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Abstract: The “Robotics & Automatic Control Telelab” (RACT) is a remote laboratory
on robotics developed at University of Siena, which extends the field of application of the
“Automatic Control Telelab” (ACT). This extension consists of adding experiments on a
remote robot manipulator. RACT is mainly intended for educational use, and its Matlab-based
architecture allows students to easily put in practice their theoretical knowledge on robotics.
The first implementation of RACT consists of a remote experiment on inverse kinematics and of
an experiment on visual servoing. Experiments on visual servoing represent the most advanced
feature of the remote lab and work is in progress to add more experiments of this type.
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1. INTRODUCTION

Information technologies influenced the way of teaching
many disciplines among which education in robotics and
automation. Citing Dormido’s excellent review, Dormido
(2004), “as educators we must have an open attitude and
that we should sensibly incorporate technological develop-
ment, because otherwise we may risk teaching the students
of today how to solve the problems of tomorrow with the
tools from yesterday.” Many distance learning paradigms
have been developed in recent years and among these,
laboratories accessible through the Internet are certainly
of the most effective. Regarding the web technologies used
in robotics and automation courses, comprehensive contri-
butions have been provided by Poindexter and Heck (1999)
and Dormido (2004), who describe the use of virtual and
remote labs in control teaching. This paper will deal with
remote labs, whose distinguished feature with respect to
virtual labs is that users can remotely interact with real
experiments instead of software simulations.

Nowadays, numerous remote labs are available all over the
world. Remote processes may be of various nature, ranging
from mechanical to electronic, from hydraulic to thermal
to chemical, etc., or a mixture of them, see, e.g., Overstreet
and Tzes (1999); Choy et al. (2000); Ramakrishnan et al.
(2000) and Safarič et al. (2001). Several remote labs are
world-wide available also for robotics experiments. One of
the first examples of remotely driven industrial robot arm
has been presented in Goldberg et al. (1995). Another
successful project is the telegarden project presented in
Goldberg (2000). In Bicchi et al. (2001) and Saucy and
Mondada (2000), an expensive resource, such as a mobile
robot, is shared on the web. Recently, in Safarič et al.
(2005), authors presented a work-cell with a 6 axes robot
for remote experiments. In Carusi et al. (2004) a LEGO
mobile robot is used as device for remote experiments on
autonomous navigation.

In this paper, the “Robotics & Automatic Control Telelab”
(RACT) is presented. The main architecture is shared
with the “Automatic Control Telelab” (ACT), the remote
laboratory of the University of Siena, that is continuously
running since 1999, see Casini et al. (2003, 2004). In
the following, the main features of RACT are briefly
summarized.

1. RACT is based on the Matlab environment. In general,
a remote laboratory can either use a well-known software,
such as LabVIEW (see Ramakrishnan et al. (2000)) and
Matlab/Simulink (Junge and Schmid (2000); Apkarian
and Dawes (2000); Hahn and Spong (2000)), or use some
special purpose software, as in Bicchi et al. (2001) and
Choy et al. (2000). It is the authors’ opinion that well-
known software environments are better suited to spread
out the remote laboratory practice. Usually, users do not
want to learn ad-hoc control languages which are tai-
lored for the particular remote lab and they like to take
advantage of control functions developed in other well-
known contexts. On the other side, integrating a well-
known software in a remote lab architecture may present
some difficulties and makes the overall remote lab design
more complex.
2. At the present stage, remote robotics experiments in
RACT are built around a Unimate PUMA 560 robot.
However, in the future it is the authors’ intent to use a
latest robot which provides better performances.
3. RACT allow students to perform a certain number of
robotics experiments. The first two experiments that have
been designed for remote execution deal with a classical
subject in robotics like inverse kinematics (Sciavicco and
Siciliano (2000); Spong et al. (2006)) and a more ad-
vanced one like visual servoing (Chaumette and Hutchin-
son (2006)). In robotics education, it is very important
that students put inverse kinematics into practice. The
experiment consists in finding the joint variables in terms
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of the given end-effector’s position and orientation and
then moving the robot manipulator according to the re-
sulting joint variables values. Visual servoing is a more
recent subject in robotics. It consists in driving the robot
manipulator through images taken from a camera that can
be mounted on the robot (camera-in-hand) or fixed with
respect to the world frame. The experiment that has been
designed for RACT refers to the camera-in-hand visual
servoing scheme: a desired image is given and the remote
user is asked to design a control law based on the current
and desired images to reach the final position where the
desired image has been grabbed.

The paper is organized as follows. In Section 2, a gen-
eral description of RACT including motivations and hard-
ware/software architecture is reported. Section 3 deals
with a detailed description of the available and future ex-
periments, while in Section 4 some conclusions are drawn.

2. THE “ROBOTICS & AUTOMATIC CONTROL
TELELAB”

The “Robotics & Automatic Control Telelab” is an ex-
tension of the “Automatic Control Telelab”, a remote lab
developed at University of Siena for controlling remote
processes, see Casini et al. (2003, 2004). The aim of this
extension is to allow remote experiments on robotics.
Although this project is still under development, some
experiments are already working and some other will be
added in the near future, see Section 3 for further details.

2.1 Motivations

The main motivation to realize such a remote lab is of
educational nature. In fact, the positive feedback received
by student about the ACT lead us to extend the present
configuration to take into account also robotics, with a
particular emphasis on robot manipulators.

Since robot manipulators allow one to design a wide range
of experiments, and since such experiments are concep-
tually different from those already available in the ACT
(typical experiments for designing and testing feedback
control laws in automation), the need for developing a new
remote lab become unavoidable.

In the first implementation of the lab, the experiments
have been divided in two classes.

• Basic experiments. These experiments relate to some
basic concepts on robot manipulators, like, e.g., for-
ward and inverse kinematics. By using RACT, stu-
dents can easily put in practice their theoretical no-
tions on real manipulators without being physically
present in the lab.

• Visual servoing experiments. These experiments con-
cern the so-called image-based visual servoing, i.e.,
the control of robotic manipulators by means of
images taken by one (or more) cameras, see e.g.,
Hutchinson et al. (1996). This framework allows one
to design a wide range of experiments, ranging from
easy to very difficult ones. The former should be
used for educational purposes, while the latter should
be used in research contexts to test advanced visual
servoing algorithms.

2.2 General architecture

The robot used in this lab is a Unimate PUMA 560, an
anthropomorphic manipulator with 6 degrees-of-freedom
(Fig. 1).

Fig. 1. The “Unimate PUMA 560” manipulator.

Like the ACT, also the RACT server is based on the
Matlab environment, allowing a powerful and user-friendly
interaction with the robot. In fact, an essential aspect
of remote labs for distance learning is the ease of use
(see, e.g., Poindexter and Heck (1999)), to allow students
to concentrate themselves to the requested task rather
than to the usage of the lab. This aspect is guaranteed
by Matlab, since it is a standard tool in the control
and robotics community, and it is already known by
students. Students will be requested to design some Matlab
functions to perform the given experiment (see Section 3
for further details), and to test it through a graphical
user interface. The robot communicates with the server
through a serial port. To allow the communication between
Matlab and the robot, the “Puma Toolbox” has been
used (see next subsection). To allow the interaction with
the user, the Apache web server with PHP extensions
(see The Apache Software Foundation (2007)) has been
installed on the server. The Webcam32 software has been
used for interfacing with cameras allowing on-line video
and picture capture, see Kolban (2006). At this stage,
the operating system used is Microsoft Windows XP, and
implementation under Linux is in progress.

On the client side, users may connect to the remote lab
through web pages, where they can find all the useful in-
formation about the available experiments. Once an exper-
iment is chosen, they need to upload a file containing the
designed Matlab function, after that they can interact with
the robot through a Java applet. The use of Java applets
allows an interaction which is platform independent and
does not need to install any specific software on the client
side. In fact, a web browser with a Java Virtual Machine
is usually installed in any computer. The communication
between the applet and the server is made through the
TCP protocol. Note that in this lab timing aspects are not
critical, since the controller resides in the server side. In
fact, a delay in the transmission between client and server
does not affect the system stability and performance, but
it will only conduct to experiments in which the output is
given back delayed.
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Fig. 2. The Robotics & Automatic Control Telelab architecture.

It is worthwhile to notice that Matlab just runs on the
server side, and it is not needed on the client. In fact,
the client application is only required to send a control
function written in Matlab code, which simply consists
in a text file. However, the presence of Matlab on the
client machine should help users to debug and test their
functions before sending them to the server. Moreover,
Matlab can be a useful tool for off-line analyzing the
experiment data. In fact, once a working session is finished,
users may download a file containing all the data regarding
the experiments; such data can be downloaded in Matlab
format (.mat) or as ASCII text file.

To prevent that a user could monopolize the robot, for
each working session, a maximum number of experiments
has been fixed, after that the user is automatically discon-
nected. In addition, a time-out has been also implemented
for the same reason. The state of the robot (ready or busy)
is shown by an appropriate notice. At the present stage,
any user may perform experiments whenever the robot is
ready, and no access queue is provided. However, such a
facility may be easily implemented in the future if needed.

Like other remote labs, safety aspects have been taken into
account. To this purpose, to prevent damages to people
or to itself, the robot has been placed in an off-limit
site and suitable hardware security systems allows it to
move inside a safe region. Moreover, some software safety
mechanisms have been provided, like, e.g., executing the
function designed by a user with low privileges to avoid
the execution of commands potentially dangerous for the
system.

A sketch of hardware/software architecture is reported in
Fig. 2.

2.3 The “Puma Toolbox”

As previously pointed out, the interaction between the
PUMA 560 and Matlab is possible thanks to the “Puma
Toolbox”. Such a toolbox has been developed at University
of Siena (for details, see Chinello (2007)) and allows to
drive the robot by a suitable set of Matlab functions.
The Puma Toolbox requires a PUMA series robot using

the VAL II system (Unimation Robotics (1983)). The
toolbox improves several VAL instructions and commands
to calibrate, move and return the position of the robot.
Through these functions, it is possible to show angle plots
or 3D animation of the robot, to use Simulink for moving
each joint following a specific trajectory or to convert
positions in various coordinate system. In fact, the VAL
language is not able to automatically move the robot in
different positions if these are changing in time by an
external device like a camera, while this becomes possibile
by using the toolbox functions. However, if users need
to program the robot by means of the VAL language,
a suitable function is available. All the programs and
variables are saved in the controller memory so the robot
can use them. Normally, users have to save and read the
memory manually, while by using the toolbox one can
store, read and clear the memory directly from Matlab,
by using functions or scripts, and saving all the variables
of interest in the Matlab workspace.

The toolbox is designed to use the PUMA for research
applications, allowing the usage of the robot without a
TTY emulator or similar. The functions provided by the
Puma Toolbox are more than 50. In Table 1, the functions
used in RACT are reported.

3. EXPERIMENTS DESCRIPTION

In this section, a description of the available experiments
as well as those to be added in a future is reported.

3.1 Inverse kinematics experiment

A first experiment regards the inverse kinematics topic,
i.e., evaluating robot joint angles in order to reach a given
position and orientation of the end-effector. Students are
asked to design a function in Matlab to perform this task.
Of course, all the useful data regarding the geometry of
the manipulator (e.g., links length and coordinate system
orientation) are available to students in the web page
associated to the experiment.
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The Matlab function designed by students must take as
inputs the six coordinates associated to the target position
and orientation of the end-effector. All the coordinates
are referred to a prescribed reference system. As output,
this function must return the six angles in the Denavit-
Hartenberg representation, see Spong et al. (2006). So, the
function declaration looks like the following:

function [d1, d2, d3, d4, d5, d6] = IK(x, y, z, x̂, ŷ, ẑ);

where IK denotes the function name, di, i = 1, . . . , 6, are
the six angles in the Denavit-Hartenberg convention, x, y, z
are the spatial coordinates and x̂, ŷ, ẑ are the correspond-
ing angles.

Once students have designed the function, they may up-
load it to the server through a web page. At this step, they
can interact with the real robot by the user interface re-
ported in Fig. 3. As previously reported, to allow platform
independence, such an interface has been implemented as
a Java applet.

To increase the sense of presence in the lab, two cam-
eras have been provided. The former (on-board camera)
is placed on the end-effector of the manipulator, while
the latter (panoramic camera) is located outside the robot
workspace to take a panoramic view. In the next subsec-
tion, it will be shown how the on-board camera will be
used to perform visual servoing experiments.

Users are asked to fill in the reference fields, i.e., the
target position of the robot, and to start the experi-
ment. The joint angles are computed by the designed
function, and the corresponding fields are automatically
filled. At this point, the pumatbx movejt function let the
joint angles assume the computed values. After moving,
the pumatbx where function returns the position and ori-
entation of the end-effector computed by the robot internal
routines. Such values are then written in the output fields,
and the positioning error, i.e., the difference between out-
put and reference, are computed.

pumatbx start
Starts a serial connection to the robot and
returns its handler.

pumatbx cal
Calibrates the joints of the robot at session
start.

pumatbx where
Returns the robot position (in Eulero angles)
and precision point (encoder angles).

pumatbx move
Moves the manipulator to a position using
Eulero angles and a translation vector.

pumatbx movejt Moves each joint to a given encoder angle.

pumatbx draw
Moves the robot along a given coordinate
vector.

pumatbx d h2jt
Converts the joint angles in the Denavit-
Hartemberg convention to a precision point.

pumatbx jt2d h

Converts the current precision point to the
joint angles in the Denavit-Hartemberg con-
vention.

cin dir puma Computes the matrix of forward kinematics.

cin inv puma
Computes the angles of inverse kinematics,
through the Denavit-Hartemberg convention.

Table 1. Description of the “Puma Toolbox”
functions used in RACT.

Fig. 3. The user interface for performing the inverse
kinematics experiment. Position data are in mm while
angles are in degrees.

3.2 Visual servoing experiment

This experiment deals with the control of the robot based
on images acquired by a camera. In particolar, the task
consists in moving the robot from a known initial position
to a final (target) one. The only information available
about the target position is a picture taken by the camera
placed on the end-effector. Thus, the objective is to move
the robot in a position such that the current image is
similar to the target one.

In general, finding an algorithm to solve this kind of
problem is a complex task, especially if the robot has
several degrees-of-freedom and it is immersed in an un-
known environment. Since the main purpose of this project
is of educational nature, to simplify the experiment, the
robot has been placed in front of a white panel on which
a black triangle has been placed. Moreover, the on-board
camera has been located orthogonally to the panel and
the robot is allowed to move maintaining such a camera
orientation. Since the end-effector orientation is given, it is
possible to reach a given position using only translations,
thus reducing the complexity of the experiment.

So, students are asked to design a function which takes
as input the current and the target images and returns
the vector denoting the relative robot movement along the
three axes:

function [mx, my, mz] = VS(current img, target img);

where VS is the function name and mx, my, mz denote the
relative motions along each direction. This function can
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be designed by students assuming to know the camera
calibration data or not. Of course, in the last case, the
function design will result more involved. Note that the
usage of Matlab allows students to design their functions
starting from a large number of routines already provided
in Matlab toolboxes, like, e.g., the “Image Processing
Toolbox” or the “Robotics Toolbox” (see Corke (1996)),
allowing the design of powerful algorithms.

Once uploaded the designed function, users can interact
with the robot by the interface reported in Fig. 4. Here,
students can set the starting and target position of the
robot by filling the appropriate fields. These reference
positions can also be set randomly within a prescribed
range. Moreover, since the requested task (i.e., moving
the robot close to the target position) requires in general
several iterations, it is possible to stop the execution at
every step (manual mode) or to run it until the maximum
number of steps is reached (auto mode). Three camera
windows are provided. The first two windows show images
taken by the on-board camera in the current and target
position, respectively. The third one contains the picture
taken by the panoramic camera.

After each step, i.e., each robot movement based on the
designed function, the x, y, z coordinates of the current
position are reported along with four graphic charts rep-
resenting the positioning errors along the three axes and
the euclidean distance between the current and the target
position. The objective is therefore to reduce such an error
in the smallest number of steps.

Fig. 4. The user interface for performing the visual servo-
ing experiment. Data are in mm.

It is worthwhile to note that, although the target coor-
dinates are reported in the interface (and eventually set
by the user), they are unknown to the designed function,
which takes as input just the current and target image.

Also in this case, a limit on the maximum number of
experiments a user can execute in one session is fixed.
In addition, the maximum number of executable steps
for each experiment is also fixed. At the end, users can
choose to download only the numerical values (in Matlab
or ASCII format) or also the pictures acquired by the
on-board camera for each step. Downloading the images
can be useful to off-line test and calibrate the designed
function.

3.3 Future experiments

Although the previously reported experiments are already
fully working, the RACT is still under development. The
following actions could be taken in future development of
RACT:

• Other than inverse kinematics, an easier experiment
regarding forward kinematics will be provided. In this
case, given the six angles in the Denavit-Hartenberg
convention, students will be asked to design a func-
tion which computes the corresponding end-effector
position.

• In addition to translation, rotations along the axis
orthogonal to the image plane should be provided. To
provide more complex experiments, rotations along
the three axes should be taken into account.

• Placing several panels in the robot workspace, it will
be possible to set up various experiments, depending
on the features reported on each panel. For example,
one panel may contain a black triangle (as in Sec-
tion 3.2), another one may contain some lines, another
one may contain colored features, etc. In this way, it
will be possibile to perform a high number of visual
servoing experiments involving minor changes.

• Using new robotic manipulators to increase the capa-
bilities of the system, in order to offer a wider range of
experiments which cannot be provided by the Puma.

4. CONCLUSIONS

In this paper, a remote laboratory on robotics has been
presented. The first two experiments implemented in the
lab regard inverse kinematics and visual servoing. Other
than educational purposes, the long-term goal of this lab is
to provide remote tools for research aims. A remote lab on
visual servoing will certainly attract the attention of many
researchers in our community and for this reason a strong
effort will be made to enrich the range of visual servoing
experiments.
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