
Adaptive Process Control Using Controlled
Finite Markov Chains Based on Multiple

Models

Enso Ikonen ∗ Urpo Kortela ∗

∗ Systems Engineering Laboratory, FIN-90014 University of Oulu,
POB 4300 (fax +358-8 5532439; e-mail: enso.ikonen@oulu.fi)

Abstract: Controlled finite Markov chain (CFMC) approach can deal with a large variety of
signals and systems with multivariable, non-linear and stochastic nature. In this paper, adaptive
control based on multiple models is considered. For a set of candidate plant models, CFMC
models (and controllers) are constructed off-line. The state transitions predicted by the CFMC
models are compared with frequentist information obtained from on-line data. The best model
(and controller) is chosen based on the Kullback–Leibler distance. This approach to adaptive
control emphasizes the use of physical models as the basis of reliable plant identification. Three
series of simulations are conducted: to examine the performance of the developed Matlab-tools;
to illustrate the approach in the control of a non-linear non-minimum phase van der Vusse
CSTR plant; and to examine the suggested model selection method for the adaptive control.

Keywords: dynamic programming; Markov decision processes; nonlinear control; optimal
control; physical models; probabilistic models.

1. INTRODUCTION

Development of physical plant models typically results
in models that do not easily lend themselves for process
control design. This can be due to nonlinearities, com-
plexity of the model structure, uncertainties or vagueness
in model parameters, etc. Therefore, various grey/black-
box plant approximations are commonly used in control
design. For example, linear models have turned out to be
most useful in industrial practice. These techniques are
commonly extended by considering local linear approx-
imations (cf. gain scheduling, indirect adaptive control,
piecewise (multi)linear multimodel systems, Wiener and
Hammerstein systems, etc.), where linear descriptions vary
with state and/or time.

This paper focuses on an approach that can cope with a
large class of nonlinear systems: the finite Markov chains
(Puterman, 1994; Häggström, 2002; Poznyak et al., 2002;
Hsu, 1987; Lunze et al., 2001; Kaelbling et al., 1996; Bert-
sekas, 2007). The basic idea is simple. The system state
space is quantized (discretized, partitioned, granulated)
into a finite set of states (cells), and the evolution of system
state in time is mapped in a probabilistic (frequentist)
manner, by specifying the transition probabilities (count-
ing the observed transitions) from domain cells to image
cells. With controlled Markov chains (CFMC), the map-
pings from each domain cell–action pair are constructed. It
is straightforward to construct such a model by simulation
of a physical model, for example. The finite Markov chain
modelling techniques provide uncomplicated means for
learning from data and handling of system uncertainties.

Once equipped with such a model, a control policy can
be obtained by minimizing a cost function defined in a

future horizon, based on a specification of immediate costs
for each cell–action pair. Immediate costs allow versatile
means for characterising the desired control behaviour.
Dynamic programming, studied in the field of Markov
decision processes (MDP), offers a way to solve various
types of expected costs in an optimal control framework.

The focus in this paper is in applications in the field of
process engineering. These are applications characterized
by: availability of rough process models, slow sampling
rates, significant nonlinearities (that are typically either
smooth or appear as few discontinuities), expensive ex-
perimentation (large-scale systems running in production),
and substantial on-site tuning (due to uniqueness of prod-
ucts and local operating conditions). Clearly, this type of
requirements differ from those encountered, e.g., in the
field of economics (lack of reliable models), robotics (very
precise models may be available), consumer electronics
(mass production of low cost products), or telecommuni-
cation (extensive use of test signals, fast sampling). As
pointed out, e.g., by Lee and Lee (2004), applications of
MDP in process control have been few. Instead, the model
predictive control paradigm is very popular in the process
control community. Whereas not-so-many years ago the
computations associated with finite Markov chains were
prohibitive, the computing power available today using
cheap office-pc’s encourages the re-exploration of these
techniques.

The contribution of the paper is manifold: First, we
propose (up to our knowledge) a new adaptive control
technique based on a combination of multiple models and
CFMC design. Second, new simulation results illustrate
and characterize the feasible domain of applications for
the approach. Finally, we wish to promote discussion

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7919 10.3182/20080706-5-KR-1001.0328

on techniques and applications of CFMC-based process
control. From process control philosophy point of view,
a significant point in the considered approach is that it
supports adaptation based on a physico-chemical plant
description. In this way, many of the problems encountered
in structure selection and parameter estimation of black-
box models are avoided. Instead, physical arguments and
a priori information can be used to back up the control
design.

This paper is organized as follows: The process models,
control design and closed-loop analysis based on CFMC
are briefly considered in the next section, while section
3 outlines their implementation in the developed Matlab-
toolbox. The adaptive CFMC is presented in section 4;
some theoretical issues concerning the Kullback–Leibler
distance are presented in the Appendix. Section 5 gives
numerical examples. Discussion and future research topics
end the paper.

2. CONTROLLED FINITE MARKOV CHAINS

In this section an introduction to using controlled finite
Markov chains is given. The section is brief, due to ob-
vious space restrictions, and mainly intended for intro-
duction of the notation used. For the many issues related
to modelling, identification (learning), prediction, state-
estimation, control design and analysis, see the references
given earlier.

Let the process under study be described by the following
discrete-time dynamic system and measurement equations

x (k) = f (x (k − 1) ,u (k − 1) ,w (k − 1)) (1)

y (k) = h (x (k) ,v (k)) (2)
where f : �nx×�nu×�nw → �nx and h : �nx×�nv → �ny

are nonlinear functions, wk ∈ �nw and vk ∈ �nv are i.i.d.
white noise with pdf’s pw and pv. The initial condition is
known via pX (0). (1) describes a Markov process.

Let the state space be discretized into a finite number of
sets called (state) cells, indexed by s ∈ S = {1, 2, ..., S}.
The index s is determined from

s = arg min
s∈S

∥∥x − xref
s

∥∥ (3)

where xref
s are called reference points; a sink cell may

be defined to cover the space outside of the region of
interest. Similarly, let the control action and measurement
spaces be partitioned into cells indexed by a ∈ A =
{1, 2, ..., A} and m ∈ M = {1, 2, ..., M}, respectively,
and determined using reference points uref

a and yref
m . The

discretization results in X = ∪S
s=1Xs, U = ∪A

a=1Ua

and Y = ∪M
m=1Ym. The number and distribution of the

reference points determines the resolution of the CFMC
model.

The evolution of the system can now be approximated
as a finite state controlled Markov chain over the cell
space (however, see Lunze (1998)). Let the state pdf be
approximated as a S × 1 cell probability vector pX (k) =
[pX,s (k)] where pX,s (k) is the cell probability mass. The
evolution of cell probability vectors is described by a
Markov chain represented by a set of linear equations

pX (k + 1) = Pa(k)pX (k) (4)

where Pa is the S ×S transition probability matrix under
action a, Pa =

[
pa

s′,s
]

pa
s′,s =

∫
Xs

p (x (k + 1) ∈ Xs′ |x (k) ∈ Xs,u (k) ∈ Ua) dx.

(5)
A CFMC model of (1) will consist of A transition proba-
bility matrices.

In general, the state may not be measurable, in which case
a state estimator is required. The likelihood of obtaining
a measurement cell m, when the system state cell is s, is
given by the likelihood matrix L, L = [lm,s]

lm,s =
∫
Ym

p (y ∈ Ym|x ∈ Xs) dy (6)

Let a row in the likelihood matrix be denoted as a
likelihood vector lm. Given the current likelihood vector
and the previous posterior probability vector pX (k − 1),
a Bayesian estimate of the cell probability can be con-
structed,

pX (k) ∝ lm ⊗ Pa(k)pX (k − 1) , (7)

where ⊗ is the Haddamard product (component multipli-
cation).

Using a CFMC model of the plant, an optimal control
action for each state can be solved by minimizing a cost
function. In optimal control, the control task is to find
an appropriate mapping (optimal policy or control table)
π from cells s to control actions a, given the immediate
costs for each cell–action pair, ra

s . The infinite-horizon
discounted model attempts to minimize the geometrically
discounted immediate costs, J (s) =

∑∞
k=0 γkr

π(s)
s , under

initial conditions at k = 0. The optimal control policy
π∗ is the one that minimizes J . According to Bellman’s
principle of optimality, an optimal path has the property
that whatever the initial conditions and control variables,
the control chosen over the remaining period must be
optimal for the remaining problem, with the state resulting
from the early decisions taken to be the initial condition.
For the infinite-horizon discounted model, we have

J∗ (s) = min
a

[
ra
s + γ

∑
s′∈S

pa
s′,sJ

∗ (s′)

]
. (8)

Application of the Bellman equation leads to methods of
dynamic programming. In value iteration, for example, the
optimal value function is determined by a simple iterative
algorithm derived directly from the Bellman equation.

A set of powerful tools exists for analysing the behaviour of
a CFMC, based on the matrices Pa. Recall that a CFMC
description of a closed loop system is simple to obtain
by constructing the transition probabilities under policy
π, pcl

s′,s = p
π(s)
s′,s . The tools include classification of states

into transient, recurrent and absorbing, communicating
classes and their basins of attraction, assessment of system
stability using the concept of sink cell, expected times of
transitions, simulations of state trajectories (realizations
and probabilities) etc. In particular, tools for global analy-
sis of the (nonlinear, stochastic, multidimensional) closed-
loop system exist, in addition to local and simulation-
based verifications of the system behaviour.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7920

3. MATLAB-TOOLBOX

CFMC modelling and control design/analysis tools were
implemented on a MATLAB platform (Matlab 6, R12). A
set point control design problem set-up was envisioned, as-
suming that an a priori state-space model of the plant (1)
is available (a set of ordinary differential equations based
on physico–chemical process knowledge, for example), and
that a decision on input, state, and output variables has
been made. A typical CFMC control design procedure
would then involve the following (iterative) steps:

(1) Set model resolution by specifying discretization of
plant inputs, states, outputs and output set points;
and sampling time.

(2) Set control targets by specifying immediate costs
(based on deviation from target, constraints on state
and control, stability, etc).

(3) Build a CFMC plant model (by successive evaluations
of the a priori model, and counting the occurred state
transitions) and analyze its behaviour.

(4) Solve a controller based on the CFMC plant model
(e.g., via value iteration).

(5) Build a CFMC closed-loop model and analyze its
behaviour.

The steps involved in model building and controller design
may be time and memory intensive. The following list
outlines the essential components affecting computational
load, time and memory requirements (S = number of cells,
A = number of actions, nx state dimension):

• S × nx state reference points and S × A immediate
costs need to be stored. Assuming a grid-partitioning,
the number of cells S will be Πni, where ni is
the resolution (number of partitions) for the i’th
dimension of the state.

• When building a CFMC plant model the model (1)
needs to be evaluated for all S × A discrete state–
action pairs. To have a 1%-unit precision, at least
100SA evaluations of the original model are required.
The S × S × A elements pa

s′,sof the probability tran-
sition matrices need to be stored, as well as S × A
counter values.

• In optimal control, the Bellman equation needs to be
solved for each set point, where the Q-matrix is of
size S × A.

It clear that the memory requirements are far from being
feasible. The remedy, however, is in that the probabil-
ity transition matrices are sparse. This can be used to
dramatically reduce the memory requirements. A grid-
based partitioning greatly reduces the time required for
mapping states to cells; the remaining computation times
will depend mainly on the complexity of the plant model.

The toolbox is freely available at http://cc.oulu.fi/
~iko/MGCM.htm.

4. ADAPTIVE CFMC CONTROL

Following Kárný et al. (2007), adaptive systems use local
(in time and data spaces) approximations around be-
haviour realizations. In other words, one set of system
parameters is not sufficient to adequately describe the
process over its operating region (Shah and Cluett, 1991).

A multiple models approach (Narendra et al., 1995; Filev,
2002) is based on the simple idea of using a bank of a
priori defined models. Given appropriate control specifica-
tions, a model-based control design technique can then be
applied for each model (off-line). The selection of which
model/controller to use (on-line) is based on a comparison
of on-line observations and corresponding predictions by
the models in the bank.

In the case of CFMC models, the model prediction is a
sequence of multivariate discrete distributions. A straight-
forward approach would then be to use on-line data to con-
struct a frequentist distribution, and compare it against
the predictions by the various models. In what follows,
Kullback–Leibler distance is considered.

4.1 Comparison of distributions

The Kullback–Leibler distance (see, e.g., Kulhavy, 1995)
is a measure of difference between two probability distri-
butions

D (R||S) =
∑
s∈S

R (s) log
R (s)
S (s)

(9)

where R represents data and S represents a model: R (s) =
N(s)

k where N (s) counts the number of occurrences s
in the data and k is the length of the data sequence;
S (s) = Pr{s}.
In the CFMC context, the transitions from a state cell to
another can be counted from a sequence of plant operat-
ing data, {x (i) ,u (i)}, i = 0, 1, ..., k, thereby obtaining
empirical probability mass functions (pmf’s): the data
R. This information can be compared with predictions
from the different models: the Sθ’s, θ = 1, 2, ..., Θ. For
CFMC, an empirical expectation of Kullback–Leibler dis-
tance between conditional distributions can be written as
(see Appendix)

D (R||Sθ) =
∑

(s,a)∈S×A
R (s, a)D (Rsa||Ssa

θ) (10)

where Rsa (s′) = R (s′|s, a), Ssa
θ (s′) = Sθ (s′|s, a); R

are the relative frequencies representing the empirical
pmf obtained from the sequence of plant operating data,

R (s, a) = N(s,a)
k , R (s′|s, a) =

N(s′|s,a)
k ; and Sθ (s′|s, a) is

the corresponding prediction using the model θ.

Note that for CFMC, the Kullback–Leibler distance con-
sists of a sum of Kullback–Leibler distances for the con-
ditional distributions. In what follows, the frequencies
R (s, a) are replaced by equal weights. The heuristic argu-
ment is that in this way the importance of wide spatial
validity of the estimation is emphasized, as all domain
cell–action pairs in the data will have an equal weight
regardless of their relative frequencies. The ’best’ model
is then obtained from

θ∗ = arg min
θ

∑
(s,a)

D (Rsa||Ssa
θ) (11)

where the summation is over all cell–action pairs found
from the observed plant operating data sequence.

4.2 Adaptive control based on multiple models

The adaptive control procedure (with main design param-
eters) is outlined as follows:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7921

(1) Select Θ possible plant descriptions, θ = 1, 2, ..., Θ
(selection of models in the bank)

(2) Build CFMC maps for each Θ plant models (dis-
cretization).

(3) Set up and solve the optimal control problem for
all models in the bank (immediate costs, discounting
factor).

(4) Select the model/controller to be applied (length of
data, use of prior estimates for θ).

Since stages 1-3 can be conducted off-line, the on-line
computations (stage 4) remain feasible.

A number of highly non-trivial questions remains to be
solved, such as how to select the Θ plant descriptions, the
CFMC discretization and controller tuning parameters,
how to decide when to switch to another controller, etc. At
this stage, we wish to point out that the approach assumes
the existence of prior plant model(s). Consequently, a
wealth of information on the plant behaviour must exists
already, recall also the characterization of our focus area
of applications made in Section 1. Therefore it is very
likely that reasonable basic choices can be based on prior
physical and experimental knowledge about the plant. Of
course, this does not exclude application of the many data-
based techniques proposed in the literature dealing with
problems of clustering/classification and active learning,
for example. Also extensions to multiple model learning
control such as based on N fixed and two adaptive mod-
els (Narendra et al., 1995) are straightforward, noticing
however that practical techniques of adaptation in a large-
dimensional cell space are far from trivial. These consider-
ations, however, are outside of the scope of this paper, and
we only briefly return to them in the section dedicated to
discussions.

5. NUMERICAL EXAMPLES

In this section, three sets of numerical results are presented
and analysed. The first series of simulations is used for
examination of feasible CFMC model sizes when using an
average PC as a computing device. The second example
illustrates the use of CFMC in the control of a nonlinear
non-minimum phase CSTR. The third series examines
adaptive control based on selection of a proper model
by comparison of model-based and data-based probability
distributions.

5.1 Computational load

A series of simulations was made in order to examine the
feasibility of the CFMC approach on an average office PC
(Matlab R12, Windows XP, 3GHz Pentium 4 CPU with
1GB RAM). The plant model was a second order linear
system Y (s)

U(s) = −10s+1
20s2+12s+1 , with a sampling time of 1 we

obtain a discrete state-space model x (k + 1) = Ax (k) +
Bu (k), with nx = 2. Table 1 shows the time spent in
different parts of the algorithm for various model grid
resolutions (n1 = n2 =

√
S). In all simulations, the

number of control actions (A) and set points (Q) was 10;
value iteration with γ = 0.98 was used for solving the DP
problems.

The initialization stages (mini, cini) consist mainly of
initialization of grid structures and reserving space for

Table 1. Time spent for solving CFMC model
and controller construction tasks (in minutes).

S mini m1 m2 cini c1 m3 c2
100 0.01 0.01 0.00 0.00 0.01 0.00 0.00

2 500 0.00 0.02 0.02 0.00 0.07 0.02 0.03
10 000 0.01 0.12 0.15 0.00 0.31 0.15 0.11

250 000 0.45 24 32 0.09 13 35 3.4
1 000 000 3.8 380 480 − − − −

the sparse S × S probability transition matrices, with 6S
nonzeros each. In the modelling stage, the plant system
equation (1) is evaluated one time step ahead for each S
cells and for each A control actions. The first evaluation
(m1) uses the reference points as initial domain states
(x = xref

s); the subsequent evaluations (m2, m3, ...) take
slightly longer as a random point within the supporting
hypercube of each domain cell (x ∈ Xs) needs to be
generated. The first solution of the controller (c1) takes
a considerable time due to poor initial conditions for
the costs-to-go, while the remaining solutions (c2, ...) are
obtained much faster.

The observed computation times were quite affordable for
coarse resolutions (S ≤ 10000). For example, for the 100×
100 system, the model update (simulation and update of
the probability transition matrices using one sample for
each cell) and solving the optimal control policies (using
value iteration) took less than 10 seconds per task. For
denser resolutions, the computation times soon grow very
large. For example, for S = 250000 the time needed model
updates exceeded half an hour for one batch.

For such a simple linear model the time required for
computing a one-step ahead solution for (1) is practically
negligible. Adding an estimate of model execution times
for a particular model, and relating to the A and Q for
the particular problem, the simulation results in Table 1
can be used to give an indication of the computational
load for other plant models.

It can be concluded that the computing times can become
prohibitive already in moderately-sized problems, taking
into account that one-step-ahead predictions for complex
plant models may take a substantially long time to be
solved. However, even overnight computations may be
feasible if they can be performed off-line. Notice also
that possibilities to parallelize the computation of plant
predictions are good. Finally, observe that 250000 states
equals a 2-dimensional system of size 500×500, or roughly
a 60 × 60 × 60 3-dimensional system, or a 30 × 30 × 30 ×
2×2×2 6-dimensional system with three binary variables.
All these resolutions (with 10 control actions, and 10 set
points) may already be completely feasible for solving a
real life problem. An out-of-memory error stopped the
experiment with one million states at the control design
stage.

5.2 CFMC control of van der Vusse CSTR

The van der Vusse CSTR benchmark (Chen et al., 1995)
was used to illustrate the behaviour of the CFMC. This
problem involves control of a highly nonlinear chemical
reactor that exhibits interesting properties, such as non-
monotone static gain and non-minimum phase dynamics.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7922

The van der Vusse reaction is described by the following
reaction scheme

A
k1→ B

k2→ C, 2A
k3→ D (12)

The main reaction is given by the transformation of
substance A to the product B. There is also an unwanted
consecutive reaction to C and a side reaction to D. The
normalized input flow V̇ /VR contains substance A with
concentration cA0. Assuming constant temperatures, the
dynamics of the reactor are described by

ċA =
V̇

VR
(cA0 − cA) − k1cA − k3c

2
A (13)

ċB = − V̇

VR
cB + k1cA − k2cB (14)

where cA and cB are the concentrations of substances A
and B. The reaction velocities are assumed to depend on
the temperature via the Arrhenius law, the parameters
used in the simulation were k1 = k2 = 1.2870× 1012, k3 =
0.9 × 1010 (reactor temperature 115 ◦C); cA0 = 5.1;
VR = 0.01.

The CFMC model was constructed using the follow-
ing discretization: states cA = {1.00, 1.05, ..., 3.00}, cB =
{0.5, 0.55, ..., 1.5} resulting in S = 862 states (including a
sink cell); the control action V̇ /VR = {2, 6, 10, 11, 12,
12.5, 13.0,... ,15.0, 15.5, 16, 17, 18, 20, 26} (A = 17).
100 evaluations per each cell-action pair were generated
to build the probability transition matrices.

In control design, five set points for cB were considered,
cref
B = {0.80, 1.00, 1.05, 1.10, 1.15} (Q = 5). The imme-

diate costs were generated using Euclidean distance from
the set point. The optimal control policy was solved using
value iteration and discount factor γ = 0.96. Examination
of the probabilities of entering the sink cell indicated that
the system was stable at all initial cells (initial states) and
set points.

Examination of the sizes of basins of attraction (station-
ary probabilities for entering a recurrent cell, summed
over all cells) revealed that set points were reached with
probabilities ranging from 49% (set point at cref

B =0.8) to
100% (cref

B = 1.05), given a random initial cell. Table 2
summarizes the results. All controllers (see next para-
graph, however) converged to a communicating class which
included the set point. With cref

B = 1.05 all cells in the
communicating class had cB= 1.05, while the value of
cA ranged from 1.7 to 2.75; with other controllers some
jittering at the output existed.

An exception was the closed loop controlled with the
controller for set point cB= 0.80. In addition to the sink
cell, two communicating classes were found: a set of 15 cells
in the range of cA =[2.6,2.75], cB=[1,1.15] (not reaching
the set point), and a set of 11 cells in the range of
cA =[1.00,1.20], cB=[0.8,0.9] (succesful). The size of the
basin-of-attraction for entering the latter (success) was
substantially larger than for entering the former (failure).

A more detailed analysis, e.g., on the basin-of-attraction
of the unsuccessful controls; on the expected times of
transition to a particular communicating class, etc., could
easily be further conducted. Finally, also simulations of the
closed loop performance can be computed, of course, prop-

Table 2. Size of basin-of-attraction for each of
the set points.

cB\crefB 0.8 1.00 1.05 1.10 1.15

0.5 0 0 0 0 0
...

...
...

...
...

...
0.75 0 0 0 0 0
0.80 425.7 0 0 0 0
0.85 151.9 0 0 0 0
0.90 25.1 0 0 0 0.4
0.95 0 0 0 2.9 2.1
1.00 167.9 559.6 0 7.9 12.9
1.05 56.1 187.0 861.0 25.4 77.4
1.10 31.3 104.2 0 824.7 255.9
1.15 3.1 10.3 0 0 512.4
1.20 0 0 0 0 0

...
...

...
...

...
...

1.50 0 0 0 0 0

agating either plant realizations or state/measurement
probability distributions.

From this example it can be concluded that important
and useful information about the closed-loop system per-
formance can be obtained using the CFMC control design
techniques. Tuning of the controller may then be based on
altering controller parameters such as discount factor or
immediate costs, or on altering the system discretization
(with the cost of needing to re-generate CFMC plant
models). In the considered example, the system was not
particularly sensitive for density of the discretization (pro-
vided dense enough), discretization of the control actions,
or number of evaluations of the plant ode’s.

5.3 Adaptive CFMC control of van der Vusse CSTR

In a third series of simulations, a model bank of five models
were considered (using different values for the reactor
temperature). The performance of the Kullback–Leibler
distance D as a model/controller selection criterion was
examined in a small series of simulations.

Five different values for the CSTR temperature were
considered: {105, 107.5, 110, 112.5, 115 (◦C)}. For each
parameter setting, a CFMC model was constructed using
50 evaluations per cell. The same discretization (S = 862)
and control specifications were used as in Section 5.2 for
generating the five controllers. In order to simulate on-
line operation (Step 4 in Section 4.2), a data sequence
of length k + 1 was generated using a random action
sequence. The empirical and corresponding model-based
distributions were then generated and compared using the
Kullback–Leibler distance (11).

The results of a series of simulations with different k,
averaged over 1000 simulations, are shown in Table 3. Few
samples were sufficient for an almost errorless behaviour
(> 95% correct); a window of 20 samples provided the
correct selection in all 1000 simulations.

These results indicate that the Kullback–Leibler distance
could successfully be used as a basis for model/controller
selection in an adaptive CFMC control framework. Note,
however, that the excellent performance was under random
controls and noiseless data and in practical cases longer

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7923

Table 3. Percentage of correct selections.

k %-ok # faults k %-ok # faults

1 60 401 8 99 6
2 83 167 9 100 2
3 91 86 10 100 3
4 96 39 15 100 2
5 99 13 20 100 0
6 98 16 25 100 0
7 100 5 50 100 0

sequences would be required due to a smaller information
content in a typical (closed-loop) plant operating data.

6. DISCUSSION AND CONCLUSIONS

The work reported in this paper aims at examining the
possibilities of controlled finite Markov chains in learn-
ing nonlinear process control, with special emphasis on
applications in the area of process engineering, such as
power plants, pulp and paper mills, etc. In adaptive con-
trol, various model structures can be motivated by the
availability of convenient ways to solve the associated iden-
tification and control design problems. However, robust
learning from data may be more appropriate in structures
motivated by the plant and the underlying phenomena.
In process engineering, the theoretically or experimentally
known physical (chemical, mechanical, etc.) phenomena
provide a natural basis for models with good interpretabil-
ity and transparency. The approach taken in this paper
aims to promote the use of proper physical models as the
basis of reliable adaptive control of industrial processes.

REFERENCES

Bertsekas, D. (2007) Dynamic Programming and Optimal
Control, Athena Scientific.

Chen, H., A Kremling and F Allgöwer (1995). Nonlinear
predictive control of a benchmark CSTR. Proceedings of
the 3rd European Control Conference, pp. 3247-3258.

Hsu, C. S. (1987) Cell-to-cell mapping -A method of global
analysis for nonlinear systems. Springer-Verlag, New
York.

Häggström, O. (2002) Finite Markov Chains and Algo-
rithmic Applications. Cambridge University Press, Cam-
bridge.

Filev, D. (2002) Model bank based intelligent control.
Proceedings of the NAFIPS, pp 583-586.

Kaelbling, L. P., M. L. Littman and A. W. Moore (1996).
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, pp. 237-285.

Kárný, M., J. Kraćık and T. V. Guy (2007). Cooperative
decision making without facilitator. IFAC ALCOSP, St-
Petersburg, Russia.

Kulhavy, R (1995). Kullback-Leibler distance approach to
system identification. IFAC Symp. on Adaptive Systems
in Control and Signal Processing, Budapest, 55-66.

Lee, J. M. and J. H. Lee (2004). Approximate dynamic pro-
gramming strategies and their applicability for process
control: A review and future directions. International
Journal of Control, Automation and Systems, 2 (3), pp.
263-278.

Lunze, J. (1998) On the Markov property of quantised
state measurement sequences. Automatica, 32 (11), pp.
1439-1444.

Narendra, K. S., J Balakrishnan and M. K. Ciliz (1995)
Adaptation and learning using multiple models, switch-
ing and tuning. IEEE Control Systems, 15 (3), pp. 37-51.

Poznyak, A. S., K. Najim and E. Gómez-Ramı́rez (2000).
Self-Learning Control of Finite Markov Chains. Marcel
Dekker, New York.

Puterman, M. L. (1994) Markov Decision Processes -
Discrete Stochastic Dynamic Programming. Wiley et
Sons, New York.

Shah, S. and W. Cluett (1991) Recursive least squares
based estimation schemes for self-tuning control. Cana-
dian Journal of Chemical Engineering, 69, pp. 89-96.

Appendix A. KULLBACK–LEIBLER DISTANCE

Following Kulhavy (1995), suppose that X1, X2, ..., Xk+1

form a controlled Markov chain with a conditional prob-
ability mass function S (y|z, u) = Pr{Xk+1 = y| Xk =
z, Uk = u}. The transition probability distribution is
known partially, it is assumed to belong to a family Sθ.
The task is to estimate θ.

For a sequence of observations x = (x1, x2, ..., xk+1) and
control actions u = (u1, u2, ..., uk+1) we have
Sk

θ (x|x1,u) =
∏k

i=1 Sθ (xi+1|xi, ui)

= exp
{∑k

i=1 log Sθ (xi+1|xi, ui)
}

= exp
{
k

∑
(y,z,v)∈X 2×U Rx,u (y, z, v) log Sθ (y|z, v)

}
= exp

{−k
[
H (Rx) + D (Rx||Sθ)

]}
where

• Rx,u (a, b, c) is the empirical distribution Rx,u (a, b, c)
= Nx,u(a,b,c)

k , and Nx,u (a, b, c) counts the number
of occurences of the triplets (a, b, c) in the sequence
formed by x and u.

• H (Rx,u) is the conditional Shannon entropy
H (Rx,u) =

∑
(y,z,v) Rx,u (y, z, v) log Rx,u (y, z, v) +∑

(z,v) Rx,u (z, v) log Rx,u (z, v)
of a random variable Y given another random variable
Z and a control action V , described jointly by a
probability distribution Rx,u, and

• D (Rx,u||Sθ) is the conditional Kullback–Leibler dis-
tance
D (Rx,u||Sθ) =

∑
(y,z,v)

Rx,u (y, z, v) log Rx,u(y,z,v)
Sθ(y|z,v)Rx,u(z,v)

of a joint probability distribution Rx,u and a condi-
tional distribution Sθ.
Further, we can regard any of the conditional dis-
tributions Sθ (y|z, v) as a set of distributions Sz,v

θ (y),
and conditional empirical distribution Rx,u (y|z, v) as
a set of points Rz,v

x (y), z ∈ X , v ∈ U . We can then
write
D (Rx,u||Sθ) =

∑
(z,v)∈X×U

Rx,u (z, v)D
(
Rz,v

x,u||Sz,v
θ

)
The posterior distribution of the unknown parameter θ
conditional on x and u is

Px ∝ P (θ)Sk
θ (x,u|x1) ∝ P (θ) exp

{−kD (Rx,u||Sθ)
}

since the conditional entropy H (Rx) does not depend on
θ.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7924

