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Abstract: The consequence of the loss of involutivity of a specific set of vector fields on the
periodicity of the joint motion is examined for redundant robots. An output task, defined as a
one dimensional periodic closed curve embedded in a two dimensional working surface, is realized
through the computation of joint velocities in the configuration space. Depending on the manner
in which the joint velocity is computed from the end-effector velocity, the resulting joint motion
can become unpredictable and of a chaotical nature, even though the end-effector movement
is periodic and predictable. The paper proposes an improvement over classical pseudo-inverse
computation of the joint motion by suitably selecting two involutive vector fields. This then
leads to a constructive sufficient condition for the periodicity of the joints based on the usage
of both the 1-form defining the output manifold and complementary integrable 1-forms. The
results are illustrated on a five-link rotary redundant robot (5R robot).
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1. INTRODUCTION

Redundant robots (i.e. robots having more actuated de-
grees of freedom than necessary for completely specifying
the end-effector position and orientation) show superior
flexibility over classical robots insofar as they can accom-
modate not only for the end effector task but also for
a possible necessary change in shape caused by the ap-
pearance of an obstacle or obstruction in the surroundings
of the robot. The redudancy can be put to good effect
to maximize efficiency (torque) resulting in substantial
energy savings.

Nevertheless, the augmented number of choices that is at
the controller designer disposal makes the control design
difficult so as to meet both of these objectives (precision
in the output task and versatility in changing the over-
all configuration when necessary). As a matter of fact,
versatility is addressed by many authors using different
approaches; Hooper and Tesar [1995], Tatlicioglu et al.
[2005], Chettibi et al. [2004] and Nenchev [1989] explore
the utilization of performance criterion to solve the redun-
dancy; Gu et al. [1996] looks at posture optimization using
potential functions; Hollerbach [1984] studies the optimal
kinematic design; Harmeyer and Bowling [2004] studies the
artificial augmentation of the jacobian matrix to render it
invertible; Gu [2000a] and Gu [2000b] studies extensively
the embedding configuration manifold; Boltunov et al.
[2005] uses holonomic restrictions to enforce a compact
configuration in a complex environment. Should versatility
not be explicitly taken into account, then simply fixing
some actuators would lead to the relative simplicity of
classical robot design in achieving the output task.

The present work considers as an output task the position-
ing of the end effector so as to track a closed orbit on a

1 Partially supported by EPFL and FNRS.

working surface in the three dimensional space. Only the
position is considered, the orientation is left unspecified.

Versatility is chosen here as the possibility of realizing a
periodic motion of all joints while not “blocking” specific
joints. A repeatable (periodic) motion of the robot in its
coordinate frame is highly desirable, while realizing the
main task, since the repeatability induces also predictabil-
ity, Nicolato and Madrid [2005].

In the sequel, a set of vector fields (defining velocities in
the joint configuration manifold) is shown to play a key
role when using the pseudo-inverse of the jacobian of the
forward kinematics in achieving a periodic movement of
all joints while realizing the periodic output task.

Using the pseudo-inverse of the jacobian of the forward
kinematics is not new. Whitney [1969] suggested first the
use of the pseudo-inverse of the jacobian to solve the
redundancy, he also first stated the link between the re-
dundancy property and the output task. Liegeois [1977] ex-
tended the pseudo-inverse approach to include self-motions
using the null-space of the jacobian matrix. Recently, Nico-
lato and Madrid [2005] focuses on a recursive algorithm to
obtain the inverse kinematic of redundant manipulators
for which the joint motion is shown (experimentally) to
become periodic after convergence.

Section 2 gives classical definitions together with those
pertaining to our work. A case study is then presented
in Section 3 based on the 5R robot, before exposing the
results in Section 4, namely an improvement on classical
jacobian inversion (Section 4.2), a sufficient condition for
periodicity (Section 4.3) and finally a design procedure
ensuring periodicity (Section 4.4). Conclusions and future
work are discussed in Section 5.
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2. DEFINITIONS AND PROBLEMATIC

Importance is put on the difference between redundancy
and overactuation through the notion of an output mani-
fold. Definitions 3, and 5 are new and specific to the work
undertaken. They are especially useful for the results given
in Sections 4.2 to 4.4.
Definition 1. (Open Kinematic Chain) An open kinematic
chain is a n-serial link manipulator arm, whose end-
effector, attached to the last link, performs a task in
R3. The end-effector position Y (t) is described with a
function of the joints angle (for rotary joint) and length
(for prismatic joint). Using the joint-configuration (angle
and length) coordinates (q1, ..., qn) ∈ Q ⊂ Rn, we have
Y = ( x(q) y(q) z(q) )T which for notational purposes will
be written Y = ζ(q).
Definition 2. (Working Space) The working space Γn ⊂
Q ⊂ Rn of a n-joints manipulator arm, described by its
joints configuration (q1, ..., qn), corresponds to the end-
effector accessibility area in Rm.

Γn =
{
Y ∈ Rm : ∃{q1, ..., qn} ∈ Q,

Y = ζ(q1, ..., qn)
}

Definition 3. (Output Manifold) The smooth manifold S
containing the end-effector trajectories Y (t), is called the
output manifold.
Definition 4. (Redundant Robot) A manipulator arm, re-
alizing an open kinematic chain of n links, is said to be
redundant, when, for a fixed end-effector position Ȳ , there
exist infinite different joints configurations (q1, ..., qn).
Let x̄, ȳ, z̄ ∈ R be a given end-effector position Ȳ =
( x̄ ȳ z̄ )T ∈ R3.

Ωq = {(q1, ..., qn) ∈ Q ⊂ Rn : ζ(q1, ..., qn) = Ȳ }
dim(Ωq) = (n ×∞)

The redundant manifold Ω ⊂ Rn is the manifold collecting
the position-dependent working subspace Ωq ⊂ Q ⊂ Rn.

The redundancy property of a manipulator is intimately
linked to the end-effector task (Whitney [1969] and
Liegeois [1977]). This observation motivates the following
extension of the redundancy definition, so as to include
the output manifold.
Definition 5. (Overactuation) A redundant manipulator
is said to be overactuated, when its number of internal
degrees of freedom (q1, ..., qn) ∈ Q ⊂ Γn, is larger than its
end-effector motion capabilities (dx, dy, dz)T ⊂ R3, on a
predefined output manifold S.

∀ Y (t) ∈ S ⊂ Γn, ∃ at least q(t), q̄(t) :

Y (t) = ζ(q(t)) = ζ(q̄(t))

Whenever the robot is redundant, the jacobian matrix J
that realizes the map φ between the tangent spaces has not
full-column rank and therefore can not be exactly inverted.
For every trajectory of the end-effector in the working
space of the redundant robot, there exists an infinite
number of corresponding joint motions. Figure 1 illustrates
the main symbols and terminology. The output manifold

Q ⊂ Rn, n > 3 S ⊂ R3

(
q1

...
qn

) (
x
y
z

)
ζ(q)

ζ−1

TQ TS

TqQ ⊂ Rn TsS ⊂ R3

φ

dq dY

φ−1

n1 n2

v1
v2

f1
f2

Fig. 1. Direct and inverse kinematic map ζ between end-
effector position and its corresponding joint configu-
ration.

is written S and embedded in R3. At a given point of S,
the tangent space is labelled TsS. Here s is a point of
S. The corresponding point in R3 is also labelled s and
corresponds to (x, y, z)T . The context will make it clear
which of the two is considered. The configuration manifold
is noted Q with the tangent space at the configuration
q written TqQ. ζ(.) is a submersion for which φ is the
corresponding surjective map from the tangent space TqQ
to the tangent space Tζ(q)S, where ζ(q) = s. TS and TQ
are the respective tangent bundles.

Throughout the paper, focus is put on realizing a periodic
movement of the end effector in the output manifold S
while trying as best as possible to also achieve periodic
movements of all joints in Q. To meet both objectives,
without loosing the redundant property (i.e. keeping n >
3), is not a trivial matter.

3. CASE STUDY

From now on (and without loss of generality), the partic-
ular case of a five rotary-link robot is considered. Addi-
tionally, an example of an output trajectory is chosen for
comparison purposes.

3.1 5R Robot

Consider an open kinematic chain constituted of five se-
rially linked rotary joints (5R) realizing a periodic posi-
tioning task Y (t) in R3, see Figure 2. Only end-effector
trajectories that can be embedded in a smooth manifold
S are considered.

3.2 Example of a Main-Task Design

As the main task, the end-effector trajectory in space is
parameterized with time. The manipulator output mani-
fold S, containing the end-effector trajectory, is selected to
be a sphere. The tangent bundle (TS) associated with the
output manifold contains the velocity-vector of displace-
ment dY/dt = Ẏ (t).
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Fig. 2. Five rotary (5R) joints (q1 to q5) serially linked (l0
to l5) manipulator arm.

As an example, a Lissajou curve parameterized by the
following equations is selected as the main positioning task
of the manipulator arm.

xp = A cos(ωt + ϕ)

yp = A cos(2ωt + ϕ)
Using the rotation matrices Rx(a), Ry(b), Rz(c) defined by
Goldstein [1980] (pp. 146-147 and 608), the planar curve
is mapped onto the output manifold (sphere) through the
local diffeomorphism defined by:

(
XL

YL

ZL

)
= Rx(a)Ry(b)Rz(c)

(
R cos(xp) cos(yp)
R cos(xp) sin(yp)

R sin(xp)

)

+

(
cx

cy

cz

)
(1)

where cx, cy, cz represent the sphere center coordinates
and R its radius.

The velocity reference dY/dt is obtained through the time
derivative of equation (1). The following initial conditions
are set for all simulations: q1(0) = 0.298, q2(0) = 0.165,
q3(0) = 0.260, q4(0) = 1.24, q5(0) = 4.37. Sphere: R = 1.5,
cx = 0, cy = −0.5, cz = 0.2; Manipulator: l0 = l1 = l2 =
l3 = l4 = 1, l5 = 0.5; Task: ω = 0.4, A = 0.6, φ = π

2 ,
a = π

4 , b = π
4 , c = 0.

4. ON ACHIEVING PERIODICITY

This section gives the main results of the paper. Section 4.1
reviews the classical jacobian inversion and its limitation
in achieving a periodic joint movement. We then propose
in Section 4.2 an improvement through the computation
of an involutive basis of the tangent bundle of the output
manifold TS (to be more precise, in a large enough
submanifold of TS of the same dimension). Section 4.3
gives a sufficient condition using the Poincaré-Bendixson
theorem and the involutive property. Finally, Section 4.4
states a clear procedure to enforce periodic trajectories of
the joints while realizing the main task. The case study
illustrates the concepts as the theory proceeds.

4.1 Direct Jacobian Inversion

The pseudo-inverse J+ = (JJT )−1JT of the jacobian of
the forward kinematics can be used to express one choice

of joint velocities associated with a given velocity of the
end effector.

dq/dt = J+dY/dt (2)

dY
J+

dq

TqΣ1
TqΣ2
TqΣi

TsS

Fig. 3. The inverse map based on J+ selects locally one of
the existing tangent planes TqΣi.

The results of integrating Equation (2) from the initial
conditions given in Section 3 for the case study are shown
in Figure 4.
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(b) Output evolution through time: the periodic
Lissajou is perfectly realized.

Fig. 4. Direct pseudo-inversion of the velocity vector leads
to an erratic unpredictable behavior of the jonts, even
if the Lissajou periodic task is perfectly realized.

Even though the robot performs perfectly the main task
(see Figure 4(b)), the displacement along the Lissajou
curve induces a completely chaotic and unpredictable
motion in the joint space (see Figure 4(a)).

The choice of joint velocity is fortunately not unique
for a prescribed motion of the end effector (thanks to
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redundancy). The next section explores another possibility
based on taking advantage of the distinction between
overactuation and redundancy (that is, by explicitly using
the defining equations of the output manifold).

4.2 Improving the Periodicity

In order to improve the periodicity of joint movements, the
structure of the output manifold is used for constructing
the displacement vector dY/dt.

Consider the exact 1-form ω1 associated with the out-
put manifold S through the gradient of its equation
h(x, y, z) = (x − cx)2 + (y − cy)2 + (z − cz)2 − R2, that is

ω1 = dh

= 2(x − cx)dx + 2(y − cy)dy + 2(z − cz)dz.

Proposition 1. Except for the points on the equatorial line
(y − cy)2 + (z − cz)2 = R2 and x = cx, the vector fields

v1 =

(−(z − cz)
0

(x − cx)

)
, v2 =

(−(y − cy)
(x − cx)

0

)

(i) span a two dimensional subspace and (ii) are involu-
tive. Therefore except on this line, they locally define an
integrable distribution.

Proof: The only way for v1(s) and v2(s) (with s =
(x y z )T ) not to span a two dimensional subspace is
that x = cx. Using the defining equation for S gives
(y−cy)2+(z−zc)2 = R2 which gives an equatorial line. By
construction < ω1; v1 > = 0 and < ω1; v2 > = 0. Because
dω1 = 0 by exactness, Formula (1.25) of Olver [1995] yields

0 = < dω1; v1, v2 >

= v2 < ω1; v1 > −v1 < ω1; v2 > − < ω1; [v1, v2] >

=− < ω1; [v1, v2] > .

so that the bracket [v1, v2], being annhilated by the same
1-form ω1 as for v1 and v2, belongs to the span of v1 and
v2, which means that v1 and v2 are involutive vector fields
whose distribution is locally integrable. !

Remark 1. The Euler characteristic of S is an obstruction
in finding global expressions for v1 and v2 (see Fulton
[1995]). The best one can obtain are smooth vectorfields
that only vanish at a single point (instead of the whole
equatorial line).

As long as the above singular points can be avoided, which
is the case for the chosen output task, the end-effector
motion dY/dt, defined by the time derivative of equation
(1), is then expressed in this involutive basis using the two
scalars α and β.

dY

dt
= αv1 + βv2 (3)

Finally, the joint motions are obtained through the local
inverse map from TsS to TqQ based on the pseudo-inverse
of the jacobian matrix J+ (Figure 1). With f1 = J+v1 and
f2 = J+v2 the joint velocity becomes

dq

dt
= αf1 + βf2 (4)

A simulation with the 5DOF serial manipulator realizing
a Lissajou curve on a sphere is undertaken (see Figure 5).
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Fig. 5. An involutive basis of the output manifold helps
in reducing the unpredictable behavior. (Since the
Lissajou task is perfectly realized, as in Figure 4(b),
it is not shown again here.)

The displayed trajectories still fail to be periodic. The
results are nevertheless better than those obtained using
the first method, since the resulting trajectories are closer
to periodicity than with the direct Jacobian inversion of
the tangent vector of the Lissajou curve (that is, introduc-
ing an involutive basis of the tangent bundle TS helps in
reducing the erratic and unpredictable characteristics of
the motion in the joint space).

4.3 A Sufficient Condition for Joint Periodicity

The following theorem uses the Poincaré-Bendixson theo-
rem to achieve a sufficient condition for periodicity.
Theorem 1. Let f1 and f2 be two involutive vector fields
such that f1(q) and f2(q) belong to TqQ for all q. Moreover,
assume that for all q, v1 = J(q)f1(q) and v2 = J(q)f2(q)
are independent vectors in Tφ(q)S. Now, if the following
two conditions hold, namely:

• The integral manifold of f1 and f2 is simply connected
and compact.

• The end-effector movement Y (t) is periodic.

then the joint motion obtained after decomposing (3) and
integrating (4) is also periodic or converges to a limit cycle.

Proof: Because by hypothesis (f1 and f2 are involutive),
the integral manifold of f1 and f2 exists. Therefore, q(t) is
confined to a 2-dimensional submanifold of Q. Because this
submanifold is also assumed to be simply connected, the
hypotheses of Poincaré-Bendixson theorem are satisfied.
The result then follows after noticing that, by hypothesis
(the end-effector trajectory is periodic and f1 and f2 are
in correspondence with v1 and v2), convergence to an
equilibrium point is excluded. Moreover divergence of q(t)
to infinity as t → ∞ is prohibited since the manifold is
assumed compact (i.e. closed and bounded). !

In Section 4.2 although the basis of the tangent bundle TS
is ensured by involutive vector fields v1 and v2, the vector
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fields f1 and f2 could very well not be involutive. It is well
known that, whenever z = φ(x) is a diffeomorphism, then
the bracket commutes with the push forward:

[
∂φ

∂x
v1 ◦ φ−1(z),

∂φ

∂x
v2 ◦ φ−1(z)] =

∂φ

∂x
[v1, v2] ◦ φ−1(z)

However, when φ is a submersion, as it is the case here
(the jacobian of φ is a surjective map; it has a non trivial
kernel), then the Lie-bracket does not necessarily commute
with the pseudo-inverse.
Lemma 1. Whenever φ is a submersion, then φ+[v1, v2] is
not necessarily equal to [φ+v1, φ+v2].

Proof: If both expressions in the lemma were equal then
the involutivity of v1 and v2 would imply the one of φ+v1

and φ+v2 (by linearity of the pseudo-inverse). However,
this is not necessarily the case as the following example
testifies. Consider the submersion φ : q → x from R3 to R2

defined by x1 = q1 and x2 = q2 + q1q3. Let v1 = ( 1 0 )T

and v2 = ( 0 1 )T define two trivially involutive vector
fields. Now, f1 = φ+v1 = ( 1 + q2

3 q3 q1q3 )T and f2 =
φ+v2 = ( q3(2 + q2

1 + q2
3) 1 + q2

1 + q2
3 q1(1 + q2

1 + q2
3) )T

are not involutive since
det[f1, f2, [f1, f2]] = −(1 + q2

1)
2 *= 0.

!

Because the trajectories displayed in Figure 5 are not
periodic in the joint space q, the vector fields f1 and f2 are
either: (i) not involutive or (ii) involutive and the under-
lying submanifold Σ is not simply connected (Theorem 1)
or (iii) involutive and the underlying submanifold Σ is not
compact (Theorem 1) or (iv) the convergence of the joints
trajectories to their periodicities is not completed yet, in
the sense that the integration time considered is too short.
Notice that this is not a numerical inaccuracy in comput-
ing the pseudo-inverse as one might initially suspect, but
it is a inherent limitation of pulling back the involutive
vector fields v1 and v2 along a submersion.

4.4 Involutive basis of the nD tangent bundle TQ

Because a submersion has a kernel, there exist many differ-
ent f1 and f2 that map to a basis of S in the output space,
most of which are not involutive. By preventing the usage
of certain directions of the kernel while constructing f1

and f2, involutivity is guaranteed. The following theorem
constructs first f1 and f2 in this way, before computing v1

and v2.
Theorem 2.

(1) Define ωx = dx, ωy = dy, ωz = dz where x, y, z are
the end-effector positions.

(2) Let ω4 and ω5 be complementary integrable 1-forms
in the sense that ωx, ωy, ωz, ω4, and ω5 span the
cotangent bundle TQ∗.

(3) Define f1, f2 as the dual vector fields to the three
1-forms ω1, ω4, and ω5, that is,

(
ω1

ω4

ω5

)
( f1 f2 ) = 0,

where ω1 is the 1-form associated with the output
manifold S.

Under these assumptions, f1 and f2 are involutive and
v1 = ∂φ

∂q f1 ◦ φ−1(x) and v2 = ∂φ
∂q f1 ◦ φ−1(x) constitute a

basis for TS.

Proof: First notice that ω1, ω4, and ω5 are always
independent since ω1 is a linear combination of ωx, ωy,
and ωz, which are, in turn, independent from ω4 and ω5

(by construction). This means that f1 and f2 are well
defined (no rank loss in the defining 1-forms). Involutivity
follows by construction since ω1 is exact and ω4 and ω5

are integrable. The only subtle point is that v1 and v2 do
never cancel and span TS. On this purpose, notice that f1

and f2 cannot be mapped to a zero vector through ∂φ
∂q , for

if this was the case (say ∂φ
∂q f1 = 0), then this would mean

that (
ωx

ωy

ωz

)
f1 = 0.

Noticing that ω4f1 = 0 and ω5f1 = 0 as well, together
with the fact that ωx, ωy, ωz, ω4, and ω5 are independent
would lead to f1 = 0, which is a contradiction. !

Remark 2. Finding the two integrable complementary 1-
forms ω4 and ω5 can either be done by inspection or in a
more systematic way using Cartan’s equivalence method
(Olver [1995]) which generalizes the canonical form of
Darboux to more than a single 1-form. This gives all
possible choices of ω4 and ω5. This step does not require
the knowledge of the output manifold S, but depends
only on the type of redundant robot used through the
specific Lie group structure of the robot. Future research
will address this particular construction for redundant
robots, and especially the choice of ω4 and ω5 so as to
guarantee both simple connectedness (using for instance de
Rham cohomology (Fulton [1995])) and compacity (using
Riemanian geometry) of the integral manifold of f1 and
f2.

Considering again the 5R serial-link robot and a spheric
output manifold, 2 arbitrary additional 1-forms ω4 and ω5

are added to the initial 1-form ω1 representing the sphere.

h : (x(q) − cx)2 + (y(q) − cy)2 + (z(q) − cz)2 = R2

ω1 = ∇qh

ω4 = [ 1 0 0 0 1 ]

ω5 = [ 0 1 0 1 0 ]
Based on these 1-forms, Theorem 2 gives the n-dimensional
involutive basis {f1, f2} of the tangent bundle TnQ.

Using the direct map φ based on the well-defined ja-
cobian J , the local image of the hyper-surface TΣ =
span{f1, f2} ⊂ ,n into ,3 is built, see Figure 1.

v1 = Jf1 v2 = Jf2

Remark 3. The constant complementary 1-forms ω4 and
ω5, introduced via Theorem 2, added to enforce involutiv-
ity of the joint-motion, limit the possible configurations, in
the sense that they define a foliation of the hyper-surface
Σ, on which the system remains.

The simulation of the 5DOF serial manipulator realizing
a Lissajou curve on a sphere is made (see Figure 6).
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Fig. 6. Periodic motion of the joints. The vector fields
f1 and f2 are involutive. (Since the Lissajou task is
perfectly realized, as in Figure 4(b), it is not shown
again here.)

The integration, using a combination of 1-forms, enforces
involutivity: the robot joint-motions are completely pre-
dictable and remain in a reduced hyperplane of the co-
ordinate space. The manipulator joint-configurations are
constrained and periodic, while realizing perfectly the
Lissajou main task. See Appendix A for a link to an
illustrative movie.

5. CONCLUSION

The importance of the involutivity property of vector fields
has been stressed so as to achieve periodic movement of all
joints while the end-effector follows a periodic movement.

The results showed the importance of the output manifold
S. Not only does it invite the definition of overactuation
versus the one of redundancy, but also allows both to
parameterize the periodic end-effector position and to im-
prove on the direct computation of the joint velocity (using
the pseudo inverse of the forward-kinematics jacobian).
Indeed, by choosing two involutive vector fields as a basis
of the tangent bundle TS, the chaotical character of the
joint motion could be reduced (Section 4.2).

Nonetheless, achieving exact periodicity relied on a some-
what stringer condition of involutivity, namely finding two
involutive vector fields in the joint tangent bundle TQ
allowing a surjective correspondance with a basis of TS
(the correspondance occuring in a sufficiently large sub-
manifold of TS, Section 4.3). The construction of such a
basis is successfully illustrated in Section 4.4, where perfect
periodicity of the joints trajectories is obtained.

Moreover, the above methodology showed three topologi-
cal properties that should be considered, namely the Euler
characteristic of the surface S, the simple connectedness
of the submanifold defined by the parameterizing vector
fields and its compactedness. These investigations will
appear elsewhere.
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