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Abstract: Adaptive optimization schemes based on stochastic approximation principles such as
the Random Directions Kiefer-Wolfowitz (RDKW), the Simultaneous Perturbation Stochastic
Approximation (SPSA) and the Adaptive Fine-Tuning (AFT) algorithms possess the serious
disadvantage of not guaranteeing efficient transient behaviour due to their requirement for using
random or random-like perturbations of the current parameter vector. The use of random or
random-like perturbations may lead to particularly large values of the objective function, a fact
that prevents the wide application of these algorithms to controller fine-tuning and adaptive
and learning control where efficient transient performance is a prerequisite; in these applications,
there may be cases where a small perturbation of a “good” parameter vector may lead to an
unacceptable – or, even worse, unstable – closed-loop behavior. In this paper, we introduce
and analyze a new algorithm for alleviating this problem. Mathematical analysis establishes
efficient transient performance and convergence of the proposed scheme under a general set of
assumptions. Simulation results demonstrate the efficiency of the proposed scheme.

Keywords: Adaptive Optimization, Stochastic Approximation, Simultaneous Perturbation
Stochastic Approximation (SPSA), Kiefer-Wolfowitz procedure, Adaptive Fine-Tuning

1. INTRODUCTION

Many controller fine-tuning as well as adaptive and learn-
ing control problems can be formulated as optimization
problems where the objective function to be optimized
cannot be computed directly (i.e., its analytical form is
not known) but only estimated via observations. More
formally, a large class of these problems can be shown to
be equivalent to the problem of finding an algorithm for
updating the vector of controller parameters θk ∈ ℜnθ so
that an appropriately defined objective function

Jk ≡ J(θk, xk) (1)

converges as close as possible to one of its local minima.
Here, J denotes the unknown nonlinear objective function
which is assumed to 1 be Cm, m ≥ 2, bounded-from-below
and unbounded for unbounded θk; Jk denotes the objective
function measurement at the k-th algorithm iteration;
xk ∈ ℜnx is the vector of exogenous variables; and nθ, nx

denote the dimensions of the vectors θk, xk, respectively. In
a typical case, J corresponds to an appropriately defined
performance index, while the entries of the vector xk may
correspond to signals that are not available for measure-
ment (e.g, sensor noise, un-measurable disturbances, etc.)
as well as signals that are available for measurement (e.g.,
system states, measurable disturbances, reference signals,
demand, etc.).

1 Throughout this paper, a function f is said to be Cm, where m

is a positive integer, if it is uniformly continuous and its first m

derivatives are uniformly continuous.

Stochastic Approximation (SA) methods such as the
Kiefer-Wolfowitz (KW) [13, 2], the Random Directions
Kiefer-Wolfowitz (RDKW) [16], the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) [18, 20] and the
Adaptive Fine-Tuning [15] algorithms are directly applica-
ble to the above problem since – contrary to conventional
optimization methods – they can efficiently deal with
the problem of optimization of functions that cannot be
computed directly but only estimated via observations. A
common element in the aforementioned SA algorithms is
the need for evaluating the objective function at random
or pseudo-random perturbations ∆θ+θ around the current
vector θ. For instance, 2-sided RDKW and SPSA assume
an iterative scheme of the form

θk = θk−3 − βk

Jk−2 − Jk−1

2αk

rk (2)

where θk−2 = θk−3 + αkdk, θk−1 = θk−3 − αkdk are the
perturbation points, αk, βk are slowly-decaying to zero
step-sizes and rk, dk are random vectors.

Unfortunately, the objective function values Jk−2, Jk−1 at
the perturbation points may be particularly large. To see
this, assume for simplicity that xk = 0 for all k and
consider the case where the current value of the parameter
vector θk satisfies |∇J(θk)| = B with B being a positive
constant; then it can be seen that the objective function
at the next iteration satisfies

J(θk+1) > J(θk) + αkB, with probability P

where P > 0 is a non-negligible probability. In other words,
the aforementioned SA algorithms may introduce large

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5071 10.3182/20080706-5-KR-1001.0335



“spikes” in the objective function during the optimization
process, especially when θk is away from a local minimum
of J . This fact is actually one of the main reasons that
SA algorithms have not found a wide application to con-
troller fine-tuning and adaptive and learning control, since
in these applications efficient transient performance is a
prerequisite; it is worth noticing that, in these applications
there may be cases where a small perturbation of a “good”
parameter vector may lead to an unacceptable – or, even
worse, unstable – closed-loop behavior (see e.g. [15]).

Therefore, there is a need for the construction of algo-
rithms for updating θk which, on the one hand, retain
the nice convergence properties of the aforementioned SA
algorithms and, on the other hand, guarantee that the ob-
jective function values satisfy at each algorithm iteration

Jk ≤ Jk−1 + ǫk

where ǫk is, in the worst case, a small positive term; as
already presented above, in the case of the aforementioned
SA algorithms the term ǫk can be particularly large.

In this paper, we propose and analyze a new algorithm
that addresses the above problem. More precisely, as we
establish by using rigorous arguments, at each iteration of
the proposed algorithm Jk is strictly decreasing outside a
subset centered at a local minimum of J ; the magnitude
of this subset depends on the magnitude of the exogenous
disturbances, the estimation accuracy xk − x̄k (where x̄k

denotes a estimation/prediction of xk) and the approxi-
mation accuracy of the estimator used by the proposed
algorithm (which increases with the number of algorithm
iterations); moreover, we establish that the proposed al-
gorithm guarantees convergence under a general set of as-
sumptions. The basic difference of the proposed algorithm
as compared to KW, RDKW and SPSA is the use of a
function approximator/estimator for the approximation of
the unknown objective function and for the estimation of
the effect of candidate perturbations. We note also that,
in the case where estimates/predictions of the exogenous
signals xk are available, the proposed algorithm can incor-
porate this knowledge, something that it is not possible in
the majority of the SA methodologies.

We close this section by noticing that simulation exper-
iments (see section 3) demonstrate the validity of our
theoretical results.

1.1 Notations

The notation vec (A, B, . . . , ), where A, B, . . . are scalars,
vectors or matrices, is used to denote a vector whose
elements are the entries of A, B, C, . . . (taken columnwise).
Z denote the set of nonnegative integers. For a vector x ∈
ℜn, |x| denotes the Euclidean norm of x (i.e., |x| =

√
xτx),

while for a matrix A ∈ ℜn2

, |A| denotes the induced
matrix norm of A. dim(x) denotes the dimension of the
vector x. Finally, in order to avoid definition of too many
variables, constants, etc, we will use the following notation:
If fα(x) is a function parametrized by the nonnegative
parameter α, we will say that fα is O (α) (symbolically and
with some abuse of notation fα = O (α), if there exists a
strictly increasing scalar, at least C1, function g satisfying
g(0) = 0, g(α) > 0, ∀α 6= 0, such that |fα(x)| ≤ g(α), ∀x.
Note that our definition of O(·) differs from the usual

“order of” definition. For instance, it is not difficult for
someone to see that if a function f is O(a) then, according
to our definition, it will be also O(a2), O(a3), etc.

2. THE PROPOSED ALGORITHM AND ITS
CONVERGENCE PROPERTIES

As we have already noticed in the Introduction, the
proposed approach uses a function approximator for the
estimation of the unknown objective function J . More
precisely, we use a linear in the parameters function
approximator for the estimation of the unknown function
J as follows (here k − 1 denotes the current algorithm
iteration):

Ĵk(θℓ, x̄ℓ) = ϑτ
kφk(θℓ, x̄ℓ), ℓ ≤ k (3)

where Ĵk(θℓ, x̄ℓ) denotes the estimate of J(θℓ, xℓ), φk

denotes a nonlinear vector of regressor terms (which is
assumed to be a smooth function of its arguments), ϑk

denotes the vector of estimator tunable parameters (e.g.,
in the case where the estimator (3) is a neural network, ϑk

denotes the vector of neural network weights),

Lk ≡ dim (φk(θ, x)) = min{k + 1, L} (4)

with L being a user-defined positive integer and ϑk is
calculated according to

ϑk = argmin
ϑ

1

2

k−1∑

ℓ=ℓk

(Jk − ϑτφk(θℓ, x̄ℓ))
2

(5)

where ℓk = min{0, k − Lk − Th} with Th being a user-
defined nonnegative integer. The vector x̄ℓ denotes an
estimate (or prediction in case of future measurements,
i.e., in the case where ℓ = k) of the vector xℓ of actual
exogenous signals.

To better understand the meaning of the estimator (3)
assume for the time-being that the exogenous vector xk

is exactly known; then, if the regressor terms φk are
chosen to belong to a family of Universal Approximators
(e.g. polynomials, neural networks, etc) it can be seen
using standard arguments from the theory of function
approximation (see e.g., [14, 10, 11, 17] and the references
therein) that the choice for ϑk according to (5) guarantees
that

Jk = Ĵk + νk (6)

where νk is a term that can be made arbitrarily small (for
k large enough) provided that the “dimension” L of the
regressor vector φk is large enough. In the sequel, we will
use the notation NL to denote the upper bound of the
magnitude of the term νk (see Theorem 1 for a formal
definition of NL). We close this parenthesis by noticing
that, since in the general case the exogenous vector xk is
not exactly known, equation (6) should be replaced by the
following equation

Jk = Ĵk + νk + O (xk − x̄k) (7)

[Availability of x̄k] The proposed algorithm assumes
that an estimate – or prediction – x̄k of the vector xk

is available. In many cases of control applications such an
assumption is realistic since the entries of xk may corre-
spond to system states and exogenous inputs which are
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available for measurement or can be estimated/predicted
using appropriate estimation algorithms (see the simula-
tion section for such an example). However, there may be
cases where such an assumption is not realistic; in this case
it can be readily seen that all the results of the paper are
still valid by setting x̄k = 0 and cx̄ = cx, where cx̄, cx are
defined in Theorem 1 below.

The algorithm considered in this paper takes the following
form: let αk be a user-defined scalar positive sequence and

∆θ
(j)
k ∈ {−αk, +αk}nθ , j ∈ {1, . . . , K} denote a collection

of K ≥ nθ vectors of candidate perturbations, satisfying
∀j ∈ {1, . . . , K}

∣∣∣∣
[
φ

(k)
k−Lk+1, . . . , φ

(k)
k−1, φk(θk−1 ± ∆θ

(j)
k , x̄k)

]−1
∣∣∣∣

≤ Ξ1

αk

(8)

with φ
(k)
ℓ = φk(θℓ, x̄ℓ), and∣∣∣∣

[
∆θ

(1)
k , . . . ,∆θ

(K)
k

]−1
∣∣∣∣ ≤

Ξ2

αk

(9)

where Ξ1, Ξ2 are finite positive constants independent of
αk. Let also ei denote the unit vector in the i-th direction
(i.e., eii = 1 and eij = 0 for all j 6= i) and

∇̂Jk =
vec

(
Ĵk(θk−1 + ckei, x̄k) − Ĵk(θk−1, x̄k)

)

ck

where ck is a user-defined positive scalar sequence. Then
∆θk ≡ θk − θk−1 is chosen according to

∆θk = arg min
±∆θ

(j)

k
,j∈{1,...,K}

(
±∆θ

(j)
k

)τ

∇̂Jk (10)

The key idea of the proposed algorithm is to use a non-
linear estimator of the form (3)-(5) to estimate the effect

of the candidate perturbations ±∆θ
(j)
k to the objective

function J and choose the perturbation that leads to the
maximum – estimated – decrease of J . Condition (8) is
imposed to make sure that the regressor vector φk is
persistently exciting, see e.g., [12], a crucial property for
the efficiency of the proposed algorithm. Finally, condition
(9) is imposed to make sure that there exists at least

one candidate perturbation ±∆θ
(j)
k that leads to a non-

negligible decrease of J .

Note that condition (8) renders the problem of finding

∆θ
(j)
k a computationally hard problem. Fortunately, as we

will see in Propositions 3 and 4, under appropriate choice

of the regressor vector φk and selection of the vectors ∆θ
(j)
k

according to an appropriate random or pseudo-random
generator, the constraint (8) holds with probability 1. In
other words, under appropriate selection of the regressor

vector φk and the random generator for producing ∆θ
(j)
k ,

there is no practical need to check the computationally
“heavy” condition (8).

Our first result establishes efficient algorithm performance
and convergence in the case of bounded – but otherwise
arbitrary – exogenous signals.

Theorem 1. Suppose that

(A1) |xk| < cx, |xk − x̄k| < cx̄, |xk − xk−1| < c∆x ∀k ∈ Z
where cx, cx̄, c∆x are finite nonnegative constants.

(A2) The algorithm (3)-(10) admits a solution satisfying
(8), (9) for each k ∈ Z.

(A3) The algorithm (3)-(10) guarantees that |θk| ≤ cθ <
∞, ∀k ∈ Z.

(A4) The user-defined sequences αk, ck satisfy αk ≥ α >
0, c̄ > ck ≥ c > 0 for all k.

Let also

ϑ∗
k = argmin

ϑ
sup

x:|x|≤cx,θ:|θ|≤cθ

|J(θ, x) − ϑτφk(θ, x)|

νk(θ, x) = J(θ, x) − (ϑ∗
k)

τ
φk(θ, x)

and

Nk = sup
x:|x|≤cx,θ:|θ|≤cθ

|νk(θ, x)|

Then, the algorithm (3)-(10) guarantees that Jk is strictly
decreasing (i.e., Jk < Jk−1) as long as θk−1 6∈ Dk where

Dk = {θ : |∇J (θ, xk)| ≤ εk}
with εk = 1

αk
max

{
ckO(1) + O(Nk) + O(cx̄), α2

kO(1)

+O(c∆x)}; moreover, θk converges to the subset D in finite
time and remains there thereafter, where

D = {θ : |∇J (θ, xk)| ≤ ε}
with ε = 1

α
max {c̄O(1) + O(NL) + O(cx̄), O(c∆x)} and

NL = supk≥L νk(θk, xk).

[Assumptions (A1)-(A4)] Assumption (A1) requires
that the exogenous signal xk is uniformly bounded; note
that the proposed algorithm does not require knowledge
of the bounds cx, xx̄, c∆x. We notice here that in many
control applications such an assumption is quite realistic
since xk represents bounded signals such as exogenous
disturbances, demand, reference signals, etc. However,
there may be cases where such an assumption is not
realistic; we are currently working on extending the results
of this paper to the case where the exogenous signal xk may
be unbounded. Assumption (A2) is quite difficult to verify
for a general choice of the regressor vector φk; however,
as we establish in Propositions 3 and 4, if φk is chosen to
be either a polynomial or a neural network of a specific
structure, then assumption (A2) is trivially satisfied if the

candidate perturbations ∆θ
(j)
k are Bernoulli-like random

terms. Assumption (A3) is imposed in order to avoid
lengthy technicalities in the proof of our main results. It
is not difficult for someone to see that all of the results
of this paper are valid if we remove assumption (A3)
and use a a projection mechanism as in [16, 5] or a
resetting mechanism as in [9] for keeping θk bounded;
similarly to [16, 5, 9] it can be seen that the introduction
of such mechanisms does not destroy the performance and
convergence properties of the proposed algorithm. Finally,
assumption (A4) is a standard SA assumption on updating
schemes with fixed step-sizes (see e.g. [4]).

[Efficiency] To better understand the efficiency of the
proposed algorithm as compared to standard SA algo-
rithms let |∇J (θk−1, xk)| = Bk; then, according to The-
orem 1, we have that the proposed algorithm guarantees
that

Jk <

{
Jk−1 if Bk > εk

Jk−1 + αkBk + O (cx)nθα
2
k + O (c∆x) otherwise
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On the other hand, it it is not difficult for someone to
see that in the case of standard SA algorithms, during
the perturbation phase we have that the following equality
holds with a non-negligible probability:

Jk = Jk−1 + αkBk + O (cx)nθα
2
k + O (c∆x)

In other words, in the case where θk−1 is quite far from the
local minimum of J , we have that the standard SA algo-
rithms cannot avoid large “spikes” during their perturba-
tion phase, while the proposed algorithm rejects candidate
perturbations that may lead to such large “spikes”.

The next result establishes the properties of the proposed
algorithm if additionally to the boundedness of exogenous
signals, we assume that these signals as well as the esti-
mation error xk − x̄k are zero-mean. Note that in this case
the sequences αk, ck are chosen to be slowly decaying to
zero terms.

Theorem 2. Suppose that (A1)-(A3) hold and additionally
that the following assumptions hold:

(A4′) The user-defined sequences αk, ck satisfy
limk→∞ αk = 0,

∑∞
k=0 αk = ∞,

∑∞
k=0 α2

k < ∞,∑∞
k=0 αkck < ∞, limk→∞ αk/ck = 0.

(A5) E [xk − x̄k|Gk−1] = 0, E [xk − xk−1|Gk−1] = 0
where Gk denotes the σ-field generated by {x0, . . . , xk,

x̄0, . . . , x̄k, ∆θ
(j)
0 , . . . ,∆θ

(j)
k }.

Suppose moreover that Th is chosen according to

Th = k − Lk − L̄ (11)

where L̄ is any positive integer satisfying L̄ ≥ L. Then, the
algorithm (3)-(10) guarantees that there exists a positive
integer k̄ such that Jk is strictly decreasing if θk−1 6∈
Dk, k < k̄ and θk−1 ∈ Dk̄ for all k ≥ k̄; moreover,

lim
k→∞

|θk − θ∗| = O (NL) , with probability 1 (12)

where θ∗ is any vector satisfying

E [∇J(θ∗, xk) |Gk ] → 0

[Assumptions (A4′), (A5)] Assumption (A4′) is a stan-
dard assumption on SA algorithms with vanishing gains.
Assumption (A5) is also a quite standard assumption in
SA (see e.g. [1]); note that in the case where xk does not
depend on θℓ for ℓ < k, assumption (A5) reduces to the
requirement that xk − x̄k, xk are zero-mean processes with
bounded variance.

In the next two propositions we show that if the estimator
(3) is chosen to be either an Incremental-Extreme Learning
Machine (I-ELM) [10, 11] or a Polynomial-like approxima-

tor [14] and, moreover, the candidate perturbations ∆θ
(j)
k

are Bernoulli-like random terms, then there is no need to
check the computationally heavy condition (8); moreover,
Propositions 3 and 4 establish that the term NL in the
proofs of Theorems 1 and 2 can be made arbitrarily small
by increasing the “size” L of the estimator (3).

Proposition 3. Suppose that each algorithm iteration the
regressor vector φk is selected according to

φk,i(θ, x) = S(Aτ
i vec(θ, x) + bi), i ∈ {1, . . . , Lk} (13)

where S(·) is an invertible smooth nonlinear function and
the vectors Ai and the real parameters bi are randomly
generated (with Ai, bi being zero-mean). Moreover assume

that ∆θ
(j)
k are random zero-mean vectors in {−αk, +αk}nθ

satisfying 2 (9). Then, condition (8) is satisfied with prob-
ability 1. Moreover, the term NL in Theorems 1 and 2
satisfies

NL = O(1/L)

Proposition 4. Suppose that each algorithm iteration the
regressor vector φk is selected according to

φi,k(θ, x) = S(θ1)
dθ

i,1 . . . S(θnθ
)dθ

i,nθ i ∈ {1, . . . , Lk}
×S̄(x1)

dx
i,1 . . . S̄(xnx

)dx
i,nx (14)

where S is any smooth monotone function and dθ
i,j , d

x
i,j are

nonnegative integers such that

(TA1) S̄(x̄k,1)
dx

i,1 . . . S̄(x̄k,nx
)dx

i,nx 6= 0, ∀k, i and more-
over the integers dθ

i,j in (14) are such that ∃j ∈
{1, . . . , nθ} : dθ

i,j > 0, ∀i ∈ {1, . . . , Lk}.

Moreover assume that ∆θ
(j)
k are random zero-mean vectors

in {−αk, +αk}nθ satisfying (9). Then, condition (8) is
satisfied with probability 1. Moreover, the term NL in
Theorems 1 and 2 satisfies

NL = O(1/L)

[Choice of Algorithm Parameters] Contrary to other
applications of function approximators where the dimen-
sion L of an approximator of the form (3) should be large
enough to guarantee that it can approximate nonlinear
functions over the whole input set, this is not the case here:
in the case of the proposed algorithm it is sufficient that
the approximator has enough regressor terms to come up
with an approximation of the unknown function J over a
small neighborhood around the most recent vector θk. The
size of this small neighborhood is proportional to αk and
therefore, roughly speaking, the smaller is the magnitude
of αk the less is the number of regressor terms L needed
in the proposed algorithm. The above claim can be estab-
lished by using the results of e.g., [17] where it is seen that
the number of regressor terms needed to accommodate a
desired approximation accuracy is proportional to the size
of the set over which the approximation is taking place and
by replacing the definition of the term NL in Theorem 1
by the following one: NL = supℓ>L,ℓ∈{k−L,k} νk(θk, xk).

Having the above in mind, a relatively small (as compared
to other applications of function approximators) number
L of regressor terms should suffice for efficient algorithm
performance; similarly, since the approximation required
is over a small neighborhood of the current value of θk a
small time-window (determined by the parameter Th in
(5)) should be chosen. As a matter of fact, in all practical
applications of algorithms using functions approximators
for optimization purposes, (see [15]) as well as in various
applications where we tested the proposed algorithm, a
choice for L, Th according to L ≈ 2(nθ + nx), Th = 50
was found to produce quite satisfactory results. Moreover,
in the case where a polynomial approximator is used, we
found that it suffices to use a polynomial approximator
of maximum order equal to 3 with randomly chosen poly-

2 A choice ∆θ
(j)
k

= αk∆
(j)
k

where ∆
(j)
k

are Bernoulli random vectors
satisfies (9); see also [3, 23] for construction of zero-mean random or
random-like sequences that satisfy condition (9).
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nomial terms at each algorithm iteration (i.e.,
∑

j dθ
i,j +∑

ℓ dx
i,ℓ = 3 in (14) with dθ

i,j , d
x
i,j randomly chosen).

We close this section, by noticing that for the choice of the
step-sizes αk, ck similar rules as the ones apply in standard
SA algorithms can be used.

3. SIMULATION EXPERIMENTS

In this section, we present simulation results on the appli-
cation of the proposed algorithm to the fine-tuning of the
urban traffic control strategy TUC as applied to a complex
urban traffic network (traffic network of Chania, Greece).
As reported in [15], SPSA failed to produce any meaning-
ful results for this particular application, while the AFT
algorithm, although in most scenarios was found to im-
prove considerably the controller performance, it suffered
from serious performance problems (spiky behavior at its
perturbation phase) in some scenarios; in this section, we
compare the performance of the proposed algorithm with
the one of AFT for one of these scenarios. Next we briefly
present some details regarding the particular application;
it is worth noticing that the simulation setting is the
same as the one of [15] used for the evaluation of the
AFT algorithm. Due to space limitations, some details
of the simulation experiments are not presented here; the
interested reader is referred to [15] for a more detailed
description.

Control System: The general form of the TUC controller
[6, 15] can be described as follows:

g(t) = H(Lz(t − 1)) (15)

where t = 0, 1, ..., denotes the discrete time-index with
sampling time period equal to the traffic cycle time, g
denotes the control input applied at the t-th cycle and
z is a vector of traffic measurements. The control input
corresponds to the green times of the junctions’ stages and
the vector z corresponds to a nonlinear vector function of
the average occupancies (averaged over the last cycle) of
the network links. The nonlinear operator H is used to
guarantee that the control decisions satisfy minimum and
maximum allowable green time constraints as well as that
the sum of green times of the stages of each junction adds
up to the cycle time minus the lost times (intergreens)
of the particular junction; the entries of the matrix L
correspond to the tuneable controller parameters. It is
worth noticing that in the particular application treated
here, g ∈ ℜ42 and x ∈ ℜ71 and thus the matrix L has a
total of 42 × 71 = 2982 entries.

Traffic Network: Figure 1 displays the Chania urban
traffic network, a typical urban traffic network containing
all possible varieties of complex junction staging. The
junctions are represented by nodes and the links are
represented by arrows. Each network link corresponds to
a particular junction stage.

Traffic Network Simulation: The macroscopic traffic
simulation tool METACOR [8] was used for the simulation
experiments. The reader is referred to [15] for more details
on the network simulation setting.

Traffic Demand Scenarios: Ten different basic traffic
demand scenarios Di,t (where Di,t is a vector whose entries

are the number of vehicles entering the network origins at
the t-th interval for the i-th scenario) with duration equal
to 14 hours were designed based on actual measurements;
each day of simulation a random perturbation (with aver-
age 5% of the nominal values) of one of the basic scenarios
was used. It is worth noticing that the basic demand
scenarios corresponded to highly congested traffic condi-
tions and, moreover, that the variance among these sce-
narios was particularly high (namely, |E[Di,t − E[Di,t]]| ≈
0.5E[Di,t]).

Performance Index: The average daily mean speed of
the whole traffic network (in km/h) was used.

Tunable Parameters: As in [15], the 544 most important
entries of the matrix L in (15) were fine-tuned. See [15] for
more details.

Algorithm Design Parameters: The choice of the
proposed algorithm design parameters was exactly same as
that for the AFT algorithm used for the same application
in [15]. Due to space limitations, the reader is referred to
[15] for more details.

Estimation of Exogenous Signals: The exogenous
vector xk in this particular application corresponds to the
traffic demand. As it was shown in [15], a low-dimension,
noisy estimate of the traffic demand can be constructed
based on traffic measurements at the networks origins; see
[15] for more details.

Initial Controller Parameters: The initial L matrix
used was designed by using TUC’s methodology (which is
based Linear-Quadratic control principles) assuming large
uncertainty on the traffic network characteristics.

Figure 2 demonstrates the performance of the AFT (up-
per plot) and the proposed (lower plot) algorithms for
the experiment setting described above. In Figure 2, the
percentage of the mean speed improvement (as compared
to the performance obtained using the initial L matrix for
the particular demand scenario) is plotted.

Please notice that the AFT algorithm preserves a “spiky”
behavior, especially at days 58 and 102, where its perfor-
mance is more than 40% worse than that obtained using
the initial L matrix; it is worth noticing that these big
negatives spikes correspond to the emergence of grid-locks
at the traffic network, where practically the vehicles stay
blocked for hours.

By inspecting Figure 2 it is clearly seen that the proposed
algorithm avoids the aforementioned “spiky” behavior of
AFT while maintaining efficient convergence behavior.
Also, note that the convergence of the algorithm is faster
than the one of the AFT.
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Fig. 1. The traffic network of the city of Chania.
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Fig. 2. Mean speed improvement (%) of the AFT algorithm
(upper plot) and the proposed algorithm (lower plot).
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