
     

Transfer Functions for Natural Gas Pipeline Systems 
 

Hans Aalto* 
 

*Neste Jacobs Oy, PB 310, 01601 Porvoo, Finland 

 (Tel: +35850 458 3373; e-mail: hans.aalto@ nesteoil.com). 

 

Abstract: Natural gas pipeline systems typically have very complex dynamic characteristics. However, 

extracting “basic” dynamic parameter values, like gains and time constants is sometimes necessary. 

Looking at the complex dynamical models of pipeline systems, this is not straightforward, and a method 

providing those linear model parameters is needed. The method described in the paper is based on 

discretization of a Partial Differential Equation model followed by linearization of the resulting 

Ordinary Differential Equation model of high order. Balanced truncation is applied on the linearized 

model, resulting in a radically reduced order linear state space model from which transfer functions and 

finally the gains and time constants are obtained.  
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1. INTRODUCTION 

Modern control algorithms can use almost any linear or non-

linear models, and classical linear SISO or MIMO transfer 

function models have lost their status of preferred model 

structures. However, process and control specialists find it 

often very convenient to have access to the parameters of 

linear transfer functions, namely, gains and time constants. 

These parameters have their own meanings, for example, one 

single number, the dominating time constant, is often 

interesting to know. 

The models describing the dynamical behaviour of natural 

gas pipeline systems are basically non-linear partial 

differential equations (PDE). These models, or simplified 

models derived from these, do not directly reveal the values 

of the linear transfer function parameters. Some few attempts 

towards calculating the parameter values in simplified, 

limited cases have been done. (Lewandowski, 1995) 

linearised the PDE model of a pipeline segment and derived 

the solution for the gas pressure p as a function of the space 

co-ordinate along the pipeline, z, and time t: 
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parameters Tk are the mode time constants of the pipeline 

segment. (Botros et. al., 1996) calculated the time constant 

for a pipeline in the case of blow-down of the gas at the other 

end of the pipeline. (Kra’lik et. al. 1984) presented a 

linearised staircase-type transfer function model for a 

pipeline segment divided into equal-length nodes. The 

pressure and flow propagation through each node is described 

by 4 linear transfer functions. The dynamic model parameter 

values for the whole segment can be calculated using this 

model, although the calculation procedure becomes 

complicated for a pipeline segment with many nodes. 

Common to the three approaches above is, that they used 

simple pipeline segments only allowing no complexity 

typical to practical pipelines, such as multiple gas off-takes 

along the segment and pipe branches. 

In this paper, we present a method for calculating gains and 

time constants of a pipeline system of any structure. Dead 

time does not need to be considered, since this depends on 

the speed of sound in the pressurised gas and is thus very 

small compared to the time constant values. The basic iso-

thermal PDE model is first discretised with respect to the 

space variable and then linearised in the steady state 

operating point. A model reduction method is then applied to 

radically reduce the dimensions of the resulting linear state 

space model. The reduced, continuous time state space model 

is then converted to a transfer function, from which the 

parameters are obtained.  

2. NATURAL GAS PIPELINE SYSTEM MODELS 

2.1  The basic PDE model 

A natural gas pipeline system consists of pipeline segments, 

compressor stations and gas offtakes. Figure 2 below (see 

section 4) illustrates a pipeline system with branches, offtakes 

and four compressors stations (CS). Only the pipeline 

segment from the supply point at the far left to CS1 is a 

simple segment.  For a simple pipeline segment the following 

PDE model can be written (Osiadacz, 1996; Marque’s and 

Morari, 1988) 
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where P ^ P(z,t) is the gas pressure, q ^ q(z,t) is the mass flow 

of the gas, b=kRT where k is the (constant) gas compres-

sibility, R is the universal gas constant and T is the (constant) 

gas temperature,  A is the pipe cross-sectional area, D is the 

pipe diameter and f is the dimensionless Moody friction 

factor. 

Each pipeline segment and branch require their own 

equations of type (1) and (2) together with suitable boundary 

conditions in order to form the complete model of the 

pipeline system. 

If we discretise the PDE model with respect to the space co-

ordinate using length elements 
i

z∆ , i=1,…,N, where N is 

typically large, we obtain for each volume element, or node,  

“i” of the pipeline, using (1) and (2) directly: 
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In the sequel, we shall use the following parameter 

definitions: /( ) / , /( )
i i i i i i i i i i i i

b A z A z f b D Aα β γ= ∆  , = ∆   =  

Note, that for each individual node, individual cross-sectional 

area, diameter, friction and even b-parameter can be used, the 

latter allowing compressibility and temperature changes 

along the pipeline to be accounted for in an approximate and 

ad-hoc way. If a branch or an offtake is connected to node 

“k”, the ODE’s are written as follows (see figure 1): 
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If the flow '

0
q  represents a gas offtake, a differential equation 

for this flow is left away and '

0
q  is handled as a system input 

variable instead. 

 

Equations (5) are valid for a branch into which gas flows 

from the main pipeline. Branches, which bring gas into the 

pipeline (into some specified node “k”) can be modelled 

accordingly. 

If we exclude the fact, that CS’s may sometimes be operated 

so, that their operating constraints are encountered thus 

resulting in non-linear operation, we can for the purpose of 

this study model a CS at node “k” being a PI controller 

manipulating the mass flow 
1k

q − into that volume element: 

 

 

Figure 1. A pipeline branch leaving from node “k” 
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where 
,k SET

P is the desired pressure of node “k” (the discharge 

point of the CS), K is the controller gain and Ti is the 

controller integrator time constant. Taking the time derivative 

of (6) and applying (3) we obtain : 
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which replaces the equation of type (4) for i=k-1 

2.2  A linearised model 

Linearisation of the node equations (3) and (4) leaves the 

state equation for pressure unchanged, except for redefining 

the variables as deviations from some steady state pressure 

and flow, and the flow rate equation becomes: 
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where 
,i SS

P and 
,i SS

q are the steady state values of pressure 

and mass flow, respectively, of node “i”. The steady state 

values are obtained by setting all time derivatives in (3) and 

(4) to zero and solving the resulting system of 2N nonlinear 

algebraic equations. The resulting linear, continuous-time 

system is 

 

( )
( ) ( ),

( ) ( )

d t
t t

dt

t t

= +

=

x
Ax Bu

y Cx

 (9) 

where the 2N-dimensional state vector x contains all node 

pressure and mass flow deviations from steady state and the 

m-dimensional input vector u contains CS discharge pressure 

set-point and offtake gas mass flow rate deviations. From a 

control system perspective, the CS pressure set-points are the 

true control inputs of the system whereas off-take flows are 

(known and possibly predicted, through consumption 

forecasts) disturbances. The output  vector y may be any 

combination of pressures and flow rates, and the matrix C is 

Pk-1 qk-1 Pk 

P’1 

Pk+1 qk 

q’1 q’0 
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a selection matrix consisting of only zeros and ones so that 

the row sums are equal to one and column sums are either 

zero or one. The transfer function is defined as: 

 1( ) ( )G s s −= −C I A B  (10) 

. 

3. MODEL REDUCTION TECHNIQUES 

The characteristic polynomial of (10) has 2N roots, which is 

typically a large number depending on the complexity of the 

pipeline system under consideration and on the accuracy of 

the space discretisation. Solving the roots of a high-degree 

characteristic polynomial may not be that difficult, but, as we 

will see below, transfer function zeros (or “numerator 

dynamics” of the transfer function) has significance in this 

case. Even for cases with moderate complexity, calculation of 

transfer function zeros may be difficult (Kwakernaak and 

Siwan, 1972). Up to recent times, calculation of transfer 

function zeros in electrical circuit analysis has been avoided 

because of implementation difficulties and numerical 

sensitivity (Ragavan et. al., 2005). 

In order to be able to calculate the values of the transfer 

function parameters, we shall apply model reduction 

techniques prior to the conversion from state space to transfer 

function model. 

Model reduction through truncation is based on calculating 

the Nr largest Hankel singular values of the original n-

dimensional system, where Nr  < n is the dimension of the 

reduced system (Antoulas, 2004). First, two Lyapunov type 

equations are solved to obtain the Grammians P and Q: 

 
 = 

=T T

T T

AP + PA + BB 0

A Q + QA + C C 0
 (11) 

The Hankel singular vales are defined as the square roots of 

the eigenvalues of the matrix PQ, and the transformation 

matrix T is defined as 
2 2N

[=   ...  ]
1

T v v v , where v1 is the 

eigenvector of PQ corresponding to the largest Hankel 

singular value, v2 is the eigenvector corresponding to the 

second largest and so on.  A transformed system is defined 

as: 

 � � �, ,=  =  =   -1 -1
A T AT B T B C CT  (12) 

The system matrices of the reduced system: 
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are obtained by selecting the first Nr matrix rows and/or 

columns:
� � �

r r r r
(1: N ,1: N ), N N=  = (1: ,:), = (:,1: )   

r r r
A A Β Β C C . 

In the case of balanced truncation, Cholesky decompositions 

for P and Q are calculated:  TP = UU , 
T

Q = LL where  U 

and L are upper and lower triangular matrices respectively. 

Let T TU L = ZΣY be a singular value decomposition of 
TU L . Define the matrices -1/2

1 1
W = LY Σ and -1/2

1 1
V = UZ Σ , 

where subscripts “1” refer to the first Nr columns of Y and Z 

and the upper left Nr x Nr sub-matrix of Σ. The matrices for 

the reduced system (13) are calculated as follows: 
T T

r r r
A = W AV,  B = W B , C = CV  

 

4. EXPERIMENTAL RESULTS 

A gas pipeline system with 4 CS:s and 7 pipeline segments is 

shown in figure 2. The gas offtakes are shown as small 

arrows together with the gas mass flow in kg/s. The gas 

supply point is at the far left through which the total gas flow 

of 170 kg/s flows in. Segment no. 3 between CS2 and CS4 

has two branches (segments 5 and 7). The parameters of the 

pipeline system are shown in table 1. 

 

Figure 2 A natural gas pipeline system. 

 

 

Segment No. of nodes/ 

segment 

node 

length, m 

Pipe dia-

meter,m 

1 8 6000 1.2 

2 10 5700 1.0 

3 16 5000 1.0 

4 10 6500 0.7 

5 10 4000 0.75 

6 10 4000 0.6 

7 6 5000 0.5 

Table 1. Parameters of the pipeline system of  figure 2 

 

The value of the friction parameter for all nodes is f=0.059. 

The steady state discharge pressures of all CS’s is 52 bar. 

Assume, that we would like to know the linear transfer 
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CS3 

CS4 
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function parameters for the response from the discharge 

pressure of CS2 to a) the pressure far downstream, more 

specifically 13 nodes or 65 kilometres downstream of CS2 

and b) the pressure near CS2 discharge point 5 nodes or 25 

kilometres downstream of CS2. These are called Pa and Pb in 

figure 2, respectively. 

The total number of nodes is 70 which means that the length 

of the state vector – recall one pressure and one flow variable 

for each node- is 140. The linearized system model is 

truncated to a state space model with 4 states (Nr =4) and the 

transfer function parameters are calculated using standard 

methods (“tf2zp” function of Matlab). Results for Pa and Pb 

are shown in table 2 below. Over-damped complex pair zeros 

and poles with small contribution to the overall response 

occur, which is typical in this kind of cases. These are left 

away from the tables below. Note, that for Pa there is a pole-

zero cancellation situation, The general form of the transfer 

functions are: 

 
1 2 3

( 1)( 1)...
( )

( 1)( 1)( 1)...

a b
K T s T s

G s
T s T s T s

+ +
=

+ + +
 (14) 

 

Gain, K (dimensionless, 

bar/bar) 

1.44 

Numerator time constants 

(minutes) Ta, Tb, … 

116.9 

Denominator time constants 

(minutes) T1,T2,…. 

117.7, 190.6 

Table 2 Transfer function parameters, CS2 discharge 

pressure to Pa 

 

Gain, K (dimensionless, 

bar/bar) 

1.16 

Numerator time constants 

(minutes) Ta, Tb, … 

83.5 

Denominator time constants 

(minutes) T1,T2,…. 

11.2, 183.6 

Table 3 Transfer function parameters, CS2 discharge 

pressure to Pb 

 

The typical feature of increasing gain with increasing 

downstream distance from the CS discharge node is seen. 

Also, a (relevant) numerator time constant appears when the 

distance is small as for Pb.  

The simulated step responses for Pa and Pb to a 1 bar step in 

CS2 discharge pressure using the non-linear, large 

dimensional ODE model are shown in figure 3 below. 
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Figure 3. Pa (solid line) and Pb (dashed line) step responses  

(deviations from steady state values, bar) to a one bar step 

change in CS2 discharge pressure. Time axis tick is one 

minute. 

The step responses of Pa for the ODE model and the reduced 

linear model are shown in figure 4 below. The full-

dimensional linearised and reduced linear model step 

responses are practically speaking equal, the maximum error 

between the step response being 0.04 % The difference 

between the two curves in the figure  comes from the 

linearisation error and can be made smaller by selecting 

smaller node lengths. 
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Figure 4 Pa step  response, non-linear model (solid line) and 

linear reduced model (dashed line). Time axis tick is one 

minute. 

 

Next, let us calculate the parameters of the transfer function 

from the gas flow of the last offtake in segment 4, figure 2 

(45 kg/s steady state flow) , to the pressure at a point in the 
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middle of segment 4 (about 33 km downstream of CS4) as 

shown in table 4. 

 

Gain, K (bar/(kg/s)) -0.33 

Numerator time constants 

(minutes) Ta, Tb, … 

3.1 

Denominator time constants 

(minutes) T1,T2,…. 

6.58 , 76.6 

Table 4. Parameters for transfer function for offtake flow to 

pressure in segment no. 4 

 

The step responses of the pressure using the original ODE 

model and the reduced linear model are shown in figure 5. 

Some gain error is seen similarly as in the previous case (see 

figure 4).  
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0

 

Figure 5. Pressure change in bar as a response to a 5 kg/s 

step change in the last offtake flow of segment 4. Time axis 

tick is one minute. Solid line = original ODE model, dotted 

line = reduced, linear model. 

 

From an operations or control point of view, it may be 

interesting to know what kind of dynamics can be found for 

the CS4 discharge pressure to the pressure in the middle of 

segment 4. The transfer function parameters are shown in 

table 5. The principal dynamics (time constants) are the same 

as in table 4, which they should. In terms of numerator time 

constants, the control response is only slightly faster than the 

disturbance response (Ta 11.3 versus 3.1 minutes). This either 

requires aggressive, high-gain feedback control of the 

pressure at the specified point in the pipeline or feed-forward 

control utilising measured information of the gas offtake 

mass flow rate, or a combination of these.  

 

 

 

Gain, K (dimensionless, 

bar/bar) 

1.21 

Numerator time constants 

(minutes) Ta, Tb, … 

11.3 

Denominator time constants 

(minutes) T1,T2,…. 

6.58, 76.6 

 

Table 5. Parameters for transfer function for CS4 discharge 

pressure to pressure in the middle of segment no. 4 

 

5.  DISCUSSION 

Values of transfer function parameters of gas pipelines can be 

obtained by various identification methods directly from true 

pipeline operational data or from data provided by a dynamic 

pipeline system simulator. Especially with a true pipeline 

process, executing the required process tests, repeated 

frequently in case of gas consumption changes or if there are 

other variations in the operating conditions in the pipeline, is 

tedious.  

Both steady state and dynamic pipeline simulators typically 

use input files to describe the details: pipeline segment 

lengths, diameters and friction parameters as well as the 

pipeline system geometry. This data may be easily 

automatically converted to the parameters needed by the 

ODE model described above. If nodes in the simulator are too 

big, they may, as part of the conversion procedure, be split 

into smaller values of ∆z. To combine calculation of transfer 

function parameters and simulators is an advantage in cases, 

where one wants to look at the pipeline dynamics (in terms of 

gains and time constants) in the design phase of the pipeline 

before it is even built. 

In the study above, a full-scale nonlinear model was first 

linearised and then reduced.  Reverse methods, to first reduce 

the nonlinear model to a smaller dimensional nonlinear 

model and the linearize, exist, such as Proper Orthogonal 

Decomposition (POD), (Hahn and Edgar, 2002). Intuitively, 

it seems like it is better to first linearise, because linear 

transfer functions are what we need in the end. However, to 

apply POD on this case is still a possible subject for further 

research. 

The model (1) and (2) is restricted in the sense that it assumes 

isothermal conditions, low gas speed and horizontal pipeline 

segments (Osiadacz, 1996). Another subject for further 

research would be to challenge the model reduction 

procedure by including in the PDE model non-isothermal 

conditions and allowing high gas speed and inclined pipeline 

segments. 

CS’s isolate pipeline segments from each other, under the 

condition that they operate within operational constraints. If 

the suction pressure of a CS fluctuates (because of upstream 

CS discharge pressure variations or offtake flow changes), it 
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has no effect on the gas flow through the compressor station 

nor the CS discharge pressure. The opposite is not true, i.e. a 

CS discharge pressure or offtake flow change propagates 

upstream through CS’s all the way to “the beginning” of a 

pipeline system. This property may be utilised to decrease the 

extent of the original ODE model in cases, where 

downstream responses are analysed. For example, if 

responses downstream to CS2 are under consideration, 

pipeline segments 1,2, 4 and 6 can be left away from the 

model. 

 

REFERENCES 

 

Antoulas, A. C., (2004), Lectures on the approximation of 

linear dynamical systems, Advances in Design and Control, 

SIAM, Philadelphia, 2004 

Botros, K. K., W.M. Jungowski and M.H. Weiss (1989), 

Models and Methods of Simulating Gas Pipeline Blowdown, 

The Canadian Journal of Chemical Engineering, Vol. 67, 

August 1989, pp. 529-539 

Hahn J and T. F. Edgar, Balancing Approach to Minimal 

Realisation and Model Reduction of Stable Nonlinear 

Systems, Ind. Eng. Chem. Res. 2002, Vol. 41, pp. 2204-2212 

Kra’lik  J., P. Stiegler, Z. Vostry’ and J. Za’vorka (1984 ), 

Modeling the Dynamics of Flow in Gas Pipelines, IEEE 

Trans. on Systems, Man and Cybernetics, Vol SMC-14, No. 

4, July/August 1984, pp. 586-596 

 

Kwakernaak H and R Siwan (1972), Linear Optimal Control 

Systems, 608 pages, Wiley Interscience 

Lewandowski, A. (1995), New numerical methods for 

transient modelling of gas pipeline networks, Pipeline 

Simulation Interest Group, Annual Conference October 18-

20, 1995. Albuquerque, New Mexico, USA, 

www.psig.org/papers 

Marque´s D.and  M. Morari (1988), On-line Optimisation of 

Gas Pipeline Networks, Automatica, Vol. 24, No. 4, pp. 455-

469 

 

Osiadacz ,A. J. (1996), Different Transient Models- 

Limitations, Advantages and Disadvantages, Pipeline 

Simulation Interest Group, Annual Conference October 23-

25,1996, San Francisco, USA, www.psig.org/papers 

 

Ragavan, K. and L. Satish (2005), An Efficient Method to 

Compute Transfer Function of a Transformer from its 

Equivalent Circuit. IEEE Transactions on Power Delivery, 

Volume 20. No. 2, April 2005, pp. 780-788 

 

 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

894


