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Abstract: In this paper we consider the existence of the maximal and mean square stabilizing
solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short)
associated to the infinite-horizon stochastic quadratic optimal control problem of discrete-time
Markov jump with multiplicative noise linear systems. The weighting matrices of the state and
control for the quadratic part are allowed to be indefinite. We present a sufficient condition
under which there exists the maximal solution and a necessary and sufficient condition under
which there exists the mean square stabilizing solution for the GCARE.

1. INTRODUCTION

The indefinite stochastic linear control with multiplica-
tive noise has been intensively studied lately (see, for
instance, Ait Rami and Zhou (2000), Chen et al. (1998),
Lim and Zhou (1999), Wu and Zhou (2002)). In Costa
and de Paulo (2007) the finite-horizon stochastic optimal
control problem of discrete-time Markov jump with mul-
tiplicative noise linear systems, with the performance cri-
terion formed by a quadratic part and a linear part in the
state and control variables is considered, with the weight-
ing matrices of the state and control for the quadratic
part allowed to be indefinite. The optimal control law is
written in terms of a set of coupled generalized Riccati
difference equations interconnected with a set of coupled
linear recursive equations. In this paper we analyze the
generalized coupled algebraic Riccati equations (GCARE
for short) associated to this problem. Our main results
are to derive sufficient conditions for the existence of the
maximal solution, and necessary and sufficient conditions
for the existence of the mean square stabilizing solution
for the GCARE. To the best of our knowledge there is no
other work handling this kind of problem in the literature.
Indeed previous works on the coupled algebraic Riccati
equation for the discrete-time case, as in Abou-Kandil
et al. (1995), Ait Rami et al. (2001), Costa and Marques
(1999), Czornik and Swierniak (2001), Ji et al. (1991),
Morozan (1995), Morozan (1998), considered only positive
semi-definite weighting matrices of the state and control
and/or didn’t consider the multiplicative noise.

This paper is organized in the following way. Section 2
presents the notation and some definitions that will be
used throughout the work, and the formulation of the
problem. Section 3 presents some auxiliary results which
are crucial for the development of our results. Section 4
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presents the main results regarding the GCARE, which
consist of providing a sufficient condition for the existence
of the maximal solution and a necessary and sufficient
condition for the existence of the mean square stabilizing
solution. Section 5 presents a numerical example. The
paper is concluded with some final remarks.

2. PRELIMINARIES

For X and Y complex Banach spaces we set B(X, Y) the
Banach space of all bounded linear operators of X into
Y, with the uniform induced norm represented by ‖.‖.
For simplicity we shall set B(X) := B(X,X). The spectral
radius of an operator T ∈ B(X) will be denoted by
rσ(T ). If X is a Hilbert space then the inner product
will be denoted by

〈
.; .
〉
, and for T ∈ B(X), T ∗ will

denote the adjoint operator of T . As usual, T ≥ 0
(T > 0 respectively) will denote that the operator T ∈
B(X) will be positive semi-definite (positive definite).
In particular we shall denote by Cn the n dimensional
complex Euclidean spaces and by B(Cn, Cm) the normed
bounded linear space of all m × n complex matrices, with
B(Cn) := B(Cn, Cn).

Set Hn,m the linear space made up of all N -sequences of
complex matrices V = (V1, ..., VN ) with Vi ∈ B(Cn, Cm),
i = 1, . . . , N and, for simplicity, set Hn := Hn,n. For
V = (V1, ..., VN ) ∈ Hn,m, we consider the following norms

in Hn,m: ‖V ‖1 :=
∑N

i=1 ‖Vi‖, ‖V ‖2 :=
(∑N

i=1 tr
(
V ∗

i Vi)
) 1

2

.

It is easy to verify that Hn,m equipped with any of the
above norms is a Banach space and, in fact,

(
‖.‖2,H

n,m
)

is a Hilbert space, with the inner product given, for V =
(V1, ..., VN ) and S = (S1, ..., SN) in Hn,m, by 〈V ; S〉 =∑N

i=1 tr
(
V ∗

i Si). We shall say that V = (V1, ..., VN ) ∈ Hn

is hermitian if Vi = V ∗
i for i = 1, . . . , N, and denote this

set by Hn∗. We shall write Hn+ := {V = (V1, ..., VN ) ∈
Hn∗; Vi ≥ 0, i = 1, . . . , N

}
and for V ∈ Hn, S ∈ Hn, we

write that V ≥ S if V −S = (V1−S1, ..., VN −SN ) ∈ Hn+,
and that V > S if Vi − Si > 0 for each i = 1, . . . , N .
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On a probabilistic space (Ω,P ,F) we consider the follow-
ing Markov Jump Linear System with multiplicative noise:

x(k + 1) =
(
Āθ(k) +

νx∑

s=1

Ãθ(k),sw
x
s (k)

)
x(k)

+
(
B̄θ(k) +

νu∑

s=1

B̃θ(k),sw
u
s (k)

)
u(k)

x(0) =x0, θ(0) = θ0, (1)

where θ(k) denotes a time-invariant Markov chain tak-
ing values in {1, ..., N} with transition probability ma-
trix P = [pij ], {wx

s (k); s = 1, . . . νx, k = 0, 1, . . .} and
{wu

s (k); s = 1, . . . νu, k = 0, 1, . . .} are zero-mean random
variables with variance equal to 1, E(wx

i (k)wx
j (k)) = 0,

E(wu
i (k)wu

j (k)) = 0, for all k and i 6= j, and independent
of the Markov chain {θ(k)}. The initial conditions θ0 and
x0 are assumed to be independent of {wx

s (k)}, {wu
s (k)},

with x0 an n-dimensional random vector with finite second
moments. The mutual correlation between wx

s1
(k) and

wu
s2

(k) is denoted by E(wx
s1

(k)wu
s2

(k)) = ρs1,s2
. Without

loss of generality, we assume that ν = νx = νu. We also

have Ā = (Ā1, . . . , ĀN ) ∈ Hn, Ãs = (Ã1,s, . . . , ÃN,s) ∈

Hn, s = 1, . . . , ν, B̄ = (B̄1, . . . , B̄N ) ∈ Hm,n, B̃s =

(B̃1,s, . . . , B̃N,s) ∈ Hm,n s = 1, . . . , ν. We set Fτ the
σ-field generated by {(θ(t), x(t)); t = 0, . . . , τ}, and the
set of admissible controllers U is defined as U = {u =
(u(0), . . .); u(k) is an m-dimensional random vector with
finite second moments, Fk-measurable for each k = 0, . . .
and yields in (1) E(‖x(T )‖2‖) → 0 as k → ∞}. Consider
Q = (Q1, . . . , QN) ∈ Hn∗, L = (L1, . . . , LN) ∈ Hn,1,
M = (M1, . . . , MN ) ∈ Hm∗, H = (H1, . . . , HN ) ∈ Hm,1.
The infinite-horizon indefinite quadratic optimal control
problems associated to (1) is defined as

J(x0, θ0) = inf
u∈U

T−1∑

k=0

E
(
x(k)∗Qθ(k)x(k) + u(k)∗Mθ(k)u(k)

)
.

(2)

Notice that the quadratic cost matrices Qi and Mi are just
assumed to be hermitian. We define next the following
operators E ∈ B(Hn), A ∈ B(Hn), G ∈ B(Hn, Hn,m),
R ∈ B(Hn, Hm),

Ei(X) =

N∑

j=1

pijXj ,

Ai(X) = Qi + Ā∗
i Ei(X)Āi +

ν∑

s=1

Ã∗
i,sEi(X)Ãi,s, (3)

Gi(X) =
(
Ā∗

i Ei(X)B̄i +

ν∑

s1=1

ν∑

s2=1

ρs1,s2
Ã∗

i,s1
Ei(X)B̃i,s2

)∗
,

(4)

Ri(X) = B̄∗
i Ei(X)B̄i +

ν∑

s=1

B̃∗
i,sEi(X)B̃i,s + Mi. (5)

Set L := {X ∈ Hn∗;Ri(X)−1 exists for each i = 1, ..., N}
and define S ∈ B(L, Hn) and K ∈ B(L, Hm,n) as follows.
For X ∈ L and i = 1, . . . , N ,

Si(X) = −Xi + Ai(X) − Gi(X)∗Ri(X)−1Gi(X), (6)

Ki(X) = −Ri(X)−1Gi(X). (7)

We will study the following set of generalized coupled al-
gebraic Riccati equations (GCARE) associated to problem
(2) (see Costa and de Paulo (2007)):

S(X) = 0. (8)

We introduce the following notation: N := {X ∈

L;R(X) > 0}, M := {X ∈ N;S(X) ≥ 0}, M̂ := {X ∈
N;S(X) = 0}. For K = (K1, ..., KN ) ∈ Hn,m we define
the following operators LK(.) = (LK,1(.), . . . ,LK,N (.)) ∈
B(Hn) and TK(.) = (TK,1(.), . . . , TK,N (.)) ∈ B(Hn):

LK,i(V ) = (Āi + B̄iKi)
∗Ei(V )(Āi + B̄iKi)+

ν∑

s=1

Ã∗
i,sEi(V )Ãi,s +

ν∑

s1=1

ν∑

s2=1

ρs1,s2

(
Ã∗

i,s1
Ei(V )B̃i,s2

Ki+

K∗
i B̃∗

i,s2
Ei(V )Ãi,s1

)
+

ν∑

s=1

K∗
i B̃∗

i,sEi(V )B̃i,sKi, (9)

TK,j(V ) =
N∑

i=1

pij

[
(Āi + B̄iKi)Vi(Āi + B̄iKi)

∗

+

ν∑

s=1

Ãi,sViÃ
∗
i,s +

ν∑

s1=1

ν∑

s2=1

ρs1,s2

(
Ãi,s1

ViK
∗
i B̃∗

i,s2

+ B̃i,s2
KiViÃ

∗
i,s1

)
+

ν∑

s=1

B̃i,sKiViK
∗
i B̃∗

i,s

]
, (10)

where V = (V1, ..., VN ) ∈ Hn. It is easy to verify that with
the inner product defined above we have that TK = L∗

K . It
is also easy to check that the operators LK , and TK map
Hn∗ into Hn∗.

Consider model (1) with u(k) = Kθ(k)x(k), where K =
(K1, ..., KN) ∈ Hn,m, and w(k) = 0. Using the same
arguments as in Proposition 3.1 of Costa et al. (2005),
page 32, it follows that, for Ui(k) = E(x(k)x(k)∗1{θ(k)=i}),

U(k) = (U1(k), . . . , UN(k)) ∈ H
n+ , we have that

U(k + 1) = TK(U(k)), k = 0, 1, . . . (11)

where TK is as in (10). Similarly, for P = (P1, . . . , PN ) ∈
Hn+, we have that

E(x(k + 1)∗Pθ(k+1)x(k + 1)|θ(k), x(k)) =

x(k)∗LK,θ(k)(P )x(k). (12)

¿From (11) and (12) it follows that TK and LK map Hn+

into Hn+. We define next the stability and stabilizability
concepts that we shall consider in the following sections.

Definition 1. We say that K = (K1, ..., KN) ∈ Hn,m

stabilizes (1) in the mean square sense if, when we make
u(k) = Kθ(k)x(k) in system (1) with w(k) = 0, we have

that E(‖x(k)‖2) → 0 as k → ∞ for any initial condition
x(0) and θ(0). We say that (1) is mean square stabilizable
if for some K = (K1, . . . , KN) ∈ Hn,m we have that K
stabilizes (1) in the mean square sense.

Definition 2. We say that X = (X1, ..., XN ) ∈ Hn∗ is a
hermitian solution for the GCARE if X ∈ L and satisfies
(8). We say that X is a maximal solution if it is an
hermitian solution for the GCARE and X ≥ Y for any
Y ∈ M. We say that X is a mean square stabilizing
solution if it is an hermitian solution for the GCARE and
K(X) stabilizes (1) in the mean square sense.

Using the same arguments as in Proposition 3.25 of
Costa et al. (2005), page 44, or in Dragan and Morozan
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(2006), we have the following result showing that K =
(K1, ..., KN ) stabilizes system (1) in the mean square sense
if and only if the expectral radius of the operator (10) is
less than one.

Lemma 1. K = (K1, ..., KN) ∈ Hn,m stabilizes (1) in the
mean square sense if and only if rσ(TK) < 1, where TK is
as in (10).

3. AUXILIARY RESULTS

The next lemmas will be crucial for the development of
the main results of this paper.

Lemma 2. Suppose that rσ(LF ) < 1 for some F =
(F1, ..., FN ) ∈ Hn,m, where LF is defined as in (9) and
consider G = (G1, . . . , GN ) ∈ H

n,m. If for some P =
(P1, . . . , PN ) ∈ Hn+ and δ > 0,

Pi −LG,i(P ) ≥ δ(Gi − Fi)
∗(Gi −Fi), i = 1, . . . , N, (13)

then rσ(LG) < 1.

Proof. Note that for arbitrary ǫ > 0, V = (V1, . . . , VN ) ∈
Hn+, and any k ≥ 0 and i = 1, . . . , N ,

0 ≤ E
[{

ǫ
(
Āi + B̄iFi +

ν∑

s=1

Ãi,sw
x
s (k) +

ν∑

s=1

B̃i,sFiw
u
s (k)

)

−
1

ǫ

(
B̄i(Gi − Fi) +

ν∑

s=1

B̃i,s(Gi − Fi)w
u
s (k)

)}
Vi×

{
ǫ
(
Āi + B̄iFi +

ν∑

s=1

Ãi,sw
x
s (k) +

ν∑

s=1

B̃i,sFiw
u
s (k)

)

−
1

ǫ

(
B̄i(Gi − Fi) +

ν∑

s=1

B̃i,s(Gi − Fi)w
u
s (k)

)}∗]
. (14)

Defining Q(V ) ∈ Hn+ as

Qj(V ) =

N∑

i=1

pij

[
B̄i(Gi − Fi)Vi(Gi − Fi)

∗
B̄∗

i

+
ν∑

s=1

B̃i,s(Gi − Fi)Vi(Gi − Fi)
∗B̃∗

i,s

]
. (15)

we have that (14) yields

0 ≤ TG,j(V ) ≤ (1 + ǫ2)TF,j(V ) + (1 +
1

ǫ2
)Qj(V ) (16)

where we recall that TG = L∗
G and TF = L∗

F . We choose
now ǫ > 0 such that (1 + ǫ2)rσ(TF ) < 1. This is possible
since by assumption rσ(LF ) < 1 and rσ(TF ) = rσ(LF )

since TF = L∗
F . Set T̂ = (1 + ǫ2)TF . Define for t = 0, 1, . . .

the sequences

X(t + 1) = TG(X(t)), X(0) ∈ H
n+, (17)

Y (t + 1) = T̂ (Y (t)) + Q̂(X(t)), Y (0) = X(0) (18)

with Q̂(X(t)) = (1 + 1
ǫ2

)Q(.). Then for t = 0, 1, 2, . . .

Y (t) ≥ X(t) ≥ 0. (19)

Indeed, (19) is immediate from (17), (18), for t = 0.
Suppose (19) holds for t. Then from (16) and recalling
that TG and TF map Hn+ into Hn+, we have that

Y (t + 1) = T̂ (Y (t)) + Q̂(X(t)) ≥ X(t + 1) ≥ 0,

showing the result for t + 1. From (18) it follows that

Y (t) = T̂ t(X(0)) +
t−1∑

s=0

T̂ t−1−sQ̂(X(s))

and taking the 1-norm of the above expression, we have
that

‖Y (t)‖1 ≤
∥∥∥T̂ t

∥∥∥ ‖X(0)‖1 +
t−1∑

s=0

∥∥∥T̂ t−1−s
∥∥∥
∥∥∥Q̂(X(s))

∥∥∥
1
.

Since rσ(T̂ ) < 1, it is possible to find a > 0, 0 < b < 1,

such that
∥∥∥T̂ s

∥∥∥ ≤ abs, s = 0, 1, . . . (see, for instance,

Kubrusly (1985)), and thus,

‖Y (t)‖1 ≤ abt ‖X(0)‖1 + a

t−1∑

s=0

bt−1−s
∥∥∥Q̂(X(s))

∥∥∥
1
.

Suppose for the moment that
∑∞

s=0

∥∥∥Q̂(X(s))
∥∥∥

1
< ∞.

Then from (17) and (19), for any X(0) = (X1(0), . . . ,
XN (0)) ∈ Hn+

0 ≤
∞∑

t=0

∥∥T t
G(X(0))

∥∥
1

=
∞∑

t=0

‖X(t)‖1 ≤
∞∑

t=0

‖Y (t)‖1 < ∞.

and thus (see Proposition 2.5 in Costa et al. (2005))
rσ(TG) < 1, and since TG = L∗

G, rσ(LG) < 1. Remains

to prove that
∑∞

s=0

∥∥∥Q̂(X(s))
∥∥∥

1
< ∞. Indeed, from (13)

we obtain, for an appropriate positive constant c0, that∥∥∥Q̂(X(s))
∥∥∥

1
≤ c0

{〈
X(s); P

〉
−
〈
X(s + 1); P

〉}
.

Taking the sum for s = 0 to r, we get that
r∑

s=0

∥∥∥Q̂(X(s))
∥∥∥

1
≤ c0

〈
X(0); P

〉
,

since that P ∈ Hn+ and X(r+1) ∈ Hn+. Taking the limit
as r → ∞, we obtain the desired result.

Lemma 3. For some K = (K1, ..., KN) ∈ Hn,m, let LK

be as defined in (9). If rσ(LK) < 1 then for any S =
(S

1
, . . . , SN ) ∈ Hn there exists a unique solution Y =

(Y
1
, . . . , YN ) ∈ Hn which satisfies

Yi − LK,i(Y ) = Si, i = 1, . . . , N. (20)

Moreover if S is hermitian (≥ 0, > 0 respectively) then Y
is hermitian (≥ 0, > 0). Conversely if for some S > 0 there
exists Y > 0 satisfying equation (20) then rσ(LK) < 1.

Proof. If rσ(LK) < 1, we have that (see Weidmann

(1980), page 102), (I − LK)
−1

(.) =
∑∞

j=0 L
j
K(.) where

I represents the identity operator. Therefore the unique
solution Y of (20) is given by Y =

∑∞
j=0 L

j(S) and if

S ∈ Hn∗ (S ∈ Hn+, S > 0 respectively) then Y ∈ Hn∗

(Y ∈ Hn+, Y > 0). For the remaining of the proof, see
Theorem 3.19 of Costa et al. (2005), page 41.

Finally we conclude this section with the following lemma
(see Oostveen and Zwart (1996) for similar results).

Lemma 4. Suppose that X ∈ L and for some F̂ ∈ Hn,m

we have that X̂ ∈ Hn∗ satisfies for i = 1, . . . , N

X̂i − L
F̂ ,i

(X̂) = Qi + F̂ ∗
i MiF̂i. (21)

Then, for i = 1, . . . , N ,

(X̂i−Xi) − L
F̂ ,i

(X̂ − X) =

Si(X) + (F̂i −Ki(X))∗Ri(X)(F̂i −Ki(X)). (22)

Moreover, if X̂ ∈ L, then for i = 1, . . . , N
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(X̂i − Xi) − L
K(X̂),i

(X̂ − X) =

Si(X) + (Ki(X̂) −Ki(X))∗Ri(X)(Ki(X̂) −Ki(X))

+ (F̂i −Ki(X̂))∗Ri(X̂)(F̂i −Ki(X̂)). (23)

Furthermore, if Ŷ ∈ Hn∗ and satisfies, for i = 1, . . . , N

Ŷi − L
K(X̂),i

(Ŷ ) = Qi + K(X̂)∗MiK(X̂). (24)

then for i = 1, . . . , N ,

(X̂i − Ŷi)−L
K(X̂),i

(X̂ − Ŷ ) =

(F̂i −Ki(X̂))∗Ri(X̂)(F̂i −Ki(X̂)). (25)

Proof. After some algebraic manipulations, we have for
i = 1, . . . , N that

Xi−L
F̂ ,i

(X) = Qi + F̂ ∗
i MiF̂i

−(Ki(X) − F̂i)
∗Ri(X)(Ki(X) − F̂i) − Si(X), (26)

Xi − L
K(X̂),i

(X) = Qi + Ki(X̂)∗MiKi(X̂) − Si(X)

− (Ki(X̂) −Ki(X))∗Ri(X)(Ki(X̂) −Ki(X)), (27)

X̂i − L
F̂ ,i

(X̂) = Qi + F̂ ∗
i MiF̂i−

(F̂i −Ki(X̂))∗Ri(X̂)(F̂i −Ki(X̂)) − Si(X̂). (28)

¿From (21) and (28) it follows that

X̂i − L
K(X̂),i

(X̂) = Qi + Ki(X̂)∗MiKi(X̂)

+ (F̂i −Ki(X̂))∗Ri(X̂)(F̂i −Ki(X̂)). (29)

Thus, (22) follows by taking (21) minus (26), (23) follows
by subtracting (27) from (29) and (25) follows subtracting
(24) from (29).

4. MAXIMAL AND STABILIZING SOLUTIONS

The following theorem provides a sufficient condition for
the existence of the maximal hermitian solution of (8).

Theorem 1. Suppose that (1) is mean square stabilizable
and M 6= ∅. Then for ℓ = 0, 1, 2, . . ., there exists Xℓ ∈ N

and F ℓ ∈ Hn,m satisfying the following properties:

a) X0 ≥ X1 ≥ · · · ≥ Xℓ ≥ X , for arbitrary X ∈ M;
b) rσ(LF ℓ) < 1;
c) For i = 1, . . . , N ,

Xℓ
i − LF ℓ,i(X

ℓ) = Qi + F ℓ∗
i MiF

ℓ
i . (30)

Moreover there exists X+ ∈ M̂ such that X+ ≥ X for any
X ∈ M, rσ(LK(X+)) ≤ 1, and Xℓ → X+ as ℓ → ∞.

Proof. Let us apply induction on ℓ to show the result.
Consider an arbitrary X ∈ M (thus S(X) ≥ 0) and
F = K(X). Since that (1) is mean square stabilizable we
can find F 0 ∈ Hn,m such that rσ(LF 0 ) < 1 (see Definition
1 and Lemma 1). Thus, from Lemma 3, there exists a
unique X0 ∈ Hn∗ satisfying (30) for ℓ = 0. We have from
(22) that for i = 1, . . . , N

(X0
i − Xi) − LF 0,i(X

0 − X) =

Si(X) + (F 0
i − Fi)

∗Ri(X)(F 0
i − Fi)

and since Si(X) + (F 0
i − Fi)

∗Ri(X)(F 0
i − Fi) ≥ 0 and

rσ(LF 0) < 1 we have from Lemma 3 again that X0 −
X ≥ 0. This also shows that X0 ∈ N, since that for each
i = 1, . . . , N , Ri(X

0) ≥ Ri(X) > 0 and thus the result

is proved for ℓ = 0. Suppose now that the result holds for
ℓ − 1. Set F ℓ = K(Xℓ−1). From equation (23) we get that

(Xℓ−1
i − Xi) − LF ℓ,i(X

ℓ−1 − X) = Si(X) + (F ℓ
i − Fi)

∗×

Ri(X)(F ℓ
i − Fi) + (F ℓ

i − F ℓ−1
i )∗Ri(X

ℓ−1)(F ℓ
i − F ℓ−1

i )

≥ δ(F ℓ
i − F ℓ−1

i )∗(F ℓ
i − F ℓ−1

i )

for some δ > 0 since by the induction hypothesis,
Ri(X

ℓ−1) > 0 for i = 1, . . . , N . Thus from Lemma 2,
rσ(LF ℓ) < 1. Let Xℓ ∈ Hn∗ be the unique solution
satisfying (30) (see Lemma 3). Equation (22) yields, for
i = 1, . . . , N ,

(Xℓ
i − Xi) − LF ℓ,i(X

ℓ − X) =

Si(X) + (F ℓ
i − Fi)

∗Ri(X)(F ℓ
i − Fi)

and since rσ(LF ℓ) < 1, we get from Lemma 3 that
Xℓ ≥ X . Thus R(Xℓ) ≥ R(X) > 0, which shows that
Xℓ ∈ N. Equation (25) yields for i = 1, . . . , N

(Xℓ−1
i − Xℓ

i ) − LF ℓ,i(X
ℓ−1 − Xℓ) =

(F ℓ
i − F ℓ−1

i )
∗
Ri(X

ℓ−1)(F ℓ
i − F ℓ−1

i )

which shows, from the fact that rσ(LF ℓ) < 1, (F ℓ
i −

F ℓ−1
i )∗Ri(X

ℓ−1)(F ℓ
i − F ℓ−1

i ) ≥ 0 for each i = 1, . . . , N ,
and Lemma 3, that Xℓ−1 ≥ Xℓ ≥ X . This completes
the induction argument. Since

{
Xℓ
}∞

ℓ=0
is a decreasing

sequence with Xℓ ≥ X for all ℓ = 0, 1, . . ., we get that
there exists X+ hermitian such that (see Sontag (1990),
page 79) Xℓ ↓ X+ as ℓ → ∞. Clearly, X+ ≥ X , and thus
R(X+) ≥ R(X) > 0, showing that X+ ∈ N. Moreover,
substituting F ℓ

i = Ki(X
ℓ−1) into (30) and taking the

limit as ℓ → ∞, we get, after rearranging the terms,
that S(X+) = 0, showing the desired result. Since X is
arbitrary in M, it follows that X+ ≥ X for all X ∈ M.
Finally notice that since rσ(Lk) < 1 we get that (see
Sontag (1990), p. 328 for continuity of the eigenvalues on
finite dimensional linear operator entries) rσ(LF+) ≤ 1,
where F+ = K(X+).

We show next that there exists at most one mean square
stabilizing solution for (8).

Lemma 5. If M 6= ∅ then there exists at most one mean
square stabilizing solution for the GCARE (8), which will
coincide with the maximal solution.

Proof. Suppose that X̂ is a mean square stabilizing so-
lution for the GCARE (8). Clearly (1) is mean square
stabilizable and since M 6= ∅ we get from Theorem 1 that

there exists the maximal solution X+ ∈ M̂. We have that

X̂i − L
K(X̂),i

(X̂) = Qi + Ki(X̂)∗MiKi(X̂)

so that (22) yields

(X̂i − X+
i ) − L

K(X̂),i
(X̂ − X+) =

(Ki(X̂) −Ki(X
+))∗Ri(X

+)(Ki(X̂) −Ki(X
+)) ≥ 0 (31)

since Ri(X
+) > 0. Recalling that X̂ is mean square

stabilizing, we have from (31) and Lemma 3 that X̂ −

X+ ≥ 0. But this also implies that R(X̂) ≥ R(X+) > 0

and consequently X̂ ∈ M. From Theorem 1 it follows that

X̂ − X+ ≤ 0, completing the proof.

Our next result provides necessary and sufficient con-
ditions for the existence of the mean square stabilizing
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solution. We need to define, for K ∈ Hn,m and Γ ∈ Hn,
the following operator VΓ,K ∈ B(Hn): for V ∈ Hn,

VΓ,K,i(V ) = (Γi + B̄iKi)
∗Ei(V )(Γi + B̄iKi)+

ν∑

s=1

Ã∗
i,sEi(V )Ãi,s +

ν∑

s1=1

ν∑

s2=1

ρs1,s2

(
Ã∗

i,s1
Ei(V )B̃i,s2

Ki

+ K∗
i B̃∗

i,s2
Ei(V )Ãi,s1

)
+

ν∑

s=1

K∗
i B̃∗

i,sEi(V )B̃i,sKi.

Clearly we have that LK = VĀ,K .

Theorem 2. Suppose that M 6= ∅. The following assertions
are equivalent:

i) system (1) is mean square stabilizable and for
some X ∈ M there exists T ∈ Hn such that
rσ(VΓ(X),K(X)) < 1 where Γi(X) = Āi + TiSi(X)

1
2

for i = 1, . . . , N .
ii) there exists the mean square stabilizing solution to

the GCARE (8).

Moreover if X ∈ M̂ is the mean square stabilizing solution
to the GCARE (8) then an optimal control law for problem
(2) is given by

û(k) = Kθ(k)(X)x(k). (32)

Proof. Let us show first that i) implies ii). From Theorem
1 and the hypothesis that system (1) is mean square
stabilizable and M 6= ∅ we conclude that there exists the

maximal solution X+ ∈ M̂. Consider X ∈ M and T ∈ Hn

satisfying i). Set F+ = K(X+) and F = K(X). Since

X+
i − LF+,i(X

+) = Qi + F+∗
i MiF

+
i

we have that (22) yields for i = 1, . . . , N ,

(X+
i − Xi) − LF+,i(X

+ − X) =

Si(X) + (F+
i − Fi)

∗Ri(X)(F+
i − Fi).

Since Si(X) ≥ 0 and Ri(X) > 0, i = 1, . . . , N , we get that
we can find δ > 0 such that for i = 1, . . . , N ,

(X+
i − Xi)−LF+,i(X

+ − X) ≥

δ(Si(X) + (F+
i − Fi)

∗(F+
i − Fi)). (33)

Define F̂+ ∈ Hn,n+m, F̂ ∈ Hn,n+m, ̂̄B ∈ Hn+m,n and
̂̃
B ∈ H

n+m,n as follows: ̂̄Bi :=
(
Ti B̄i

)
,
̂̃
Bi :=

(
0 B̃i

)
and

F̂+
i :=

(
0 F+

i

)′
, F̂i :=

(
Si(X)

1
2 Fi

)′
.

Consider the operator L̂
K̂

as in (9) replacing B̄, B̃ by

respectively ̂̄B,
̂̃
B, and K by K̂ ∈ Hn,n+m. Then it is easy

to verify that L̂
F̂+

= LF+ and L̂
F̂

= VΓ,F . Thus (33) can
be re-written as

(X+
i − Xi) − L̂

F̂+,i
(X+ − X) ≥ δ(F̂+

i − F̂i)
∗(F̂+

i − F̂i)

and recalling that X+ − X ≥ 0 and rσ(L̂
F̂

) = rσ(VΓ,F ) <

1 we can conclude from Lemma 2 that rσ(L̂
F̂+

) =

rσ(LF+) < 1, showing the first part. Let us show now that

ii) implies i). Suppose that X ∈ M̂ is the mean square
stabilizing solution for the GCARE (8). Then clearly (1)
will be mean square stabilizable and Γi(X) = Āi (since
Si(X) = 0) so that VĀ,K(X) = LK(X) and the result follows

since rσ(LK(X)) < 1.

Consider now that X ∈ M̂ is the mean square stabilizing
solution to the GCARE (8) and set Λ(x, i) = x∗Xix. From
Proposition 2 in Costa and de Paulo (2007) we have that

x(k)∗Qθ(k)x(k) + u(k)∗Mθ(k)u(k)

+ E
(
x(k + 1)∗Xθ(k+1)x(k + 1)|Fk

)
= x(k)∗Xθ(k)x(k)+

(
u(k) −Kθ(k)(X)x(k)

)∗
Rθ(k)(X)

(
u(k) −Kθ(k)(X)x(k)

)

and since R(X) > 0, we get for any u = (u(0), . . .) ∈ U

that

E(Λ(x(T ), θ(T ))) − E(Λ(x(0), θ(0)))

≥ −E
(T−1∑

k=0

(x(k)∗Qθ(k)x(k) + u(k)∗Mθ(k)u(k))
)

(34)

with equality when u = û as in (32). From (34) and
recalling that E(‖x(T )‖2) → 0 as T → ∞ we have that

E(Λ(x(0),θ(0))) ≤

E
( ∞∑

k=0

(x(k)∗Qθ(k)x(k) + u(k)∗Mθ(k)u(k))
)

with equality when u = û as in (32), showing the result.

We conclude this section establishing a link between a LMI
(linear matrix inequality) optimization problem and the
maximal solution X+ in M. Suppose that all matrices
involved below are real. Consider the following convex
optimization programming problem:

max tr
( N∑

i=1

Xi

)

subject, for i = 1, . . . , N, to[
−Xi + Ai(X) Gi(X)∗

Gi(X) Ri(X)

]
≥ 0

Ri(X) > 0, Xi = X∗
i (35)

Lemma 6. Suppose that (1) is mean square stabilizable.

Then there exists X+ ∈ M̂ such that X+ ≥ X for all
X ∈ M if and only if there exists a solution X̂ for the above
convex programming problem (35). Moreover, X̂ = X+.

Proof. First of all notice that, from Schur’s complement,
X = (X1, . . . , XN) satisfies the restrictions (35) if and
only if −Xi + Ai(X) − Gi(X)∗Ri(X)−1Gi(X) ≥ 0 and
Ri(X) > 0, Xi = X∗

i for i = 1, . . . , N , that is, if and only
if X ∈ M. Thus if X+ ∈ M is such that X+ ≥ X for all
X ∈ M, clearly tr(X+

1 + . . . + X+
N ) ≥ tr(X1 + · · · + XN )

for all X ∈ M and since X+ ∈ M̂ ⊂ M, it follows that X+

is the solution of the convex programming problem (35).

On the other hand, suppose that X̂ is a solution of the
convex programming problem (35). Thus X̂ ∈ M 6= ∅ and

from Theorem 1, there exists X+ ∈ M such that X+ ≥ X̂.

But from the optimality of X̂ and the fact that M̂ ⊂ M,
tr(X+

1 − X̂1) + . . . + tr(X+
N − X̂N ) ≤ 0. Since X+

1 − X̂1 ≥

0, . . . , X+
N − X̂N ≥ 0, we have X+

1 = X̂1, . . . , X
+
N = X̂N .

5. NUMERICAL EXAMPLE

Consider a system with three operation modes, i = 1,
i = 2, i = 3, where the transition probability matrix is
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given by

P =

(
0.67 0.17 0.16
0.3 0.47 0.23
0.26 0.1 0.64

)
.

The Table 1 presents the parameters of the system (1)
and of the cost function in (2). From (35), the maximal
solution for each mode i = 1, 2, 3, is given by

X1 =

(
18.9992 −19.2374
−19.2374 28.6941

)

X2 =

(
33.0131 −23.2143
−23.2143 38.0363

)

X3 =

(
36.4552 −39.8795
−39.8795 51.5007

)
. (36)

Considering Ki = Ki(Xi), with Ki(Xi) as in (7), we have
that rσ(T ) = 0.6970. Thus, the system (1) is mean square
stabilizable and (36) are mean square stabilizing solutions.
The optimal control law (7), for each i = 1, 2, 3, is given
by

K1 = (2.3186 −2.3342)

K2 = (4.1608 −3.7034)

K3 = (−5.1661 5.7921) .

Table 1. Parameters of the system and of the
cost function for each operation mode.

operation modes

Parameters i = 1 i = 2 i = 3

Qi

[
3, 6 −3, 8
3, 8 4, 87

] [
10 −3
−3 8

] [
5 −4, 5

−4, 5 4, 5

]

Mi

[
2, 6
] [

1, 165
] [

1, 111
]

Āi

[
0 1

−2, 5 3, 2

] [
0 1

−4, 3 4, 5

] [
0 1

5, 3 −5, 2

]

B̄i

[
0 1
]
′

[
0 1
]
′

[
0 1
]
′

Ãi

[
0.042 0
00 0.065

] [
0.065 0

0 0.085

] [
0.021 0

0 0.042

]

B̃i

[
0.042 0.065

]
′
[
0.064 0.086

]
′
[
0.021 0.042

]
′

ρx,u

[
0.58
] [

0.58
] [

0.58
]

6. FINAL REMARKS

In this paper we have considered the infinite hori-
zon stochastic optimal control problems of discrete-time
Markov jump with multiplicative noise linear systems,
with indefinite quadratic matrices on the state and con-
trol variables. We presented a sufficient condition for the
existence of a maximal solution for the set of generalized
coupled algebraic Riccati equations (GCARE) that arise
from these problems, as well as a necessary and sufficient
condition for the existence of the mean square stabilizing
solution, and derived an optimal control law whenever this
solution exists.
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