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Abstract:

The aim of this paper is to propose a general methodology applicable to any rule based fuzzy
model generated by any precise or linguistic fuzzy algorithm to improve the linguistic-accuracy
trade-off. Here, the neuro-fuzzy system FasArt (Fuzzy Adaptive System ART based) is used
for its proven model capabilities, as shown in previous papers and works. If does, however,
have the usual drawbacks, from the linguistic point of view, of most fuzzy modeling methods
found in the scientific literature. A fuzzy model of a DC motor is generated by FasArt, whose
performance is a good estimation of the motor’s behavior, then this performance is improved
by a better interpretability of the knowledge attained and stored by this fuzzy model. The
main idea behind this approach is to find a fuzzy model with enough accuracy and an adequate
capacity of explanation or interpretability of its data acquired knowledge. The modeling process
can thus be seen as knowledge extraction in human or linguistic terms: from a numeric level
(data) to a symbolic one (linguistic fuzzy rules).

Keywords: Fuzzy modeling; precise-linguistic modeling; fuzzy rules; interpretability; knowledge

extraction.

1. INTRODUCTION

Nowadays, the application of Fuzzy Logic theory in tech-
nical and research areas is very common. In scientific
literature, it is possible to find methodologies, algorithms
and applications based on fuzzy logic theory, or using
this theory in combination with other approaches, such
as soft computing techniques: neural networks, genetic al-
gorithms, etc.. Applications for control, modeling, pattern
recognition, computer vision, signal processing, etc... are
known and used. Fuzzy logic systems are applied to solve
real world problems (Karray and De Silva (2004); Bonis-
soene et al. (1999) ). The fuzzy approaches are usually
implemented as fuzzy rule-based systems, so one of their
most relevant components is the fuzzy rule set, in which
the knowledge of the problem’s solution is stored.

On the other hand, one ”contradiction” appears corcerning
the fuzzy nature of these rules and, in general, about
the way in which the fuzzy logic theory has been applied
and used in the scientific bibliography, focusing on fuzzy
modeling and other connected techniques.
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In accordance with the principles of fuzzy logic theory, the
fuzzy rules must describe knowledge by linguistic variables
that take values described by linguistic labels/concepts. In
general, this rule set must have some properties that can
be connected with its understanding and interpretation.
When the rule set of most fuzzy logic systems reported
in research papers are analyzed, it is very usual to verify
that these desired fuzzy properties (understanding and
interpretation) are weak performances of these rule sets.
This situation does not deal with a concept of ”inter-
pretability” compatible with the fuzzy logic theory so,
are these rule sets truly fuzzy or not?. Here, two points
of view concerning the use of fuzzy logic arise: based on
interpretability versus based on accuracy. The first is the
"true-original” fuzzy approach, whereas the second uses
fuzzy principles to generate a solution with high accuracy
but while it loses some relevant fuzzy performances. This
is the case of most of the data-driven fuzzy systems given
for engineering problems.

This paper is focused on the balancing of both aspects,
accuracy and interpretability, for modeling problems. The
methodology proposed can be applied to different alter-
natives to those used here. For this goal, accuracy has
not been the only criterion for generating the logic fuzzy
system. In addition, interpretability and compactness have
been taken into account when improving the model from
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data. A simpler, and very early version, of this work is in
Sainz et al. (2007).

The paper is organized as follows: first, a brief description
of alternative points of view for fuzzy modeling is given.
Next, the methodology used in this paper is described.
Then, a very brief description of the FarsArt neuro fuzzy
system is carried out, the description of the DC motor
plant is introduced and the main results obtained are dis-
cussed. Finally, the most interesting conclusions obtained
from this work are set out.

2. FUZZY MODELING: ACCURACY VS.
INTERPRETABILITY

Fuzzy modeling is an usual approach to develop black
and grey box models. Taking into account the previous
ideas concerning fuzzy rules, two well known modeling
approaches based on fuzzy rules are common:

e Precise fuzzy modeling.
e Fuzzy linguistic modeling.

The differences between both approaches are based on
the two contradictory concepts described above and the
balance achieved (Setnes et al. (1998b); Casillas et al.
(2003b)):

e Interpretability, or the capacity of the fuzzy model to
express the behavior of the system in an understand-
able way. Here, other terms, such as consistency, com-
pactness, transparency, etc., are involved and permit
the implementation of this concept.

e Accuracy, or the capacity of the fuzzy model to
faithfully represent the modeled system.

The first approach, precise fuzzy modeling, usual generates
very good accurate models, but the interpretability of its
fuzzy rules is very poor, which means that the knowledge
contained into these rules is not accessible or understand-
able for an ”expert” on the problem/system domain.

The main reason for this lack of interpretability is the
way in which the modeling process is carried out. One
only parameter is taken into account, so this process
is only ruled by this parameter: the error between real
and estimated system behaviors is usually used. If other
points of view concerning interpretability aspects (such as
compactness, consistency, etc.) are taken into account in
this modeling process, then these other performances can
be improved.

On the other hand, the linguistic approach permits models
with good interpretability, but their accuracy is very low.
This means that the fuzzy rules of the model are not
accurate enough but can be "understood” by domain
experts.

Both modeling approaches have drawbacks of either accu-
racy or interpretability. Therefore, one interesting goal is
to achieve a good balance or compromise solution between
accuracy and interpretability, obtaining a sufficiently ac-
curate model with a good level of explanation (Figure 1).
Thus, the research in this field is triying to find a solu-
tion to the poor performance of each case. Precise fuzzy
modeling aims to obtain a better level of interpretability,
improving this aspect in its fuzzy rule set (Casillas et al.

(2003a); Setnes et al. (1998b)) in order to "explain” the
information embedded in the system data, while the lin-
guistic approach tries to achieve better model accuracy
from its fuzzy rule set (Casillas et al. (2003b)).

Thus, if an adequate trade-off accuracy-interpretability
was achieved, in addition to the advantages of generating
a ”classic” good model, the data-driven fuzzy modeling can
be considered as a knowledge extraction method. This is
able to describe the information structure embedded in
the system data in understandable terms, which is very
relevant in real-world problems.

Linguistic Fuzzy Modeling

Express the system behaviour in an Understandable Way

Good
Trade-Off

Accuracy
Improvement

Interpretability
Improvement

(Precise) Fuzzy Modeling

Precise representation of the modeled system

Fig. 1. Precise Fuzzy Modeling vs. Linguistic Fuzzy Mo-
deling

In the scientific bibliography, this compromise is tackled
from several points of view:

Structure of the fuzzy rules,

Simplification and reduction of fuzzy sets and rules,
Interpretability constraints for tuning fuzzy rules,
etc...

Two main approaches are used when rule reduction is
involved (Casillas et al. (2003b); Setnes and Babuska
(2001); Setnes et al. (1998a); Yen and Wang (1999)):

e Similarity-driven rule base simplification.
e Rule reduction with orthogonal transforms.

In this paper, the first approach, based on similarity, is
used. Our method is based on two steps: in the first, a
(precise) fuzzy model is generated taking advantage of a
well-known method for fuzzy modeling found in the tech-
nical literature. There is no restriction on which algorithm
can be used. The advantages of that are obvious: the
algorithms already exist, they have been checked, gener-
ate precise models and there are a lot of alternatives...
so new fuzzy model algorithms are not mandatory. In
this paper an ART based neuro-fuzzy system has been
used in this stage: FasArt (Fuzzy Adaptive ART based)
(Cano Izquierdo et al. (2001)). This neuro fuzzy system
has been applied to several real problems in previous works
(Sainz et al. (2005, 2004)), and is an excellent precise
fuzzy modeling instance to check the performance of this
proposal, because it shows they usual accuracy advantages
and weak interpretability of the precise fuzzy algorithms.
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In the second step, the model obtained is improved, a
posteriori, in order to achieve a new one with a better per-
formance in interpretability aspects. In Taha and Ghosh
(1999), some of these evaluation criteria corcerning rule
interpretability are described:

e Granularity, details of the system’s ” decision-taking” .

e Comprehensiveness: the amount of embedded knowl-
edge captured by the rules.

e Compressibility: the number of rules and number of
premises in each extracted rule.

e Transparency of the extracted rules: how well the
decisions or conclusions are explained.

e Stability and robustness.

o Complexity and scalability: computational issues.

In Casillas et al. (2003b), another set of properties are
described to achieve that goal:

e Coverage property: every element of the universe of
discourse has to have at least no null membership
value.

e Normality property: each membership function must
fully match, at least, one value of the universe of
discourse.

e Distinguishability property: each fuzzy set should
have a clear definition of the universe of discourse
and the associated linguistic term should have a clear
meaning.

If a good level of interpretability is wanted, then the fuzzy
rules, and their membership functions, fuzzy partitions,
etc... generated defining the rule-based fuzzy model must
reasonably show the above properties. If not, these ele-
ments, and therefore the model, should be improved to
achieve a better performance.

In this paper, the interpretability is based on the complete-
ness and distinguishability concepts, that permit a clear
meaning to be assigned to each fuzzy rule and set (Mikut
et al. (2005); Huang and Xing (2002); Chen and Linkens
(2004); Jin and Sendhoff (2003); Jin (2000)). These two
concepts can be expressed as follows:

v1 < Similarity(A;, Aiv1) < 72

AN Aga]
T AUAG] S
_ ZZ [fa; (7)) N pa, (7))
Doilta, (25) V pra, iy (25)]
if 41 is small but not zero, then the completeness is

guaranteed. However, if 7, is sufficiently far from 1, then
a good distinguishability is reached.

Similarity(A;, Air1)

In this way, the incoherent and redundant rules also
present in the model must be eliminated or, at least, re-
duced. Then, a better level of compactness and coherency,
and therefore a better level of interpretability, will be
achieved.

2.1 Neuro-Fuzzy system FasArt

The FasArt model (Cano Izquierdo et al. (2001); Sainz Palmero

et al. (2000)) is a neuro fuzzy system based on the Adap-
tive Resonance Theory (ART): Fuzzy ARTMAP (Carpen-
ter et al. (1992)).

FasArt introduces an equivalence between the activation
function of each FasArt neuron and a membership func-
tion. In this way, FasArt is equivalent to a Mamdani fuzzy
ruled-based system with: Fuzzification by single point,
Inference by product, Defuzzification by average of fuzzy
set centers. A full description of this model can be found in
Cano Izquierdo et al. (2001); Sainz Palmero et al. (2000).

The FasArt system has been used in several previous works
(Sainz et al. (2005, 2004)) for modeling, fault detection,
pattern recognition, etc... with reasonable results when
its accuracy as a fuzzy model is involved, but when
other aspects, such as rule interpretability, are focused
then the problems described in previous sections appears:
proliferation of rules, of fuzzy sets, etc... so this system
is an adequate instance for checking this proposal, taking
advantage of the knowledge learnt and stored by FasArt
for each problem involved.

3. METHODOLOGY

The methodology used in this paper is made up of two
general steps, each of which can be adapted by the user:

(1) Generation of a fuzzy model: using any of the algo-
rithms described in the scientific bibliography for ei-
ther precise fuzzy modeling or linguistic fuzzy mode-
ling. This paper is focused on precise fuzzy modeling,
so the neuro fuzzy system FasArt is used, but this
stage is open to any fuzzy rule-based algorithm.

(2) Improvement of the fuzzy model through its fuzzy
rule set and membership functions. So a more com-
pact and interpretable model is obtained, avoiding
non-relevant, redundant, and incoherent rules, no
complete fuzzy partitions, etc.... This task is based
on the optimization of a cost function that includes
any performance or aspect wanted for the model, each
one balances by the user according to the desired
relevance. This paper is based on accuracy and in-
terpretability:

F(Accuracy, Interpretability) = 9
A1 x Accuracy +Xo x Interpretability (2)

These two concepts have been implemented by the
following criteria or indexes :
- Accuracy, the model error is used to check the
model is accurate enough:

1N

ECM = N ;(yi - Z/D2 (3)

- Interpretability, in this paper this concept has
been made by:

e Number of rules, a low rule number is desired for
a better interpretability level of the rule set.

e Similarity amongst rules, based on Eq. (1) this
index must be minimized to improve rule distin-
guishability. So, when the similarity of the rule
set is low, its distinguishability will be easier and
better.

There are two alternatives to measure this
index:
(a) Averaged similarity value of the rule set.

Average(Similarity(R;, R;)) (4)
VR;, R; € FuzzyRuleSet
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(b) Threshold values, number of times that val-
ues are achieved in the rule set.

Card(Similarity(R;, R;) > Brhreshold)

(RuleNumber — 1)! (5)
VR;, Rj € FuzzyRuleSet

e Redundant rules, these must be avoided, so
their number have to be minimized. Then, in-
terpretability will be more feasible and accuracy
may even be improved. This factor is calculated
taking into account the Similarity(Rule;, Rule;).

e Incoherent rules, idem to previous.

e Coverage of the fuzzy partitions, to achieve com-
plete fuzzy partition is desirable.

NoCompletePartition =
_ Card(NoCompleteFuzzyPartition) (6)
- NumberFuzzyPartitions

Finally, the resulting function is:

F(Accuracy, Interpretability) = A\ x Error

+ Ao * Rule Number

+A3 * RuleSetSimilarity 7
+MAyg * Incoherent Rule Number (7)
+ A5 * Redundat Rule Number

+Xg * NoCompletePartition

Similar to step 1 of this methodology, step 2 is open
to eliminating some factors or adding new indexes in
order to set up the cost function according to the
desired performance for the fuzzy model.

Here, the genetic algorithm based on GAOT
(GAOT) is used to carry out this step, but other
optimization techniques could be employed.

This approach is more open, simple and computer
economic than other ”global” approaches (i.e. fuzzy
genetic approach) that define new algorithms to gen-
erate the desired fuzzy model, most of them are
only focused on TSK systems. Here, advantages of
existing and checked fuzzy modeling algorithms are
taken to improve their original performances, without
restrictions about the fuzzy algorithm employed, or
the performance indexes their balance.

4. LABORATORY PLANT

The work described in this paper uses a well-known
laboratory plant: Amira DR-300 equipment as seen in
Figure 2. The technical specifications of this system can
be seen in http : //www.amira.de/dr300_engl.html. Here
this plant has been used, but other plants or problems
could have been chosen for testing this proposal. There
are not restrictions.

5. EXPERIMENTS AND RESULTS

This system has two coupled DC motors to work as motor
and load respectively. To be described by the fuzzy rule-
based models, this DC motor was excited by several types
of input behaviors. Three input/output variable sets were
acquired containing 25 secs each of the motor operation.

e Input variables: Voltage (U), AU and Current (Igm,)-
e Output variable: Angular speed (w).

These variables were chosen for their simplicity and unifor-
mity with some other theoretical models used in previous

Fig. 2. Laboratory Plant: Motor Amira DR-300

Model 1 | Model 2

Rule Number 16 505
Error 0.0022 0.0045
Similarity (Eq. 4) 0 0.0139
Similarity (Eq. 5) 0.3142 0.3726
Redundancy (Eq. 4) 0 0.0078
Redundancy (Eq. 5) 0 0.0070

Inconsistency 0 0
Coverage Yes Yes

Table 1. Performance of FasArt models.

work. Here, the U input signal is: U(s) = % * Step *

Ramp, AU and I, (Fig. 3), that is used for one of the
usual motor tasks.

10 T T T T
51 N

0 1 1 1 L
0 5 10 15 20 25

Fig. 3. Input variable: Voltage (U)

The experiments try to obtain fuzzy models with an ad-
equate trade-off between accuracy and interpretability, in
accordance with criteria described above. Cross validation
has been used for these experiments.

Step 1: Based on FasArt system, two models were gener-
ated, each one with different fuzzy complexities and fuzzy
performances:

e Model 1, FasArt parameters: pg = pp = 0.9 y4 =

YB = 11.
e Model 2, FasArt parameters: pa = pp = 1 v4 =
YB = 11.

Table 1 shows the performances of both original FasArt
models. In model 1: the number of rules is low, the error
is low, the similarity amongst rules could be better, there
is no redundancy and the fuzzy partitions are complete.
But in model 2, the number of rules is very high, the error
is low, the similarity and redundancy could be improved,
and the fuzzy partitions are complete.

Step 2: The improvement is carried out by a genetic
optimization involving the fuzzy rule set of the previous
models. Five initial populations were used for each al-
ternative of similarity, incoherence and redundancy for-
mulation (Egs. 4 and 5) and the usual genetic operators
were used. For each initial population and similarity-
redundancy alternative, the improvement experiment is
done three times. The population individuals are encoded
by Gray code containing one fuzzy logic system with

7037



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

P Fy F3 Fy F5 P Fy F3 Fy F5
Error 0.0024 | 0.0025 | 0.0023 | 0.0024 | 0.0022 Error 0.0038 | 0.0038 | 0.0041 | 0.0042 | 0.0043
Rule Number 9 8 9 9 11 Rule Number 72 81 107 89 100
Similarity 0.3044 | 0.3093 | 0.3006 | 0.2973 Similarity 0.3233 | 0.3333 | 0.3255 | 0.3308
Redundancy 0 0 0 Redundancy 0.0006 | 0.0005 | 0.0006
Incoherency 0 0 Incoherency 0 0
Coverage yes Coverage yes

Table 2. Improved Fuzzy Model 1 (Similarity
based on Eq. 4)

Fy Fy F3 Fy Fs
Error 0.0038 | 0.0042 | 0.0043 | 0.0042 | 0.0042
Rule Number 72 111 126 130 123
Similarity 0.0038 | 0.0024 | 0.0024 | 0.0029
Redundancy 0.0010 | 0.0008 | 0.0007
Incoherency 0 0
Coverage yes

Table 3. Improved of Fuzzy Model 2 (Similarity
based on Eq. 5 and Brpreshoia = 0.8)

variable rule number. Each initial population contains

\/(RuleN umber) individuals, including at least one in-
dividual similar to the original fuzzy system.

On the other hand, in order to avoid convergence problems
when the fuzzy system to be encoded is too large, each
individual is made up of "n” fuzzy sub-systems each
containing *2¢ of the original system. The evolution of
each one of them is independent.

An incremental process was used during the experiments
to define the cost function to be used in each case. Fach
time, one of the interpretability indexes from section 2
was added to test its influence and improve the fuzzy
performance of the fuzzy model:

Fi(Accuracy, Interpretability) = A * Error+
+ Z;ilz \; * InterpretabilityIndex )
In Eq. 8, every factor has been considered with the same

relevancy: A; = 1. Finally, 60 experiments were done for
each F}.

In Tables 2, 3 and 4, the best results for each case
are shown, considering the several alternatives for the
Similarity parameter (Eqgs. 4 and 5).

Table 2 shows the results for the FasArt Model 1.
This step has generated a fuzzy model with a better
accuracy-interpretability balance: the number of rules is
lower (16—9), the level of similarity has been improved
(0.31—0.30) and the fuzzy partitions obtained from the
new fuzzy rule set are still complete. The cost of this
interpretability improvement has been a slightly higher
error (0.0022—0.0024). In this case, where the original
model is compact enough (16 rules), its improvement has
been possible with a reasonable accuracy cost, while is kept
very low. If Eq. 5 were used only the rule number could
be improved, reducing this number to 9.

Tables 3 and 4 show the results for the more complex
FasArt Model 2. In this case, the improvement obtained
is more relevant than for Model 1: the number of rules
has been greatly reduced (505 —72-130), the similar-
ity has been improved relevantly (0.0139—0.0024-0.0038)
(0.37—0.33 - 0.32), and the rule redundancy has been

Table 4. Improved Fuzzy Model 2 (Similarity
based on Eq. 4)

reduced (0.0078—0.007-0.0010) (0.0070—0.0006), keeping
full coverage on the fuzzy partitions. In this case it should
be noticed that the model error has also been reduced
(0.0045 < 0.0038 — 0.0043), so the improvement achieved
has not only concerned linguistic aspects, but the accuracy
of the fuzzy model obtained can also be improved.

6. CONCLUSIONS

This paper introduces a 2-step approach to obtain rule-
based fuzzy models showing well balanced performances
from the points of view of accuracy and interpretability.
The goal is to achieve a good trade-off, or compromise
solution, between both aspects (precise vs. linguist fuzzy
performances). In this way, not only a sufficiently accurate
model generated, as is usual in engineering applications,
but also fuzzy models with more interpretable fuzzy rules
and sets. So these models are more easily understood. The
modeling with these performances could be considered as a
knowledge extraction process, from a numeric level (data)
to a symbolic one (fuzzy ”linguist” rules).

The method proposed is made up of two steps:

e Step 1:, a rule-based fuzzy model is generated, using
any fuzzy modeling algorithm.

e Step 2:, an improvement of the previous fuzzy system
is done by optimization, taking as cost function:
F(Accuracy, Interpretability) = A\ x Accuracy + A *
Interpretability.

In this function, every performance desired for the
logic fuzzy model is included, each with its own
relevancy implemented by user tuned weight.

The advantages of this proposal are: simplicity, generality
and economy. This is an open approach that uses, and
takes advantage of, any existing rule-based fuzzy modeling
algorithm from scientific literature.

On the other hand, step 2 is open to setting up the
improvement of the fuzzy model from any point of view,
the relevance of each one being tuned by the user, to obtain
the desired performance for the fuzzy model. This method
can be applied to Mamdani or TSK systems without
restrictions, while in scientific literature, it is usual in
applications for TSK systems only.

In this paper, this approach has been applied to the
modeling of a DC motor based on the neuro-fuzzy system
FasArt, that introduces the most usual problems described
in section 2 from the linguistic-interpretability point of
view. The improvement criteria used are described in
section 3 and function 7.

The results obtained have shown an improvement of the
two initial models: in the first model, even though it is a
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compact model, it has been possible to reduce the number
of rules by up to 43%, and the similarity by 3.23%. On
the other hand the accuracy was reduced by 9%, but
this cost is not very important, taking into account its
magnitude in this case. In the second model, very much
complex, the number of rules has been reduced by up to
80.42%, the similarity by up to 73.19%, the redundancy by
up to 8.62%, providing improved accuracy. The error has
been reduce by 8.7%. In both cases the fuzzy partitions
obtained are complete. In this case, both aspects or points
of view, accuracy and interpretability, have been improved
simultaneously.

These results show that the approach introduced in this
paper permits fuzzy models to be obtained with a better
balance between accuracy and interpretability, simulta-
neously improving the simplicity of the model which is
another interpretability factor. This better balance, con-
firmed by the results, does not necessarily mean worse
accuracy for the fuzzy model. It is possible to improve
the accuracy and the interpretability of the fuzzy model
jointly.

Future work will focus on the application of this approach
to industrial processes, such as in Sainz et al. (2005,
2004) to obtain fuzzy models with an adequate explanation
capacity of the process involved.
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