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Abstract: An algorithm for recursive Frisch scheme system identification of linear single-input
single-output errors-in-variables systems is developed. For the update of the estimated model
parameters, a recursive bias-compensating least squares algorithm, which is based on the well-
known recursive least squares technique, is considered. The estimate of the output measurement
noise variance is determined using a conjugate gradient method, which tracks the smallest
eigenvalue of a slowly varying matrix. For the update of the input measurement noise estimate,
a steepest gradient search is applied. It tracks the minimum of a model selection cost function,
which is based on a set of high order Yule-Walker equations.
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1. INTRODUCTION

Linear time-invariant (LTI) errors-in-variables (EIV) mod-
els are characterised by an exact linear relationship be-
tween inputs and outputs where both quantities are as-
sumed to be corrupted by measurement noise (Söderström
et al. [2002], Söderström [2007b]). One interesting ap-
proach for the identification of dynamical systems within
this framework is the so-called Frisch scheme (Beghelli
et al. [1990]), which yields estimates of the model param-
eters as well as the measurement noise variances. Whilst
the Frisch scheme leads theoretically to a single solution,
a model selection criterion is required to be utilised in
practice to determine an ‘optimal’ single solution from
a set of admissible Frisch solutions. For this purpose, a
covariance matching criterion, which is based on a compar-
ison of the statistical properties of the residuals with those
predicted from a model, has been proposed (Diversi et al.
[2003]). An attempt to develop a recursive algorithm based
on this criterion, which simply applies the offline Frisch
equations to approximately updated covariance matrices,
has been considered in Linden et al. [2006]. The major
drawback of this procedure is the computational burden as
well as a systematic error, which is introduced due to the
approximation of the residuals. Recently, an alternative
model selection criterion based on a set of high order
Yule-Walker (YW) equations has been presented (Diversi
et al. [2006]). This criterion seems more appropriate for
the development of a recursive Frisch scheme algorithm,
since no approximations are necessary for the update of
the covariance matrices.

This paper develops a recursive Frisch scheme identifica-
tion algorithm based on the YW criterion. Fast algorithms
within this framework are discussed in Linden et al. [2007],
whereas the coloured output noise case is considered in
Linden and Burnham [2008].

The paper is organised as follows. Section 2 presents the
EIV identification problem and introduces some notational

conventions. Section 3 reviews the offline Frisch scheme.
The new recursive approach is presented in Section 4,
followed by a numerical example in Section 5. Conclusions
are given in Section 6.

2. PROBLEM STATEMENT AND NOTATION

In this paper, a discrete-time, LTI single-input single-
output (SISO) EIV system is considered, which is de-
scribed by

A(q−1)y0i
= B(q−1)u0i

, (1)

where i is an integer valued time index and

A(q−1) , 1 + a1q
−1 + ...+ ana

q−na , (2a)

B(q−1) , b1q
−1 + ...+ bnb

q−nb (2b)

are polynomials in the backward shift operator q−1, which
is defined such that xiq

−1 = xi−1. The noise-free input u0i

and output y0i
are unknown and only the measurements

ui = u0i
+ ũi, (3a)

yi = y0i
+ ỹi (3b)

are available, where ũi and ỹi denote input and output
measurement noise, respectively. Such a setup is depicted
in Figure 1. The following assumptions are introduced:

A1 The dynamic system (1) is asymptotically stable, i.e.
A(q−1) has all zeros inside the unit circle.

A2 All system modes are observable and controllable, i.e.
A(q−1) and B(q−1) have no common factors.

A3 The polynomial degrees na and nb are known a priori
with nb ≤ na.

u0i
y0i

yi

ỹi
ũi ui

System

Fig. 1. Errors-in-variables setup.
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A4 The true input u0i
is a zero-mean ergodic process and

is persistently exciting of sufficiently high order.
A5 The sequences ũi and ỹi are zero-mean, ergodic, white

noises with unknown variances σũ and σỹ, respectively.
A6 The sequences ũi and ỹi are mutually uncorrelated

and uncorrelated with u0i
and y0i

, respectively.

Introducing the parameter vectors

θ ,
[

aT bT
]T

= [a1 ... ana
b1 ... bnb ]

T
, (4a)

θ̄ ,
[

āT bT
]T

=
[

1 θT
]T
, (4b)

an alternative description of (1)-(3) is given by

ϕ̄T
0i
θ̄ = 0, (5a)

ϕ̄i = ϕ̄0i
+ ˜̄ϕi, (5b)

where

ϕ0i
, [−y0i−1

... −y0i−na
u0i−1

... u0i−nb
]T , (6a)

ϕ̄0i
, [−y0i

ϕT
0i

]T , (6b)

ϕi , [−yi−1 ... −yi−na
ui−1 ... ui−nb ]

T , (6c)

ϕ̄i , [−yi ϕ
T
i ]T , (6d)

ϕ̃i , [−ỹi−1 ... −ỹi−na
ũi−1 ... ũi−nb ]

T , (6e)

˜̄ϕi , [−ỹi ϕ̃
T
i ]T . (6f)

The identification problem is now given by:

Problem 1. Given an incrementally increasing number k
of measured input-output samples

Zk , {u1, y1, ..., ui, yi, ..., uk, yk}, (7)

determine an estimate of the augmented parameter vector

ϑ , [a1 ... ana
b1 ... bnb

σỹ σũ]
T
. (8)

Throughout this paper, the convention is made that esti-
mated quantities are marked by a ˆ while time dependent

quantities have a sub- or superscript k, e.g. ϑ̂k.

3. THE FRISCH SCHEME

As an alternative formulation of (5a), the following ex-
pression can be considered

Σϕ̄0
θ̄ = 0, (9)

where

Σϕ̄0
, E[ϕ̄0i

ϕ̄T
0i

] ∈ R
(na+nb+1)×(na+nb+1) (10)

is the noise-free covariance matrix, which is singular posi-
tive semidefinite, with rank(Σϕ̄0

) = na + nb (i.e. rank-one
deficient). Here, E[·] denotes the expected value operator.
Due to the stated assumptions, the noise-free covariance
matrix can be decomposed into

Σϕ̄0
= Σϕ̄ − Σ ˜̄ϕ, (11)

where

Σϕ̄ , E[ϕ̄iϕ̄
T
i ] (12)

is the covariance matrix of the noisy data and

Σ ˜̄ϕ , E[ ˜̄ϕĩ̄ϕ
T
i ] =

[

σỹIna+1 0
0 σũInb

]

. (13)

Note that, in the noisy case, the covariance matrix Σϕ̄ is
generally of full rank. Moreover, it can be approximated
by the sample covariance matrix

Σ̂k
ϕ̄ ,

1

k

k
∑

i=1

ϕ̄iϕ̄
T
i ≈ Σϕ̄. (14)

The Frisch scheme identification problem can thus be re-
expressed as follows:

Problem 2. Given a sample covariance matrix Σ̂k
ϕ̄ of noisy

observations, determine Σ̂k
˜̄ϕ

such that

Σ̂k
ϕ̄0

= Σ̂k
ϕ̄ − Σ̂k

˜̄ϕ ≥ 0 and det(Σ̂k
ϕ̄0

) = 0. (15)

Problem 2 does not yield a unique solution, but the set
(σũ, σỹ) which satisfies (15) defines a convex curve in the
first quadrant of the noise space R

2, where each point
can be uniquely mapped into the parameter space R

na+nb .
This means that a particular solution can be characterised
by the input measurement noise variance, since a given
σũ uniquely defines σỹ, hence θ (Beghelli et al. [1990]).
These functional relationships in the Frisch scheme may
be formalised as

σỹ(Zk, σũ) , λmin

[

Ak

(

Zk, σũ

)]

, (16a)

θ(Zk, σỹ, σũ) , −

(

Σ̂k
ϕ −

[

σỹIna
0

0 σũInb

])

−1

ξ̂k, (16b)

where λmin is the minimum eigenvalue operator and

Ak

(

Zk, σũ

)

, Σ̂k
y − Σ̂k

yu

[

Σ̂k
u − σũInb

]

−1

Σ̂k
uy. (17)

The individual block matrices in (16b) and (17) are defined
by

Σ̂k
ϕ̄ ,

[

Σ̂k
y Σ̂k

yu

Σ̂k
uy Σ̂k

u

]

,

[

× ×

ξ̂k Σ̂k
ϕ

]

, (18)

where Σ̂k
u ∈ R

nb×nb , ξ̂k ∈ R
(na+nb)×1 and × denotes an

arbitrary entry.

In order to obtain a single solution within the Frisch
scheme, a model selection criterion is required to be
introduced and the approach adopted here makes use of a
set of high order YW equations (Diversi et al. [2006]). In
this case, σũ, which completely characterises the solution
of the Frisch scheme, is obtained by minimising the cost
function

Jk , J(Zk, θ) = ‖Σ̂k
ζϕ̄θ̄‖

2
2 (19)

with

Σ̂k
ζϕ̄ ,

1

k

k
∑

i=1

ζiϕ̄
T
i ≈ E

[

ζiϕ̄
T
i

]

= Σζϕ̄ (20)

and

ζi ,
[

ui−nb−nζ
... ui−nb−1

]T
∈ R

nζ×1, (21)

where nζ ≥ na+nb+1 is user specified. This approach can
be interpreted as combining the Frisch scheme with the
instrumental variable estimator (cf. e.g. Söderström and
Mahata [2002], Söderström et al. [2002]), which utilises
delayed inputs as instruments, exploiting the fact that

Σζϕ̄θ̄ = 0 (22)

holds in the asymptotic case.

The Frisch scheme can hence be summarised as

σ̂k
ũ = arg min

σũ

J(Zk, θ), (23a)

σ̂k
ỹ = σỹ(Zk, σ̂k

ũ), (23b)

θ̂k = θ(Zk, σ̂k
ỹ , σ̂

k
ũ). (23c)

Note that since Jk depends on θ, the computation of σ̂k
ũ

also requires (16b), which, in turn, requires (16a) and (17).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1391



4. RECURSIVE FRISCH SCHEME

In many applications, it is essential to obtain online
estimates of the model parameters, while the process
generating the data is running. Typically, such a recursive
estimation scheme must obey the following principles
(Ljung [1999]):

P1 The processing must with certainty be completed
during one sample interval using a fixed and a priori
known amount of calculations.

P2 The data, which is passed from one recursion step
to the next, must be stored in a finite-dimensional
information vector.

The following subsections develop the recursive equations
for the Frisch scheme, where the common idea is to use
iterative procedures which carry out a single iteration as
new data arrives. Such approaches are frequently utilised
within recursive prediction error-methods (see e.g. Ljung
and Söderström [1983]).

4.1 Update of covariance matrices

In order to satisfy requirement P2, the covariance matrices
in (14) and (20) are to be updated recursively. By weight-
ing the ith data at time k with

βk
i = λkβ

k−1
i for 0 ≤ i ≤ k − 1 and βk

k , 1, (24)

the update equations are given by (cf. Chapter 11.2 in
Ljung [1999])

Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

(

ϕ̄kϕ̄
T
k − Σ̂k−1

ϕ̄

)

, (25a)

Σ̂k
ζϕ̄ = Σ̂k−1

ζϕ̄ + γk

(

ζkϕ̄
T
k − Σ̂k−1

ζϕ̄

)

. (25b)

The normalising gain γk is given by

γk ,

(

k
∑

i=1

βk,i

)−1

=
γk−1

λk + γk−1
, (26)

which reduces to 1/k in the case of no adaptivity, i.e. λk

equal to 1, or to 1−λ in the case of exponential forgetting,
i.e. λk = λ where 0 < λ < 1.

Using the recursively updated covariance matrices (25),
it is now possible to evaluate the Frisch equations (23) at
each time step. Although such an algorithm may satisfy P1
and P2, it cannot be considered to be a recursive scheme
since only the trivial covariance matrix update operations
are performed. However, this repeatedly applied Frisch
scheme (RAFS) is used for comparison purposes in the
subsequent development, since it exhibits all the charac-
teristic properties of the Frisch scheme.

A fully recursive Frisch scheme (RFS) is proposed in the
following subsections, by developing update equations for
σũ, σỹ and θ.

4.2 Update of θ

In order to obtain a recursive expression for θ̂k, an ap-
proach is adopted here, similar to that in Sagara and
Wada [1977], Zheng and Feng [1989], where the bias of
the recursive least squares (RLS) estimate is compensated
at each time step k. It is assumed that estimates of σ̂k

ũ and
σ̂k

ỹ have already been obtained. The update equations for

the latter two quantities are given in the remainder of this
Section.

Equation (1) can be rewritten as

A(q−1)yi −B(q−1)ui = A(q−1)ỹi −B(q−1)ũi , ei, (27)

where the residual ei is the difference of two moving
average processes. This allows the formulation of a linear
regression problem

yi = ϕT
i θ + ei (28)

and the application of the least squares (LS) estimator. It
is well known that the LS estimate

θ̂LS
k =

[

k
∑

i=1

ϕiϕ
T
i

]−1 k
∑

i=1

ϕiyi (29)

is asymptotically biased in the presence of measurement
noise. An explicit expression for the bias can be obtained
by substituting (28) in (29) which yields

θ̂LS
k = θ +

[

k
∑

i=1

ϕiϕ
T
i

]−1 k
∑

i=1

ϕiei. (30)

By using ei = −ϕ̃T
i θ+ ỹi, and dividing by k it follows that

1

k

k
∑

i=1

ϕiϕ
T
i

(

θ̂LS
k − θ

)

= −
1

k

k
∑

i=1

ϕiϕ̃iθ +
1

k

k
∑

i=1

ϕiỹi,

(31)

which becomes, in the asymptotic case, i.e. for k → ∞

Σϕ

(

θLS − θ
)

= −

[

σỹIna
0

0 σũInb

]

θ (32)

or, equivalently,

θ = θLS + Σ−1
ϕ

[

σỹIna
0

0 σũInb

]

θ, (33)

where Σϕ is obtained by deleting the first row and column
of Σϕ̄.

Equation (33) gives rise to a recursive form and if the noise
variances are known (or estimated), it is possible to apply
the RLS estimator and compensate for the bias at each
time step k. This gives the update equation

θ̂k = θ̂LS
k + PkD̂kθ̂k−1 (34)

with

D̂k ,

[

σ̂k
ỹIna

0

0 σ̂k
ũInb

]

, (35)

whilst the corresponding RLS equations are given by

θ̂LS
k = θ̂LS

k−1 + Lk

(

yk − ϕT
k θ̂

LS
k−1

)

, (36a)

Lk =
Pk−1ϕk

ϕT
k Pk−1ϕk + 1−γk

γk

, (36b)

Pk =
1

1 − γk

(

Pk−1 −
Pk−1ϕkϕ

T
k Pk−1

ϕT
k Pk−1ϕk + 1−γk

γk

)

. (36c)

Note that by utilising the above normalised gain version
of RLS and applying the matrix inversion lemma (see Ch.
11.2 in Ljung [1999]), Pk can be utilised in (34) to compute

[Σ̂k
ϕ]−1 recursively, which avoids the matrix inversion.

4.3 Update of σỹ

In order to compute σ̂k
ỹ , the least eigenvalue of Âk ,

Ak

(

Zk, σ̂ũ

)

in (17) is to be determined. This could be
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achieved via the singular value decomposition (SVD),
which generally requires O(n3) flops for a n × n matrix
(Golub and Van Loan [1996]). When only a few singular
triplets or eigenpairs are required, more efficient algo-
rithms exist which only track the subspace corresponding
to one or more singular values (Comon and Golub [1990]).
Such an approach is feasible when the corresponding ma-
trix (hence the singular triplets) ‘varies slowly’ with time,
which is assumed to be the case here. Since the matrix
update ∆A = Âk − Âk−1 is generally of full rank na + 1,
a gradient based algorithm, which requires O(n2) flops 1 ,
is applied in the subsequent development, in order to
determine a recursive expression for σ̂k

ỹ . More specifically,
an iterative conjugate gradient method similar to that
proposed in Chen et al. [1986] is used, where one iteration
per recursion is applied.

Suppose the eigensystem is given by

Âkxk = λkxk, (37)

where xk ∈ R
na+1 and λk is a scalar parameter. Then the

minimum eigenvalue can be obtained by minimising the
Rayleigh quotient (Golub and Van Loan [1996])

λk , R(xk) =
xT

k Âkxk

xT
k xk

. (38)

Utilising a gradient-based approach, the update equations
for the minimum eigenvalue are given by (cf. Chen et al.
[1986])

xk = x̄k−1 + µx
k−1ψ

x
k−1, (39a)

x̄k = xk/
(

xT
k xk

)1/2
, (39b)

σ̂k
ỹ = x̄T

k Âkx̄k, (39c)

where the scalar µx
k denotes the stepsize and ψx

k ∈ R
na+1

the update direction. The conjugate gradient update di-
rection is given by

rk = σ̂k
ỹ x̄k − Âkx̄k, (40a)

qk−1 = −
(

rT
k Âkψ

x
k−1

)

/
(

ψx
k−1

T Âkψ
x
k−1

)

, (40b)

ψx
k = rk + qk−1ψ

x
k−1, (40c)

whilst the step size is chosen as

µx
k =

(

rT
k−1rk−1

)

/
(

rT
k−1Âkrk−1

)

. (41)

The algorithm is initialised with a guess of x0 and Â0, such
that

x̄0 = x0/
(

xT
0 x0

)1/2
, (42a)

ψx
0 = r0 = R(x0)x̄0 − Â0x̄0. (42b)

Remark 3. (Frisch-like character). One of the significant
characteristics of the Frisch scheme is that the estimated
model belongs to a class characterised by a convex curve in
the noise space, where the functional relationship between
σũ and σỹ defining a locus of solutions is given by (16a).
However, computing the output noise variance recursively
via (39)-(41) will inevitably introduce an error, which
means that the set (σ̂k

ũ, σ̂
k
ỹ ) will not exactly lie on this

convex curve. This would, strictly speaking, only imply
a ‘Frisch-like’ character for the solution. However, as
illustrated in Section 5, the set (σ̂k

ũ, σ̂
k
ỹ ) can converge to

1 In the case of a rank-one update, it is possible to track d singular
triplets using O(nd2) flops only (cf. Section V in Comon and Golub
[1990] or Davila [1994]).

the convex curve, after the initialisation transients have
decayed.

Remark 4. (Error detection and re-initialisation). An ac-
curate computation of σ̂k

ỹ is important within the recursive

Frisch scheme, since σ̂k
ỹ effects θ̂k in (34), which in turn will

effect σ̂k+1
ũ (see below). It is crucial that the initialisation

of x0 is sufficiently close to the true eigenvector corre-
sponding to the smallest eigenvalue of A0. Otherwise the
estimate of σỹ may exhibit an oscillation between different
solutions, a behaviour which is then propagated to σ̂k

ũ

and θ̂k due to the previously stated dependencies. Note
that the residual rk in (40) can be utilised to compute
an accuracy measure, say ρk = ||rk||

2
2, for the eigenpair

computation, with which an oscillating condition may be
detected. An appropriate re-initialisation of (42) can be
invoked in order to overcome this potential problem.

4.4 Update of σũ

For the recursive computation of σ̂k
ũ, a gradient-based iter-

ative search algorithm can be utilised, where one iteration
per recursion is applied.

The aim is to find an expression of the form

σ̂k
ũ = σ̂k−1

ũ + µu
kψ

u
k , (43)

where the potentially time-varying step-size µu
k is a user

chosen positive scalar and ψu
k ∈ R is the update direction.

Several choices for ψu
k are possible, a simple one being the

negative steepest gradient of Jk (cf. (19)) with respect to

σũ. Consequently, dJk/dσũ is to be determined at ϑ̂k−1

and by applying the chain rule for vector differentiation,
the first order derivative is given by

dJk

dσũ

∣

∣

∣

∣

ϑ=ϑ̂k−1

=

(

dσỹ

dσũ

∂θ

∂σỹ
+

∂θ

∂σũ

)

dJk

dθ

∣

∣

∣

∣

ϑ=ϑ̂k−1

. (44)

Defining Σ̂k
ζϕ̄ ,

[

Σk
1 Σk

2

]

and rewriting the cost function

(19) as

Jk = θ̄T
(

Σ̂k
ζϕ̄

)T

Σ̂k
ζϕ̄θ̄

=
[

1 θT
]

[

Σk
1

T

Σk
2

T

]

[

Σk
1 Σk

2

]

[

1
θ

]

= Σk
1

T
Σk

1 + Σk
1

T
Σk

2θ + θT Σk
2

T
Σk

1 + θT Σk
2

T
Σk

2θ, (45)

one obtains, for the last term in (44),

dJk

dθ
= 2Σk

2

T (
Σk

1 + Σk
2θ
)

∈ R
(na+nb)×1. (46)

In addition, expressions for the sensitivity derivatives
∂θ/∂σũ, ∂θ/∂σỹ and dσỹ/dσũ are given by 2 :

Lemma 5. The sensitivity derivatives at ϑ̂k−1 are given by

2 Note, that the sensitivity derivatives given here are based on the
non-recursive Frisch equations (16a) and (16b). The determination
of recursive expressions based on (39c) and (34) may also be possible.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1393



∂θ

∂σũ

∣

∣

∣

∣

ϑ=ϑ̂k−1

=
[

0 b̂Tk−1

]

(

Σ̂k
ϕ − D̂k−1

)

−1

∈ R
1×(na+nb),

(47a)

∂θ

∂σỹ

∣

∣

∣

∣

ϑ=ϑ̂k−1

=
[

âT
k−1 0

]

(

Σ̂k
ϕ − D̂k−1

)

−1

∈ R
1×(na+nb),

(47b)

dσỹ

dσũ

∣

∣

∣

∣

ϑ=ϑ̂k−1

= −
b̂Tk−1b̂k−1

ˆ̄aT
k−1

ˆ̄ak−1
∈ R. (47c)

Proof 4.1. Assuming that ϑ̂k−1 is close to ϑ̂k, the deriva-
tions are conceptually identical to those given in Appendix
II.A and II.B in Söderström [2007a] when a linearisation

is carried out around ϑ̂k−1 . �

Consequently, the gradient can be computed by (44) using
(46) and (47), which defines the steepest gradient update
direction

ψu
k = −

dJk

dσũ

∣

∣

∣

∣

ϑ=ϑ̂k−1

. (48)

For the variable step size µu
k in (43), a constant value

µu
k = µu has been found to give excellent results in practice

for the cases considered.

Remark 6. (Projection facility). In order to stabilise the
algorithm during the initial phase, it might be advanta-
geous to project the noise variances into the intervals

0 ≤σũ ≤ σmax
ũ , (49a)

0 ≤σỹ ≤ σmax
ỹ , (49b)

where σmax
ũ and σmax

ỹ are the maximal admissible solutions
for σũ and σỹ, respectively. These values can be computed
from the data as in Beghelli et al. [1990]

σmax
ũ = λmin

[

Σ̂k
u − Σ̂k

uy[Σk
y ]−1Σ̂k

yu

]

, (50a)

σmax
ỹ = λmin

[

Σ̂k
y − Σ̂k

yu[Σk
u]−1Σ̂k

uy

]

. (50b)

Alternatively, a positive constant can be chosen for the
maximum admissible values, if such a priori knowledge is
available.

Remark 7. (Computational complexity). The computation
time per single recursion can be approximately halved by
using the RFS approach compared to the RAFS, although
both algorithms are of cubic complexity w.r.t. the number
of system parameters to be identified. However, fast al-
gorithms of quadratic order are possible by accounting for
the fact that the eigenvector corresponding to the smallest
eigenvalue of Ak is also part of the parameter vector to be
estimated (cf. Linden et al. [2007]).

Remark 8. (Classification of the RFS). The RFS can be
considered to belong to the family of iterative bias-
compensating LS algorithms (see e.g. Sagara and Wada
[1977], Zheng and Feng [1989], Söderström [2007b] and
the references within). The essential difference is that the
measurement noise variances are computed in a different
way.

A detailed description of the RFS algorithm developed in
this Section is given in Appendix A.

5. NUMERICAL EXAMPLE

A LTI SISO system with na = nb = 2 and given by

ϑ = [−1.5 0.7 1 0.5 4 1]
T

(51)

(cf. (8)) is simulated for 500 samples using a zero mean,
white and Gaussian distributed input signal of unity
variance. The RAFS and the RFS are applied to estimate
ϑ; both using nζ = na +nb +1, whilst µu = 0.05 is chosen
for the gradient-based approach. The results are shown in
Figure 2.

As expected, the RAFS yields identical estimates as its
offline counterpart after k = 500 recursions, while the
estimates of the RFS are slightly different. However, this
difference is mainly due to different solutions of σ̂k

ũ and,
w.r.t Remark 3, it is interesting to investigate how accurate
the computation of σ̂k

ỹ is, i.e. how exact the least eigenvalue
of Ak can be approximated using the conjugate gradient
method. Therefore, the experiment is repeated where the
RFS utilises the same input measurement noise variance
estimate as the exact algorithm, i.e. σ̂k

ũ is identical in both
cases. The differences in σ̂k

ỹ is then a measure for the
accuracy of the subspace tracking algorithm in Section 4.3.
It turns out that the difference between both estimates
is marginal: after 500 recursion steps, for instance, it is
approximately 3 · 10−4 while it decreases to 3 · 10−7 after
5000 iterations. This means that (at least in the example
considered here) the RFS yields estimates of σũ and σỹ

which seem to converge to the set of admissible Frisch
solutions, once the initialisation transients have decayed.
Moreover, it is observed in Figure 2 that σ̂k

ũ based on the
RFS is ‘smoother’ than its exact counterpart; a property

which is propagated to all elements of ϑ̂k and which might
be desirable in practical applications. It is clear that the
smoothness depends on the choice of µu.

6. CONCLUSIONS

The Frisch scheme for the identification of dynamical
systems has been modified to recursively estimate the
parameters and measurement noise variances of LTI SISO
EIV systems. The recursive scheme belongs to the family
of iterative bias-compensating LS algorithms, which com-
pensates for the RLS bias at each recursion whilst the
recursive update of measurement noise variance estimates
is achieved using gradient-based techniques. A numerical
example has been provided to illustrate the characteristics
of the developed algorithm. Although approximations are
necessary to track the smallest eigenvalue of a slowly
varying matrix, the solution seems to retain the Frisch
character after the initialisation transients have decayed.

Further work could concern the adaptive behaviour of the
method, i.e its capability to track time-varying system
parameters and to investigate convergence and consistency
properties.
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Appendix A. RFS ALGORITHM

1) Choose µu, nζ ≥ na+nb+1, 0 < λk < 1 and j = nζ+nb

2) Initialise RLS with θ̂LS
na

= 0, Pna
= 0.1I and for

k = na + 1, ..., j

a) Compute Pk, Lk and θ̂LS
k using (36)

3) Initialise conjugate gradient method:
a) Obtain ‘guess’ for xj , e.g. via SVD of Aj

b) Compute x̄j and ψx
j via (42)

4) Initialise Σ̂j
ζϕ̄ = 0, Σ̂j

ϕ̄ = 1
nζ−1

∑j
i=nb+1 ϕ̄iϕ̄

T
i and

γj = 1
nζ−1

5) For k = j + 1, ...
a) Update γk via (26)

b) Update Σ̂k
ϕ̄ and Σ̂k

ζϕ̄ via (25)

c) Compute θ̂LS
k using (36)

d) Update σ̂k
ũ

i) Determine ψu
k in (48) utilising (44) and (46)-(47)

ii) Update σ̂k
ũ via (43)

e) Update σ̂k
ỹ in (39c) using (39)-(41)

f) Update θ̂k in (34)
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