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Abstract: Solution to the linear quadratic control problem is given in the class of linear dynamic
output-feedback full order controllers. Necessary and sufficient conditions for existence of such
an optimal controller are stated in terms of linear matrix inequalities provided that initial
conditions for controller states to be zero. It is shown that parameters of the optimal controller
depend on an initial plant state. As an alternative we introduce γ-optimal controller which
minimizes the maximal ratio of the performance index and square of the norm of the initial
plant state. Numerical comparison for two kinds of these controllers is presented for inverted
and double inverted pendulums.

1. INTRODUCTION

The classical deterministic linear quadratic (LQ) control
problem is well known (see Kwakernaak and Sivan (1972))
to be solvable in terms of Riccati equations only when
plant state is measurable. The essential step for solving the
LQ output-feedback problem was connected with presen-
tation of the LQ performance as H2-norm of the system
transfer matrix (see Doyle et al. (1989), Scherer et al.
(1997)). The latter paper provides a result that allows to
step from the performance analysis conditions formulated
in terms of matrix inequalities to the corresponding lin-
ear matrix inequalities (LMIs) for H∞ and H2 synthesis
problems. This is achieved by a nonlinear bijective trans-
formation of the controller parameters. Another approach
to LMI based synthesizing H∞-controllers utilizes so called
elimination lemma to convert performance analysis condi-
tions into LMIs with respect to Lyapunov function matrix
and controller parameters separately (see Gahinet and
Apkarian (1994)).

Iwasaki et al. (1994) used H2-presentation to formulate a
suboptimal LQ control problem in terms of linear matrix
inequalities and synthesized a stabilizing static output-
feedback controller which can guarantee a specified level of
the LQ performance for all initial conditions of the plant.
Such a suboptimal controller was shown to exist if and
only if there exists a positive definite matrix satisfying
two LMIs, while its inverse matrix satisfies another LMI.
The set of these matrices satisfying the LMIs is not convex.
That is the main difficulty for solving LQ and other control
problems for static or reduced order output-feedback con-
trollers. Many computational algorithms have been devel-
oped to overcome this difficulty (see, for example, Iwasaki
and Skelton (1995), El Ghaoui et al. (1997), Balandin
and Kogan (2004), He and Wang (2006)).

⋆ This work was supported in part by the Russian Foundation for
Basic Research (Nos. 07-01-00481 and 08-01-00422)

The present paper deals with synthesizing full order LQ
output-feedback controllers. It turns out that this problem
can be formulated in terms of LMIs as a convex optimiza-
tion problem provided that the initial state of the plant is
known and that the initial state of the dynamic controller
is zero. Necessary and sufficient conditions are established
for existence of this optimal controller. It is shown that its
parameters depend on the initial state of the plant.

Such a controller can be viewed as an ideal one because
the initial state of the plant is not actually available for
measurement. As an alternative we introduce γ-optimal
output-feedback full order controller which minimizes the
maximal ratio of the performance index and square of
the norm of the initial plant state. Parameters of this
controller do not depend on the initial state of the plant.
The problem of γ-optimal control is very close to one
stated by Iwasaki et al. (1994). In contrast to last
paper, we have a convex optimization problem and can
evaluate performance losses of this worst case controller
compared with the ideal one. Some numerical experiments
with inverted and double inverted pendulums demonstrate
the performance degradation of γ-optimal controller with
respect to LQ (ideal) controller.

Note that similar ideas emerged in the recent work of
Köroğlu and Scherer (2008) devoted to the problem of
generalized asymptotic regulation with suboptimal tran-
sient response.

2. LQ OUTPUT-FEEDBACK CONTROLLERS

Consider the linear quadratic optimal control problem for
the system

ẋ = Ax + Bu , x(0) = x0 ,
z = C1x + Du ,
y = C2x

(1)
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in the class of full order dynamic output-feedback con-
trollers

ẋr = Arxr + Bry , xr(0) = xr
0 ,

u = Crxr + Dry
(2)

providing asymptotic stability for the closed-loop system
and minimizing the quadratic cost

J(Θ) =

∞
∫

0

|z|2 dt , (3)

where x ∈ Rnx is the plant state, u ∈ Rnu is the control
input, y ∈ Rny is the measurable output, z ∈ Rnz is the
controlled output, xr ∈ Rnx is the controller state, and

Θ =

(

Ar Br

Cr Dr

)

are controller parameters to be found.

The equation of asymptotically stable closed-loop system
(1), (2) is of the form

ẋc = Acxc , xc(0) = x̄0 ,
z = Ccxc ,

(4)

where xc = col (x, xr),

Ac =

(

A + BDrC2 BCr

BrC2 Ar

)

, x̄0 =

(

x0

xr
0

)

,

Cc = (C1 + DDrC2 DCr) .

(5)

Since z(t) = Cce
Actx̄0, then

J(Θ) =

∞
∫

0

x̄T
0 eAT

c
tCT

c Cce
Actx̄0 dt (6)

or

J(Θ) = x̄T
0 X0x̄0 , (7)

where

X0 =

∞
∫

0

eAT

c
tCT

c Cce
Act dt

is the solution of the Lyapunov equation

AT
c X + XAc + CT

c Cc = 0 . (8)

Thus, the problem is reduced to minimization of (7)
subject to constraint (8) which is a nonlinear matrix
equation with respect to unknown variables X and Θ.

Observe that
J(Θ) = γ2|x̄0|

2 ,

and reformulate this problem as follows: given initial state
of the closed-loop system x̄0 6= 0, find

γ∗ = min{γ ≥ 0 : ∃Θ J(Θ) ≤ γ2|x̄0|
2} . (9)

Matrix Θ corresponding to γ∗ will define parameters of LQ
output-feedback controller.

In what follows, instead of this problem we will consider
the suboptimal LQ output-feedback problem: given x̄0 6=
0, find

γ∗ = inf{γ > 0 : ∃Θ J(Θ) < γ2|x̄0|
2} . (10)

Matrix Θ of the suboptimal LQ controller is defined by

J(Θ) < (γ2
∗

+ ε)|x̄0|
2

for arbitrary small ε > 0. In fact, parameters of LQ and
suboptimal LQ controllers will differ indefinitely small, so
in the sequel we will call both controllers LQ optimal.

To solve the problem (10) we will show that inequality

J(Θ) < γ2|x̄0|
2 (11)

for given γ > γ∗ can be expressed in terms of LMIs.

Theorem 1. For the system (4) and the cost (3), inequality
(11) holds if and only if there exists matrix Y = Y T > 0
such that
(

AcY + Y AT
c Y CT

c

CcY −I

)

< 0,

(

Y x̄0

x̄T
0 γ2|x̄0|

2

)

> 0. (12)

Proof. Let the inequality (11) hold, then x̄T
0 X0x̄0 <

γ2|x̄0|
2, where X0 is the solution of the matrix equation

(8). Consider the equation

AT
c X + XAc + CT

c Cc + ε2I = 0

that has an unique solution X > X0 and choose the
parameter ε so that x̄T

0 X0x̄0 < x̄T
0 Xx̄0 < γ2|x̄0|

2. Thus,
we have

AT
c X + XAc + CT

c Cc < 0 , x̄T
0 Xx̄0 < γ2|x̄0|

2 . (13)

By multiplying the first inequality of (13) with Y = X−1

on the left and on the right, we get

Y AT
c + AcY + Y CT

c CcY < 0 , x̄T
0 Y −1x̄0 < γ2|x̄0|

2 .

Finally, taking into account Schur lemma we arrive at (12).

Now, let inequalities (12) hold. Then inequalities (13) with
X = Y −1 hold as well and, hence, J(Θ) = xT

0 X0x0 <
xT

0 Xx0 < γ2|x0|
2. This completes the proof.

Further, let us present the matrices of the closed-loop
system in the form

Ac = A0 + BΘC , Cc = C0 + DΘC ,

where

A0 =

(

A 0nx×nx

0nx×nx
0nx×nx

)

,B =

(

0nx×nx
B

Inx
0nx×nu

)

,

C =

(

0nx×nx
Inx

C2 0ny×nx

)

, C0 = (C1 0nz×nx
),

D = (0nz×nx
D).

(14)

By inserting these expressions into the first inequality of
(12) we present it in the form

Ψ + PTΘT Q + QTΘP < 0 , (15)

where

Ψ =

(

A0Y + Y AT
0 Y CT

0

C0Y −I

)

,

P = (CY 0) , Q = (BT DT) .

(16)
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Then by elimination lemma (see, for instance, Gahinet and
Apkarian (1994)), inequality (15) holds for some Θ if and
only if

WT
P

(

A0Y + Y AT
0 Y CT

0

C0Y −I

)

WP < 0 ,

WT
Q

(

A0Y + Y AT
0 Y CT

0

C0Y −I

)

WQ < 0 ,

(17)

where WP and WQ denote any bases of the null spaces of
the matrices P and Q, respectively. Observe that

P = (CY 0) = G

(

Y 0

0 I

)

, G = (C 0) .

Hence

WP =

(

Y −1 0

0 I

)

WG ,

where WG denotes any basis of the null space of the matrix
G. Consequently, the first inequality of (12) is equivalent
to following two LMIs

WT
G

(

AT
0 X + XA0 CT

0

C0 −I

)

WG < 0 ,

WT
Q

(

A0Y + Y AT
0 Y CT

0

C0Y −I

)

WQ < 0 ,

(18)

where X = Y −1.

To express (18) in terms of the plant parameters, partition
X and Y as

X =

(

X11 X12

XT
12 X22

)

, Y =

(

Y11 Y12

Y T
12 Y22

)

.

Meanwhile, since

G =

(

0nx×nx
Inx

0nx×nz

C2 0ny×nx
0ny×nz

)

,

Q =

(

0nx×nx
Inx

0nx×nz

BT 0nu×nx
DT

)

,

bases of null spaces of these matrices will be of the form

WG =







WC2
0

0 0

0 I






, WQ =









W
(1)
Q

0

W
(2)
Q









,

where ((W
(1)
Q )T (W

(2)
Q )T )T is any basis of the null space

of (BT DT ). This reduces (18) to

WT
G







ATX11 + X11A ATX12 CT
1

⋆ 0 0

⋆ ⋆ −I






WG < 0 ,

WT
Q









Y11A
T + AY11 AY12 Y11C

T
1

⋆ 0 Y T
12C

T
1

⋆ ⋆ −I









WQ < 0 ,

where ⋆ denotes the corresponding block of the symmetri-
cal matrix. Observe that the second rows of WG and WQ

are identically zero, these conditions are reduced to

MT

(

ATX11 + X11A CT
1

C1 −I

)

M < 0 ,

NT

(

Y11A
T + AY11 Y11C

T
1

C1Y11 −I

)

N < 0 ,

(19)

where M and N are matrices whose columns form bases
of the null spaces of (C2 0) and (BT DT), respectively.

Furthermore, according to Frobenius formula, Y = X−1

implies

Y11 = (X11 − X12X
−1
22 XT

12)
−1 (20)

which shows there exist reciprocal matrices X > 0, Y > 0
with given blocks X11 = XT

11 > 0, Y11 = Y T
11 > 0 if and

only if X11 − Y −1
11 ≥ 0, i.e.
(

X11 I

I Y11

)

≥ 0 . (21)

In the case of strict inequality (21), blocks Y12 and Y22 of
the corresponding matrix Y can be chosen, for example,
as it follows from formula

X11 = (Y11 − Y12Y
−1
22 Y T

12)
−1 ,

in the form

Y12 = Y22 = Y11 − X−1
11 . (22)

Second inequality in (12) in view of Schur lemma is
equivalent to

γ2(|x0|
2 + |xr

0|
2) −

(

x0

xr
0

)T (
X11 X12

XT
12 X22

)(

x0

xr
0

)

> 0 . (23)

Thus, to solve the problem (10), in accordance with
Theorem 1 one should find a minimal value of γ for which
LMIs (19), (21) and (23) are feasible provided that equality
(20) holds. Due to this very equality the problem under
study cannot be solved, generally speaking, in terms of
LMIs. However, in the particular case when the initial
state of controller is zero, i.e. xr(0) = 0, inequality (23) is
reduced to xT

0 X11x0 < γ2|x0|
2 which is LMI in variables

X11 and γ2 only and does not involve unknown matrices
X12 and X22.

Now, we are in position to formulate the main result.

Theorem 2. LQ output-feedback controller of the form (2)
with xr(0) = 0 exists if and only if LMIs

MT

(

ATX11 + X11A CT
1

C1 −I

)

M < 0 , (24)

NT

(

Y11A
T + AY11 Y11C

T
1

C1Y11 −I

)

N < 0 , (25)

(

X11 I

I Y11

)

≥ 0 , (26)

xT
0 X11x0 < γ2|x0|

2 (27)

are feasible in variables X11 = XT
11 > 0, Y11 = Y T

11 > 0
and γ2 > 0.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9907



Given x0, LQ output-feedback controller can be obtained
numerically as follows: one should find the minimal γ2

∗
and

corresponding matrices X11, Y11 satisfying LMIs (24)-(27)
in Theorem 2, then reconstruct matrix Y by using, for
example, (22) and, finally, find matrix Θ of the controller
as a solution to LMI (15) under Y constructed.

Note that by Finsler lemma from (24) it follows that
(

ATX11 + X11A − µCT
2 C2 CT

1

C1 −I

)

< 0

for some µ > 0. It means that the left upper block
of the latter matrix is definitely negative, i.e. the pair
(A,C2) should be detectable. Analogously, (25) implies
stabilizability of the pair (A,B).

3. γ-OPTIMAL OUTPUT-FEEDBACK CONTROLLER

Along with the LQ problem (10) let us consider the prob-
lem of minimizing the maximal ratio of the performance
index and square of the norm of the initial plant state: find

γ∗ = inf{γ > 0 : ∃Θ J(Θ) < γ2|x0|
2 ∀x0 6= 0} . (28)

Define γ-optimal control law of the form (2) with xr(0) = 0
providing

J(Θ) < (γ2
∗

+ ε)|x0|
2 ∀x0 6= 0

for arbitrary indefinitely small ε > 0. This control law can
be interpreted as minimax one since it minimizes the worst
relative performance value, i.e. when the initial plant state
results in the maximal relative performance value.

In contrast to the above case of LQ controller, inequality
(27) should hold now for all nonzero initial plant states,
which leads to inequality

X11 < γ2I . (29)

Theorem 3. γ-optimal output-feedback controller of the
form (2) with xr(0) = 0 exists if and only if LMIs (24)-(26),
(29) are feasible in variables X11 = XT

11 > 0, Y11 = Y T
11 > 0

and γ2 > 0.

Matrix of parameters Θ of γ-optimal controller is com-
puted as provided by the procedure described above for
LQ controller.

Along with LQ and γ-optimal output-feedback controllers,
it is interesting to introduce an average LQ output-
feedback controller of the form (2) with zero initial con-
troller state. This controller provides minimum of the
expected value of the performance index when initial plant
state x0 is assumed to be a zero mean random vector
satisfying E{x0x

T
0 } = I. In this case, we have

E{J(Θ)} < γ2E|x0|
2 = γ2nx

and, consequently, the average LQ output-feedback con-
troller exists if and only if LMIs (24)-(26) and

trX11 < γ2nx

are feasible in variables X11 = XT
11 > 0, Y11 = Y T

11 > 0
and γ2 > 0.

4. NUMERICAL COMPARISON OF LQ, AVERAGE
LQ, AND γ-OPTIMAL OUTPUT-FEEDBACK

CONTROLLERS

Let us compare LQ and γ-optimal controllers for a linear
model of an inverted controlled pendulum
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2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Initial angle

P
e

rf
o

rm
a

n
c
e

Fig. 1. Performance values corresponding to LQ (solid
line) and γ-optimal (dashed line) controllers for the
inverted pendulum without damping

ẋ1 = x2,
ẋ2 = x1 + u,
y = x1,
z1 = x1, z2 = x2, z3 = u .

The initial conditions of the plant are chosen in the form

x1(0) = cos ϕ , x2(0) = sinϕ , ϕ ∈ [0, π] .

The plot of optimal values of LQ performance as a function
of angle ϕ under associated LQ controllers is shown in
Fig.1 by solid line, while the plot of performance values
under γ-optimal controller is shown by dashed line. For
example, for ϕ1 = 2π/3 and ϕ2 = π we calculated the
following parameters of LQ controllers

Θ1 =

(

−5.5208 −1.1936 2.7717
−0.2436 −4.3578 −3.1919
2.6829 −4.3578 −6.5957

)

,

Θ2 = 108 ·





0.3670 0.2595 0.4025 · 10−8

−1.4829 −1.0485 1.0000 · 10−8

−1.4829 −1.0485 −5.4847 · 10−16



 .

These data allow to conclude that LQ output-feedback
controller considerably depends on the initial conditions
of the plant. On the other hand, parameters of γ-optimal
controller are as follows

Θ =

(

−4.0451 −0.6275 1.8914
0.1658 −3.1425 −2.3116
1.6776 −3.0625 −4.5003

)

.

As it follows from Fig.1, performance values corresponding
to LQ and γ-optimal controllers may significantly differ.
However, next example of an inverted pendulum with
damping

ẋ1 = x2,
ẋ2 = x1 − x2 + u,
y = x1,
z1 = x1, z2 = x2, z3 = u ,

shows that this difference may be not too much (Fig.2).

One more example is a double inverted pendulum de-
scribed by equations
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Fig. 2. Performance values corresponding to LQ (solid
line) and γ-optimal (dashed line) controllers for the
inverted pendulum with damping
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Fig. 3. Performance values corresponding to LQ (solid
line), γ-optimal (dashed line), and averaged LQ (dot-
ted line) controllers for the double inverted pendulum

ẋ1 = x3,
ẋ2 = x4,
ẋ3 = 2x1 − x2 + u,
ẋ4 = −2x1 + 2x2,
y = x1,
zi = xi, i = 1, 4, z5 = u .

The initial conditions of the plant are chosen in the form

x1(0) = cos ϕ, x3(0) = sinϕ, x2(0) = x4(0) = 0, ϕ ∈ [0, π] .

The plot of optimal values of LQ performance as a function
of angle ϕ under associated LQ controllers is shown
in Fig.3 by solid line, while the plots of performance
values under γ-optimal controller and average LQ output-
feedback controller are shown by dashed and dotted lines,
respectively.

5. CONCLUSION

In this paper, the LQ output-feedback control problem is
solved in the class of linear dynamic full order controllers
with zero initial state. Based on LMI technique, neces-
sary and sufficient conditions for existence of LQ output-
feedback controller are derived and a computational pro-
cedure to find their parameters is given. It is shown that
parameters of this controller essentially depend on the
initial plant state.

As an alternative, γ-optimal control law is introduced
which minimizes the maximal relative performance. In
contrast to LQ output-feedback controller, parameters of
γ-optimal controller do not depend on the initial state of
the plant. Numerical results show that, in some cases,
performance losses under γ-optimal controllers may be
insignificant.
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