â(q−1)y(t) − B̂(q−1)u(t). (21)

The theoretical covariance elements r̂ǫ0(k) are based on
the model

ǫ0(t) = Â(q−1)ˆ̃y(t) − B̂(q−1)ˆ̃u(t), (22)

where ˆ̃y(t) and ˆ̃u(t) are zero mean white noise sequences

of variances λ̂y and λ̂u, respectively.

In the third variant, denoted as Frisch–YW, the high
order Yule-Walker equations are used Diversi et al. (2006).
Similar as the extended model alternative, a regressor
vector is introduced as

ϕ(t) = ( u(t − nb − 1) . . . u(t − nb − p) )
T

. (23)

Because of Assumption A4 and equation (9), we get the
following high order Yule-Walker equations

(Rϕφ)Θ0 = 0 ⇔ (Rϕ
0
φ0

)Θ0 = 0. (24)

The noise variances λu and λy are then evaluated by
searching the minimum of the cost function

J(λu, λy) = ||RϕφΘ||2 = ΘT RT
ϕφRϕφΘ, (25)

where Θ is a function of λy and λu through (13) and (14).

We stress that there are different user choices for the
three variants of Frisch. For Frisch–SR, we have freedom
to choose the ways to extend the system model, such as
adding one A or B parameter, or several A and/or B
parameters. If the extended model has only one additional
parameter, then the number of equations is equal to
the number of unknowns. If the extended model has
more additional parameter, we will choose not only the
parameters included in the extended vector, but also
some possible weightings. For Frisch–CM, we will choose
the number of the residual lags m. If m > 1, we have
overdetermined equations and a suitable weighting will
also be chosen by us. Similarly, for Frisch–YW, the number
and the type of the Yule-Walker equations and the possible
weighting are the user choices. In general, for Frisch–CM
and Frisch–YW, the number of equations is mostly larger
than the number of the unknowns.

4. ALGORITHMIC ASPECTS

A recent analysis in Hong and Söderström (2007) has
shown that the equations used in Frisch–SR and in the
BELS method Zheng (1998) are equivalent when the
same extended model is used. Under Assumption A4, the
relations used in Frisch–SR equal to the following three
equations

(Rϕϕ − Rϕ̃ϕ̃) θ0 = rϕy, (26)

ryϕθ0 = ry(0) − λy, (27)

Rϕϕθ0 = rϕy. (28)

The first two equations (26) and (27) are coming from the
basic Frisch equations (11) and (12), and equation (28) can
be derived from equation (14), which is used in Frisch–SR.
See Hong and Söderström (2007) for a detailed proof.

In Frisch–YW, besides the basic Frisch equations (11) and
(12), we use the equation (24), which can easily be further
expressed as

(Rϕφ)Θ0 =0 ⇔ (−rϕy Rϕϕ)

(

1
θ0

)

=0 ⇔ Rϕϕθ0 =rϕy,

i.e. equation (24) is also equivalent to equation (28).
It follows that Frisch–SR and Frisch–YW are equivalent
from the equations point of view providing that the same
regressor vector ϕ(t) is used.

For the Frisch–CM, no explicit regressor vector ϕ(t) is
used, and equation (16) can not be rewritten as (28).
Frisch–CM is therefore different from Frisch–SR and
Frisch–YW.

In all three Frisch methods we have a set of (overde-
termined) nonlinear equations to solve. The statistically

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

416



best way (in terms of covariance matrix of the parameter
estimates) for the case of more equations than unknowns,
is to solve all equations simultaneously in a weighted sense.
The sets of nonlinear equations (26)–(28) or (26), (27),
(16) can be written as

f(ϑ) = 0, (29)

where
ϑ = (θT , θT

λ ) θλ = (λu, λy)T . (30)

Then the parameter vector ϑ can be estimated by

ϑ̂ = arg min
ϑ

||f(ϑ)||2W = arg min
ϑ

fT (ϑ)Wf(ϑ), (31)

where W is a positive definite weighting matrix designed
by the user. There is an optimal choice of the weighting
matrix, see Söderström and Stoica (1989), but the optimal
weighting is computationally rather complex to derive
explicitly.

In the described Frisch scheme methods, on the contrary,
a different approach is followed. In fact, some of the equa-
tions are forced to hold exactly and some others approxi-
mately. This can be formulated as an optimization problem
with equality constraints. In particular, the basic Frisch
equations (11)–(12), must hold exactly. The remaining
equations, that depend on the specific criterion, will hold
approximately.

The previous discussion concludes that the equations used
in Frisch–SR and Frisch–YW are equivalent, while Frisch–
CM is different. It means that the asymptotic statistical
properties of Frisch–SR and Frisch–YW should be the
same but differ from Frisch–CM. However, the methods
have different performances depending not only on the
equations that they use but also on the techniques utilized
for finding the solution. For example, the BELS method
Zheng (1998), which use a certain iterative algorithm,
is not the best way to solve the set of equations. It
can have convergence problems when the signal-to-noise
ratio (SNR) is low. If the equations are solved using a
variable projection algorithm then the performance will
be improved, Söderström et al. (2005).

5. COMPARISON AND ANALYSIS OF THE
ASYMPTOTIC COVARIANCE MATRICES OF THE

ESTIMATES

For the three Frisch alternatives, it is of interest to know
which one gives the best estimation accuracy. A statistical
analysis of the accuracy can facilitate the evaluation and
comparison of the methods. When the data number N →
∞, an asymptotic covariance matrix of the parameter
estimates is defined as

P , lim
N→∞

{

NE(ϑ̂ − ϑ0)(ϑ̂ − ϑ0)
T
}

, (32)

where ϑ̂ and ϑ0 denote the estimate and the true value of ϑ,

respectively. Assume that ϑ̂ is close to the true parameter
vector ϑ0 for large N . Then we linearize each equation
used in the methods into the generic form

αθ θ̃ + αλu
λ̃u + αλy

λ̃y ≈ β. (33)

The coefficients αθ, αλu
, αλy

are deterministic variables,
while β is a random term which has zero mean and a

variance that decreases when N increases. Under the given

assumptions in Section 2, the estimated parameter ϑ̂ is
asymptotically Gaussian distributed

√
N(ϑ̂ − ϑ0)

dist−→ N (0, P ), (34)

where

P = lim
N→∞

NE

{

(ϑ̂ − ϑ0)(ϑ̂ − ϑ0)
T
}

= (GT WG)−1GT WQWG(GT WG)−1. (35)

The coefficients αθ, αλu
, αλy

appear as elements of G. The
block elements of Q are covariance matrices of the random
terms β. A key step for realizing (35) is to consider f(ϑ)
in (29) near the true value ϑ0 and approximate it as

f(ϑ)≈ f(ϑ0) +
∂f

∂ϑ
(ϑ̂ − ϑ0)

∆
= f(ϑ0) + G(ϑ̂ − ϑ0).(36)

If choosing the weighting matrix W in (31) as

W = Q−1, (37)

we will get the optimal minimal covariance matrix

Popt = (GT WG)−1. (38)

See Söderström and Stoica (1989) for a proof. However,
this result is normally complicated to utilize in practice,
because the matrix Q, which is parameter ϑ related, needs
to be known first before using (37).

The asymptotic covariance matrix P of the estimates
for Frisch–CM has been derived in Söderström (2007a).
For the equations used in Frisch–SR and Frisch–YW, we
already proved that they are equivalent to each other and
also equivalent to the equations used in BELS providing
the same additional regressor vector ϕ(t) is used. If these
equation sets are treated in the same way (using the
same weighting etc.), the asymptotic covariance matrices
of the Frish–SR and Frisch–YW methods will be identical
to that of the BELS methods, which has been given in
Hong and Söderström (2007). Hence we have the explicit
expressions of the asymptotic covariance matrices for all
three Frisch methods. For simplicity, only Gaussian data
are considered here. The results can be extended to handle
more general data as shown in Söderström (2007a) and
Hong and Söderström (2007).

In this section, we use the asymptotic theoretical covari-
ance matrices derived in Hong and Söderström (2007) and
Söderström (2007a) to numerically analyze the asymp-
totic estimation accuracy of the Frisch–SR and Frisch–
CM methods by means of examples. For the Frisch–SR,
we choose the extended vector as ϕ(t) = −y(t−na−1). In
Frisch–CM, the lag m equals 5 and the weighting matrix Γ
is taken as in Diversi et al. (2003) and Söderström (2007a):

Γ = diag ( 2m, 2(m − 1), . . . , 2 ) . (39)

Example 1. Consider a second-order system

(1 − 1.5q−1 + 0.7q−2)y0(t) = (2.0q−1 + 1.0q−2)u0(t), (40)

where the noise-free input u0(t) is the ARMA(1,1) process

(1 − 0.5q−1)u0(t) = (1 + 0.7q−1)e(t), (41)

and e(t) is a zero-mean white noise with unit variance.
The variances of the white measurement noises at the
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input and output sides are equal to 1 and 4, respectively.
Assume ϕ(t) = −y(t−3). Then the theoretical normalized
asymptotic covariance matrix of the Frisch–SR scheme is

PFrisch−SR =













0.33
−0.26 0.22
−2.03 1.27 57.47

3.42 −2.32 −58.07 69.99
−0.14 0.25 −29.88 21.36 96.54
−0.07 −0.01 14.75 −11.51 −14.49 11.36













,

and Frisch–CM leads to

PFrisch−CM =













0.44
−0.34 0.28
−2.36 1.59 46.6

4.45 −3.17 −52.5 73.3
−0.68 0.63 −22.1 11.6 97.1

0.29 −0.26 7.22 −3.34 −13.0 9.0













.

The results of this example show that, for some param-
eters, using Frisch–CM method gives better estimation
accuracy than using Frisch–SR, while for some other pa-
rameters Frisch–SR works better instead.

Comparisons with other numerical examples, Hong et al.
(2007) have shown that, when both input and output
sides have moderate SNR, the accuracies of the Frisch–
SR and Frisch–CM estimates differ for all the parameters.
No alternative is always better than the other. Depending
on the system, the noise-free input signal, comparison
criterion etc, one or the other version of the Frisch scheme
may be considered to give the best result.

Next we will examine the accuracy properties of the three
Frisch methods when both input and output SNR are high.
Assume the noise free input u0(t) is an ARMA process

u0(t) =
C(q−1)

D(q−1)
e(t), (42)

where e(t) is zero mean white noise with variance equals
λe. Keeping λu and λy as constant and letting λe → ∞,
that is both input and output SNR tend to high values, we
have the following two lemmas, whose proofs are reported
in Hong et al. (2007). For simplicity, no weighting is
considered here.

Lemma 1. For Frisch–CM, the G and Q matrices in (35)
can be partitioned, according to (30), as follows

GCM =

(

λeM11 M12

0 M22

)

, (43)

QCM =

(

λeT11 + T̃11 T12

T21 T22

)

, (44)

where all dependencies on λe are as shown. For the
asymptotic covariance matrix P , which is expressed as

P =

(

P11 P12

PT
12 P22

)

, (45)

it follows that P11 depends on λe, and when λe becomes
very large, that is for (very) large SNR,

lim
λe→∞

(λeP11) = M−1
11 T11M

−T
11 . (46)

For P12, it holds that

λeP12 = M−1
11 T12M

−T
22 − M−1

11 M12M
−1
22 T22M

−T
22 .(47)

Furthermore, the block element P22 does not depend at all
on λe.

Lemma 2. For Frisch–SR and Frisch–YW, the G and Q
matrices in (35) can be partitioned as

GSR/YW =

(

λeM11 M12

λeM21 M22

)

, (48)

QSR/YW =

(

λeT11 + T̃11 λeT12 + T̃12

λeT21 + T̃21 λeT22 + T̃22

)

. (49)

(Note that the bock matrices Mij , Tij and T̃ij are not the
same in (43), (44) as in (48), (49).) It follows that the block
elements P11, P12 and P22 of matrix (45) all depend on λe.
When λe becomes very large, that is for (very) large SNR,

lim
λe→∞

(λeP11) = (V11T11 + V12T21)V
T
11

+(V11T12 + V12T22)V
T
12, (50)

lim
λe→∞

P12 = (V11T11 + V12T21)V
T
21 + (V11T12 + V12T22)V

T
22,

(51)

lim
λe→∞

P22 = ∞, (52)

where

G−1 =
1

λe

(

V11 V12

λeV21 λeV22

)

. (53)

We present an illustrative example to show the perfor-
mance as stated by the preceding lemmas.

Example 2. Consider a first-order system given by

(1 − 0.8q−1)y0(t) = 2.0q−1u0(t). (54)

where u0(t) is the same as in Example 1. We increased
the variance of the noise–free input λe from 1 to 108 and
kept the variances of the measurement noises λu and λy
as 1 and 2, respectively. For the asymptotic covariance
matrices of the estimated parameters by using Frisch–SR
and Frisch–CM, their block elements P11, P12 and P22 are
listed in Table 1 and Table 2. For Frisch–CM, the values
of the following items were calculated as

M
−1

11
T11M

−T

11
=

(

5.78e − 02 1.74e − 01
1.74e − 01 2.19e + 00

)

,

M
−1

11
T12M

−T

22
−M

−1

11
M12M

−1

22
T22M

−T

22
=

(

−2.43e+00 7.94e−01
−2.54e+01 8.30e+00

)

,

M
−1

22
T22M

−T

22
=

(

9.48e + 01 −2.43e + 01
−2.43e + 01 1.13e + 01

)

,

and for Frisch–SR we have

(V11T11+V12T21)V T

11+(V11T12+V12T22)V
T

12=

(

6.31e−02 2.41e−01
2.41e−01 3.0e+00

)

,

(V11T11+V12T21)V T

21+(V11T12+V12T22)V
T

22=

(

−2.31e−01 9.46e−02
−2.71e+00 1.11e+00

)

.

We see that the equations (46)-(47) and (50)-(51) in
Lemmas 1 and 2 are well supported by the numerical
results.

The preceeding analysis of the asymptotic covariance
matrices of Frisch methods shows that the estimates for
the system parameter θ for both Frisch–SR and Frisch–CM
are good. The variances of the estimates decrease when
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Table 1. The asymptotic covariance matrices of Example 2 with different SNR for Frisch–SR
method. (Note: the blocks of the matrix, P11, P12 and P22, are given.)

λe P11 P12 P22

1 6.84e-02 2.99e-01 -4.58e-01 1.61e-01 3.52e+01 -4.74e+00
2.99e-01 3.70e+00 -5.44e+00 1.92e+00 -4.74e+00 5.23e+00

10 6.36e-03 2.47e-02 -2.53e-01 1.01e-01 1.14e+02 -3.69e+01
2.47e-02 3.07e-01 -2.98e+00 1.19e+00 -3.69e+01 1.85e+01

100 6.32e-04 2.42e-03 -2.33e-01 9.53e-02 8.98e+02 -3.58e+02
2.42e-03 3.01e-02 -2.73e+00 1.12e+00 -3.58e+02 1.50e+02

1000 6.31e-05 2.41e-04 -2.31e-01 9.47e-02 8.74e+03 -3.57e+03
2.41e-04 3.00e-03 -2.71e+00 1.11e+00 -3.57e+03 1.47e+03

1e+08 6.31e-10 2.41e-09 -2.31e-01 9.46e-02 8.71e+08 -3.57e+08
2.41e-09 3.04e-08 -2.71e+00 1.11e+00 -3.57e+08 1.46e+08

Table 2. The asymptotic covariance matrices of Example 2 with different SNR for Frisch–CM
method. (Note: the blocks of the matrix, P11, P12 and P22, are given.)

λe P11 P12 P22

1 1.33e-01 9.52e-01 -2.43e+00 7.94e-01 9.48e+01 -2.43e+01
9.52e-01 1.03e+01 -2.54e+01 8.30e+00 -2.43e+01 1.13e+01

10 6.52e-03 2.52e-02 -2.43e-01 7.94e-02 9.48e+01 -2.43e+01
2.52e-02 3.00e-01 -2.54e+00 8.30e-01 -2.43e+01 1.13e+01

100 5.85e-04 1.82e-03 -2.43e-02 7.94e-03 9.48e+01 -2.43e+01
1.82e-03 2.27e-02 -2.54e-01 8.30e-02 -2.43e+01 1.13e+01

1000 5.79e-05 1.75e-04 -2.43e-03 7.94e-04 9.48e+01 -2.43e+01
1.75e-04 2.20e-03 -2.54e-02 8.30e-03 -2.43e+01 1.13e+01

1e+08 5.78e-10 1.74e-09 -2.43e-08 7.94e-09 9.48e+01 -2.43e+01
1.74e-09 2.19e-08 -2.54e-07 8.30e-08 -2.43e+01 1.13e+01

the SNR increases and tends to a limit. The two limits of
the estimates by Frisch–SR and Frisch–CM are different.
For the noise parameters λu and λy, in general, Frisch–
CM gives better estimates than Frisch–SR. In Frisch–CM,
the estimates for the noise variances λu and λy keep the
same accuracy when the SNR increases. In Frisch–SR,
the variances of the estimates for λu and λy continuously
increase with increasing SNR.
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