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Abstract: Features of the linear optimal estimator (LOE) that minimizes the root mean-square (RMS) 
criterion in the class of linear estimates in nonlinear problems are investigated. The equivalent linear models 
for measurements have been introduced for the LOE and the Cramer-Rao Bound. The features of the LOE 
in comparison with the optimal Bayesian estimator, which corresponds to the conditional mean, are studied. 
Some examples are considered to illustrate the results obtained.  

 

1.  INTRODUCTION  

A number of estimators, close by their nature, have been 
developed for nonlinear filtering problems recently. Among 
them are the so-called unscented Kalman filter, sigma-point 
Kalman filter, linear regression Kalman filter (Juiler and 
Uhlmann, 1995, 2004; Li and Jilkov, 2004; Daum, 2005; 
Wan and  Van der Merwe 2001, 2004; Lefebvre, 2005; 
Stepanov and Amosov, 2006, 2007). In these publications 
the main attention is centered on computational aspects and 
advantages of the estimators suggested as compared to other 
suboptimal estimators, to the extended Kalman filter, for 
example. At the same time the following fact that is of 
paramount importance, remains in the background. The 
above-mentioned estimators are only approximate 
procedures for calculation of linear optimal estimate, 
minimizing the RMS criterion only for estimates linearly 
dependent on measurements. That means that the linear 
optimal estimate, even accurately determined, is, in its turn, 
only the suboptimal estimate relative to the Bayesian 
optimal one that minimizes the RMS criterion without a 
limitation on the class of estimates used. Thus it is profitable 
to be able to reveal and evaluate a possible loss of the LOE 
as compared to the Bayesian optimal estimate, which is the 
aim of the present paper. 

2.  PROBLEM STATEMENT 

Consider the following problem: to estimate an n -
dimensional random vector  by - 

dimensional measurements  
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in which  is a known  - 

dimensional function,  is a random vector 
of the measurement errors. The joint probability density 
function (p.d.f.)  for the vectors  and  is 
assumed to be known. For simplicity, the random vectors  
and  are assumed to be independent of each other, i.e. 
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)()(),( vxvx fff = , and  is a zero mean vector. It is 
known that the Bayesian optimal (in the RMS sense) 
estimate , minimizing the criterion 
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and the design error covariance matrix, conditional to the 
measurements , are defined as (Meditch, 1969) y

 

∫= xyxxyx dfopt )/()(ˆ ,  (3) 

xyxyxxyxxyP dfToptoptopt )/())(ˆ))((ˆ()( −−= ∫ ,(4) 

 
where E  is the mathematical expectation corresponding to 
the  and  is the a posteriori p.d.f. of the 
vector . In these relations and further integrals are 
considered to be multiple, with infinite limits. The 
conditional matrix  characterizes the design 
estimation accuracy of the state vector for a specified set of 
measurements . If the function  is nonlinear, or  
and  are not Gaussian, there arises the problem of 
designing suboptimal estimators (algorithms), economical 
from the computational viewpoint. Such estimators must 
provide calculation of both the estimate  that is not 
substantially different in accuracy from the accuracy of the 
optimal estimate, and the adequate design error covariance 
matrix . One of the possible variants of designing 
suboptimal algorithms is based on the approach which 
provides minimization of criterion (2) in the class of 
unbiased estimates, linearly dependent on measurements. 
This estimator will be called a linear optimal estimator 
(LOE) as opposed to the nonlinear optimal estimator (NOE) 
in the form of the conditional mean (3).  
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The aim of this investigation is to study the features of the 
LOE and to analyze the relationship and dissimilarities 
between the LOE and NOE. 
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3. FEATURES OF THE LOE  

From the estimation theory it is known that if the 
mathematical expectations x , y , the covariance matrices 

,  and the cross covariance matrix  are specified 
for the composite vector , then the linear unbiased 

estimate  that minimizes criterion (2) in the class of 
linear estimates and the design covariance matrix are 
determined as (Meditch, 1969): 

xxP yyP xyP
yx,

)(ˆ yx lin

( yyxyyPPxyx yyxy −+=−+= − linlin K)()(ˆ 1 ) , (5) 

yxyyxyxx PPPPyxxyxxP 1т ]))(ˆ))((ˆ[( −−=−−= Elin . (6) 
 
If the function  is linear, i.e. , then )(xs Hxxs =)(

xHy = , ,   , (7) vxxyy PHHPP += т тHPP xxxy =

 
where  is the covariance for . If the  is nonlinear, 
then in finding  there arises the problem of calculation 
of 

vP v )(xs
linx̂

y ,  and . Taking into consideration (1) and the 
fact that 

yyP xyP
0=v , these values can be determined as  

∫= xxxsy df )()( ,  (8) 

vyy PxxyxsyxsP +−−= ∫ df )())()()(( т , (9) 

∫ −−= xxyxsxxPxy df )())()(( т .  (10) 

 
In order to gain an understanding of the features of the LOE 
and its relationship with the NOE, let us present the initial 
measurements (1) by using the linear model of the form  

 
vxxHyy ~)( +−+= linlin , (11) 

 
in which v~  is a zero-mean vector with the covariance . 
It is assumed that this vector does not correlate with  and 

. Let us find such values of the 

vP~

x
v y ,  and  at which 

the first two moments for the composite vectors  and 

will be equal. It is clear that in this case the 

linH vP~

linyx,

yx, y  must 
coincide with (8), and from Eq. (7) it follows that 

 
1−= xxyxPPH lin ,    (12) 

xyxxyxyyv PPPPP 1~ −−= ,  (13) 

more fully  

1т )())()(( −∫ −−= xxPxxxxyxsH dflin ,(14) 

vv PPP += ad~ ,   (15) 
where 

xyxxyx PPPxxyxsyxsP 1т )())()()(( −∫ −−−= dfad ,(16) 

   
where  is calculated  by using (10). xyP

Below the representation of measurements in the form of 
(11) is called ‘an Equivalent Optimal Linear Model’ 
(EOLM) for measurements (1). From (15) it follows that the 
random vector v~  can be presented as a sum of two vectors 

vvv += ad
~ , where  is a zero-mean vector with the 
covariance matrix (16). The vector  does not correlate 
with  and . From the aforesaid it is obvious that the LOE 
for nonlinear measurements (1) can be developed as a 
solution of the linear estimation problem for the EOLM 
defined by (11), (14)-(16).  
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adv
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Thus, based on the EOLM, it is possible to reveal the 
following special features of the LOE as compared with the 
NOE.  

First of all, the initial nonlinear function is replaced by the 
linear one, i.e. ( ) )( xxHyxs −+≈ lin . Secondly, to take into 
account this replacement, a zero-mean, uncorrelated with  
and , vector of additional methodical errors  is added 
in the measurement model. Besides, a priori information 
about  and  for independent vectors x  and  is 
replaced with the data about the mathematical expectations 
and covariances for uncorrelated vectors  and . All these 
features are possible reasons why the LOE will be losing in 
accuracy in comparison with the NOE. And at last, another 
specific feature of the LOE in comparison with the NOE is 
that the design covariance matrix (6) generated in it does not 
depend on measurements, which means that the 
unconditional and conditional error covariance matrices 
coincide.  

x
v adv

)(xf )(vf v

x v

Note 1. In should be emphasized that the LOE is derived 
here based on coincidence of the first two moments for the 
composite vectors  and . In other words, there 
was no aim to choose parameters of the linear measurements 
(11) in order to minimize, in a certain sense, the difference 
between the linear and nonlinear functions. However, it is 
possible to show that the linear approximation 

linyx, yx,

( ) cHxxs +≈  

at linHH = , xHyc −=  for the nonlinear function ( )xs  
minimizes the criterion 

( ) ( )[ ] ( )[ ]{ }cHxxscHxxsHc −−−−= TEJ , . Note that a 
number of suboptimal linear estimators known from 
literature are designed in accordance with a scheme in 
which, first, a linear representation for  is suggested, 
and then this representation is used for designing a linear 
estimator. A possible reason why suboptimal estimators 
differ from the LOE is multiplicity of procedures for finding 
parameters of linear approximation. Also of great 
importance is the fact in which manner the additional error is 
taken into consideration. Bearing in mind the aforesaid, it is 
appropriate to note that finding the parameters  and , 
reasoning from minimization of the criterion 

( )xs

H c
( )Hc,J , makes 
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the content of a well known statistical linearization problem. 
Linear estimators based on the method of statistical 
linearization were suggested quite a long time ago (Gelb, 
1974). Their distinction from the LOE lies in the fact that 
the estimator presented there does not take account of an 
additional error caused by replacement of the nonlinear 
function with its linear analog. This additional error is taken 
proper account of in the suboptimal linear estimator 
suggested in (Lefebvre et al., 2005). In fact, these 
algorithms are similar to the LOE. Their peculiar feature is 
that the parameters of linear approximation and the 
covariance matrices of the additional error are calculated 
with the use of a special computational procedure based on 
formation of a set of samples  and . Such algorithms 
are called linear regression Kalman filters. 

jy jx

Note 2. The realization of the LOE reduces to calculation of 
the first two moments (8)-(10) and subsequent use of Eq. 
(5), (6). The question of designing economical, from the 
computational viewpoint, procedures for finding integrals 
(8)-(10) are not dealt with in this paper. However it should 
be mentioned that a number of new methods that allow 
efficient calculation of these moments have been suggested 
recently. Among them are as follows: the algorithms that use 
unscented transformation (the so-called unscented and 
sigma-point Kalman filters) (Juiler et al., 1995, 2004; Van 
der Merwe and Van., 2004); the algorithms based on the 
Monte Carlo method and its modifications; the algorithms 
with the use of neural networks (Stepanov and Amosov, 
2006), and the already mentioned linear regression filters 
(Lefebvre et al., 2005). 

4. TECHNIQUE FOR COMPARISON OF LOE AND NOE 

The most objective evaluation of the efficiency of the 
suboptimal estimator in comparison with the NOE is 
realized by comparing its accuracy with that of the NOE. 
The comparison should involve the use of the unconditional 
error covariance matrices defined as 

 
yxyxyxxyxxG ddfT∫ ∫ μμμ −−= ),())(ˆ))((ˆ( ,  (17) 

)(ˆ yxμ  - estimates obtained by optimal  and 
suboptimal  estimators. These matrices can be 
calculated by the method of statistical testing. In particular, 
for the diagonal elements 
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)( sub=μ
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1
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j
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L
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where ,  are the random vectors 

simulated according to  and , 

т
1 ]...[ j

n
jj xx=x jy

)(xf )(vf Lj .1= . The 

matrix  characterizes the potential accuracy of 
estimation. 

optG

From (18) it follows that to be able to calculate the potential 
accuracy, one should know the optimal estimate. This 
estimate can be found, for instance, by the Monte-Carlo 

method or its modification, aimed at reducing the amount of 
computations (Stepanov, 1998; Bergman, 1999). Therefore 
the analysis of efficiency of suboptimal estimators in 
accordance with the procedure described above involves a 
considerable amount of simulation. As regards the accuracy 
analysis, this procedure can be made much simpler by using 
the Cramer-Rao inequality which allows finding the low 
bound for the matrix . For the problem under 
consideration the Cramer-Rao inequality can be written as 
(Stepanov, 1998; Bergman, 1999) 

optG

 
 ≥ −1JG opt ,   (19) 
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Let us consider now a particular case of the problem under 
consideration, introducing the additional assumption about 
the Gaussian character of the vectors x  and , then v
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The Cramer-Rao Bound (CRB)  characterizes the 
potentially achievable accuracy. In order to compare the 
LOE and NOE similarly to the way it was done for the LOE, 
it is convenient to introduce a ‘Linear Equivalent Model’ 
(LEM) for the CRB  

1−J

 
lblblb vxHy += * ,  (21) 

 
for which the error covariance matrix for the vector  
coincides with the CRB (20). It is not difficult to see that if 
the vectors  and  are Gaussian with the covariances 

, , the matrix  will coincide with the error 
covariance matrix for estimation of the vector  by the 
measurements (21) in the case that the following equation 
holds true: 

*x

*x lbv
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*x

 

( ) ( ) xx
x
xsP

x
xsHPH vv df

d
d

d
dlblblb )()()(

т
1

т1т
∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −− .(22) 

 

The choice of  and that provide Equation (22) is not 
unambiguous, besides calculation of the right part of Eq. 
(22) can also involve difficulties. To overcome them and to 
approximately evaluate , it is useful to introduce the 
following approximate LEM for the CRB  

lb
vP lbv

1−J

 
lblblb vxHy += *~~ ,  (23) 
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where , vv PP =lb ∫= xx
x
xsH df

d
dlb )()(~

т . It is clear that the 

covariance matrix corresponding to the linear estimation 
problem of the vector  by the measurement of (23) is 
determined as 

*x
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Using the Cauchy-Bunyakowsky inequality, it is possible to 
show that 1~ −≥ JP lb  (Stepanov, 1998). Thus,  is the 
upper estimate for . It is essential that in a number of 
cases the matrix can be determined in the closed form. 

Assuming that the potential accuracy determined by  
is close to the potentially achievable accuracy specified by 

 or its estimate 

lbP~
1−J

optG

1−J lbP~ , and taking into consideration the 
introduced linear equivalent models (11) and (21) or (23), it 
is possible to compare the NOE with the LOE. 

Note 3. An important characteristic in evaluating the 
efficiency of suboptimal algorithms is adequacy of the 
design covariance matrix  generated in it. To check 

the adequacy of , let us use the matrix 

)(yPsub

)(yPsub

 

∑∫
=

μμμ ≈=
L

j

j
L

df
1

)(1)()(~ yPyyyPG . (24) 

The design characteristic will be considered adequate if  

coincides with 

μG
μG~ . It is clear that for the NOE the design 

characteristic is always adequate to its real value as 
optoptopt df GyyyPG ~)()( == ∫ . In the LOE the matrix 

 is used as a design accuracy characteristic. As follows 
from (6), the matrix  corresponds to the real value of 
the unconditional covariance matrix and hence, the design 
accuracy characteristic generated in the LOE is adequate 
too. 

linP
linP

5. EXAMPLES 

EXAMPLE 1. Let us illustrate possible losses in accuracy 
due to replacement of the nonlinear function with the linear 
one and presence of additional methodical errors . 
Consider the following example. Assume that it is required 
to evaluate a scalar parameter by the scalar measurements of 
the form 

adv

ii vbxaxy ++= 3 , mi .1=   
 
in which ,  are the known values, and а b x ,  – the zero-
mean Gaussian values, independent of each other, with the 
variances  and 

iv

2
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( ) EIPyy
22

0
4
0

222
0 615 rabba mm +σ+σ+σ= × , - square mm×I

mm×  matrix of unities,  -  unity matrix; 
, - column  of unities. 

Thus , . Therefore, 
the following representation will hold true for the EOLM in 
this example 
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linlin
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where ,  is the random bias with 

the variance . In other words, in this example 
the additional methodical error is the systematic component 
of the error 

)3( 2
0σ+= bahlin dvad =

6
0

22 6 σ=σ bd

iv~ . Taking into consideration (25), it is easy to 
derive the LOE. Of the greatest interest is the variance for 
the LOE that can be written as 
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The CRB can be determined with the LEM  
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Comparing (25), (26) with (27), (28), it is not difficult to 
point out the reasons why the LOE can differ in accuracy 
from the accuracy of the NOE. 

Firstly, it may be due to the fact that the coefficient  that 
determines the derivative is lower in the LOE than it is at the 
CRB calculation. In particular, if the measurement errors is 
considerably higher than the methodical errors, and it may 
be assumed that , from (26) it is possible to 

derive 

linh

22 rm d <<σ

222
0

22
0

)( rhm
r

P lin
lin

+σ

σ
≈ . Therefore , as 1−> JPlin

4
0

22 18)( σ+=< bhhh linlblin .  

Secondly, the difference is conditioned by an additional 
error that is represented by a random bias. As the random 
bias is not observable here, it limits the accuracy for the 
LOE. If the second summand defining the contribution of 
the measurement error in (26) can be neglected, then 

222
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22
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)( d
lin

dlin

h
P
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σσ
≈ . In particular, at  222

0 )( d
linh σ>>σ
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and , it is possible to write 02 →r
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The approximate LEM for the CRB can be written as  

i
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where linlb hbabah =σ+σ+= )96(
~ 4

0
22

0
2 . In this case the 

CRB can be determined as 

( ) 222
0
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0

~
~
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rP
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+σ

σ
= .  (29) 

Comparing (28) and (29), special attention must be given to 
the fact that using the upper estimate for the CRB makes it 
possible to reveal the second, and the most significant, cause 
for possible limitations in accuracy for the LOE as 
compared with the NOE.  

Below are the results of the simulation, showing a complete 
support to the conclusions made. Fig.1 presents the graphs 
of functions  and its linear representations used in the 
LOE for , , . Fig. 2-3 present the plots 

of 

)(xs
10 =σ 2=a 5.0=b

)(1 mJ − , )(~ mPlb , )(mPlin  as a function of the 
number of measurements, at , , 10 =σ 5.00 =σ 1=r .  

 

Fig.1 Functions , , . )(xs xhlin xhlb

 

Fig. 2. Plots of )(1 mJ − , )(~ mPlb , )(mPlin  at . 10 =σ

 

Fig. 3 Plots of )(1 mJ − , )(~ mPlb , )(mPlin , . 5.00 =σ

Since, as it was mentioned in the previous section, there is a 
question about the relationship between the CRB and the 
real potential accuracy, some more calculations were made 
in addition to those described above. They show that the 
potential accuracy in this example, determined by (18) at 

opt=μ , practically coincides with the CRB. In calculation 
the optimal estimate was determined with the use of the 
Monte-Carlo method. Furthermore, some calculations were 
made that confirm the adequacy of the design accuracy 
characteristic generated in the LOE. With this end in view, 
the real error was calculated with the use of (18) at lin=μ , 
which coincided with the design error, just as it had been 
expected. 

It should be noted that besides the CRB there are some other 
less conservative bounds (Reece and Nicholson, 2005). The 
choice of the CRB is conditioned here by a simpler 
procedure used for its calculation. 

From the results given above it follows that the potentialities 
of the LOE in this example are limited mainly because of the 
additional error. This drawback of the LOE in the example 
considered is easy to reveal by comparing the equivalent 
linear measurements for the LOE and CRB. Using the NOE 
does not involve any additional error, which is the reason for 
achieving higher accuracy as compared to the LOE. 

EXAMPLE 2. Let us show that the use of a priori 
information about the mathematical expectations and 
covariances for uncorrelated vectors  and  instead 
information about  and  can also be a cause of 
differences in accuracy  between  the LOE and the NOE. 
With this aim in view let us assume that for Example 1 

x v
)(xf )(vf

1=а , 0=b , and x  and , iv mi .1=  – the uniformly 
distributed on the interval  and ]1,0[ ],0[ yΔ , 
correspondingly. In other words, the example of a linear 
estimation problem is considered, when x  and  are 
nonGaussian. It should be noted that the a posteriori p.d.f for 
such problem will be uniformly distributed on the domain 

. This domain is the crossing of the a priori domain 

 and the domain , 

v

],[ 12 cc

]1,0[ ],[],[ minmaxy
1

yyyyy
m

l
ii Δ−=Δ−≡Ω

=
I
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so , , where , 
 - the maximum and minimum values of the 

measurements. Thus, the NOE and LOE can be determined 
as 

{ }1,0max max1 −= yc { min2 ,1min yc = } maxy
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1)(ˆ , 

)(12 2

2

my
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+Δ

Δ
= . 

The results of  calculation derived using Eq. (18) for 
the NOE and using 

optG
linP  for the LOE, when 1.0=Δy , for 

various m are presented in Table 1.  
 

Table 1. Comparison of  and  optG linlin PG =
m 10 20 100 

LOE 0.009 0.007 0.003 
NOE 0.006 0.003 0.001 

 

From Table 1 it follows that the LOE, even in the linear 
problem, can substantially lose in accuracy to the NOE. 
 

6. CONCLUSIONS 

The equivalent optimal linear models (EOLM) of nonlinear 
measurements have been introduced for the linear optimal 
estimator (LOE). Using the EOLM, the features of the LOE 
and possible reasons why the LOE will be losing in accuracy 
in comparison with the NOE are investigated.  
 
For the particular case of the problem under consideration 
when  and  are Gaussian, the ELM have been introduced 
for the Cramer-Rao bound. The use of the ELM makes 
comparison of the LOE and NOE substantially simpler.  

x v

 
Possible losses in accuracy of the LOE in comparison with 
NOE conditioned by the revealed features are illustrated by 
examples.  
 
The relation between the LOE, and such estimators as 
unscented Kalman filter, linear regression Kalman filter and 
estimators based on the method of statistical linearization 
have been discussed. 
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