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Abstract: In networked control systems (NCS), it is considered essential to design a robust
controller such that the networked-system is stable against data dropouts during the network
transfer. It has been shown that there is a critical data dropout rate over which the networked-
system could be unstable; hence the desired task cannot be achieved. This paper shows that a
desired task or trajectories can be still achieved even though there are feedback signal dropouts
if the desired task is repetitive, as in the iterative learning control case. Specifically this paper
shows how to design stochastic iterative learning control systems such that the networked-system
with a repetitive task is robust stable against measurement and process noises and independent,
intermittent output channel dropouts.

1. INTRODUCTION

In the field of networked control systems (NCS), a major
research interest is to understand how to compensate
for signal delay and data dropout effects during network
data transfer, so as to enable stable tele-operation and
remote control (see Tipsuwan and Chow (2001); Walsh
et al. (1999)). Recently, data dropout problems during
network transmission have attracted a lot of research
attention (see Wang et al. (2003); Smith and Seiler (2003)),
though the problem was also addressed in the late 1980’s
(see Vangal (1989); Lynch et al. (1990)). From existing
intermittent estimation theory (see Ling and Lemmon
(2004, 2002); Zhang et al. (2001)), we can see that there
is a critical data dropout rate above which an NCS
is not stable. Recently we showed that if intermittent
Kalman filtering is used, but enhanced by a learning
control scheme, a repetitive or iterative NCS system could
be made robustly stable, as long as there is not complete
data dropout during the network transfer. Hence, the
critical data dropout rate condition can be relaxed (see
Ahn et al. (2007, 2006)). However, our earlier results
were restricted to the case when the output channels have
dependency (i.e., they are either all delivered together or
all are dropped). In this paper we improve the theory
given in Section 8.3 of Ahn et al. (2007) and in Ahn
et al. (2006) by considering independent data loss between
measurement output channels at every sampling instant.
This is practically important and represents the situation,
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for example, when the data from different sensors in a
process is transmitted over different network connections
(e.g., wirelessly) or in separate packets.

Iterative learning control (ILC) is a control method, which
tries to achieve perfect trajectory tracking when the sys-
tem operates repetitively (see Arimoto et al. (1984); Moore
et al. (1992)). In fact learning control is a kind of multi-
pass system (see Edwards (1974); Chow and Fang (1998);
Owens et al. (2000)), whereby the ILC systems try to
achieve the desired trajectories in the time domain, but the
convergence is guaranteed along the iteration domain. Var-
ious robustness issues such as model uncertainty, Cheah
(2001), nonlinear robustness, Xu et al. (2000), parameter
interval uncertainty, Ahn et al. (2007), the initial reset
problem, Hillenbrand and Pandit (2000), stochastic noise,
Saab (2001), disturbance rejection, Norrlöf and Gunnars-
son (2001), data delays, Sun and Wang (2001), etc., along
the iteration axis, have been investigated. However the
data dropout problem in the context of ILC has not been
completely studied beyond our initial results in Ahn et al.
(2007) and Ahn et al. (2006). This paper investigates the
implementation of learning control in a network control
system setting, specifically focusing on compensation for
intermittent data dropout when the desired task or desired
trajectories are repetitive. It will be shown that the critical
data dropout rate condition can be removed if the system
is enhanced by learning control.

To motivate the current research and to highlight the
contribution over our previous work, let us consider a
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situation of data dropouts. Data packets are transferred as
a data stream. Since data is transferred at every sampling
instant, there is a gap between a data packet for one
sample and the other data packet for another sample.
Also, in each packet, data is transferred in a stream. In
Ahn et al. (2007) and Ahn et al. (2006), it was supposed
that a data packet is either completely missed during the
network transfer or delivered successfully. However, it is
more natural to assume that some data bytes in individual
data packet are lost; but still remaining data bytes are
safely delivered. Thus, it is natural to say that part of
output data Y = [y1, y2, . . . , yn] is missed; but part of
them is transferred safely, which means data bytes are
independently intermittent each other. The key objective
of this paper thus is to design a learning controller for such
a case with measurement and process random noises.

The paper is organized as follows. In Section 2, we provide
a detailed problem set-up and in Section 3, we derive
an iteration-varying learning gain matrix and analyze
the convergence of the stochastic learning control system
with intermittent data dropouts. The results are verified
through numerical simulations in Section 4. Conclusions
will be given in Section 5.

2. PROBLEM SET-UP FOR ILC WITH
INDEPENDENT DATA DROPOUTS

This section presents the problem set-up for intermittent
data dropout networked-systems enhanced by stochastic
learning control scheme. Let us consider the following
discrete-time, 2-dimensional system:

xk(t + 1) = Axk(t) + Buk(t) + wk(t) (1)

yk(t) = Cxk(t) + vk(t) (2)

where wk(t) and vk(t) are process and measurement noises
respectively, and A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n.
The system operates repeatedly in the iteration domain
and at the k-th iteration, the system is described by
the discrete state equations (1) and (2). As explained in
Ahn et al. (2006), the intermittent ILC problem is to
design a robust controller when the output measurement is
missed with some stochastic characteristics. In the typical
discrete-time learning controller, the control input uk+1(t)
is calculated by uk+1(t) = uk(t) + Kk(t)ek(t + 1), where
ek(t + 1) = yd(t + 1) − yk(t + 1), Kk(t) is the learning
gain matrix, yd is the desired output, and yk is the actual
measured output. In this update, it is supposed that the
stored control input uk+1(t) or the output measurement
yk can be missed during the network transfer. In the
intermittent ILC problem it is further supposed that
the remote plant can detect when the current control
signal uk+1 is missed; and the remote controller can also
recognize whether the output measurement is dropped or
not. Thus, the remote plant uses the past control signal
uk(t) when the current control signal uk+1(t) is missed
and the remote controller updates the control signal by
uk+1(t) = uk(t) when the output is missed. Therefore, in
terms of the remote plant, the control signal is updated
either by uk+1(t) = uk(t)+Kk(t)ek(t+1) or by uk+1(t) =
uk(t), which can be represented by

uk+1(t) = uk(t) + Kk(t)ηek(t + 1) (3)

where η ∈ {0, 1} (see Ahn et al. (2007, 2006)). If η = 0,
then there could be control signal dropout and/or the
measurement dropout. However, if η = 1, there is no data
dropout during the network transfer. Thus, in Ahn et al.
(2007) and Ahn et al. (2006), the data dropout indicator
η is a binary random parameter. However, it is possible
that a part of the data packet can be missed during the
network transfer. In other words, in the multi-input multi-
output 2 dimensional system modeled by (1) and (2), only
a part of the output channels of yk = [y1

k, . . . , yl
k]T 1 can

be dropped. Similarly in the control signal vector uk =
[u1

k, . . . , um
k ]T , a part of signal channels can be dropped.

Thus, it is more general to model the data dropout by
uk+1(t) = uk(t) + Kk(t)Σek(t + 1) (4)

where Σ is a diagonal matrix indicating the data dropouts
such as:

Σ = diag[ηi] :=


η1 0 · · · 0
0 η2 · · · 0
...

...
. . .

...
0 0 · · · ηl

 (5)

where each ηi is a binary random variable such as ηi ∈
{0, 1}, i = 1, . . . , l and E[ηiηj ] = 0 if i 6= j. It is
assumed that E[ηi] := ηi is known, which implies that the
expectation of Σ is given as Σ = diag[ηi]. Introducing ηi =
ηi+η̃i, it is clear that η̃i is a zero-mean stochastic sequence.
Here for our main result, we introduce Σ̃ = diag[η̃i], which
means Σ = Σ + Σ̃. Also, since the variance of η̃i is (1 −
ηi)ηi, the variance of Σ̃ is given as diag[(1 − ηi)ηi]. For
convenience, we denote Σ̃σ2 := diag[(1−ηi)ηi], and denote
ud(t), xd(t), and yd(t) as the desired input, state, and
output signals, respectively. Also we introduce δuk+1(t) =
ud(t)−uk+1(t) and δxk(t) = xd(t)−xk(t). Then, following
the same procedure as given in Saab (2001) and Ahn
et al. (2006), we obtain the auxiliary system given in (6).
Using Σ = Σ + Σ̃, we change (6) to (7). Here, for a

brevity of presentation, we define X+ :=
[

δuk+1(t)
δxk(t + 1)

]
,

X :=
[

δuk(t)
δxk(t)

]
and W :=

[
wk(t)

vk(t + 1)

]
, and assume no

correlation between X and W . In the following section,
we will calculate P+ := E[X+(X+)T ] and analyze the
convergence of the system.

3. INTERMITTENT ILC: DESIGN AND ANALYSIS

3.1 Optimal Learning Gain Matrix

First we need to calculate the variance of the third term
of the right-hand side of (7) as shown in (8) (shown on the
next page). In (8), Θ1 is calculated as:

Θ1 = KkΣ̃CBδukδuT
k (CB)T Σ̃T KT

k

+KkΣ̃CAδxkδuT
k (CB)T Σ̃T KT

k

+KkΣ̃CBδukδxT
k (CA)T Σ̃T KT

k

+KkΣ̃CAδxkδxT
k (CA)T Σ̃T KT

k . (9)
1 In the output yk, y1

k is the first channel; y2
k is the second channel;

. . ., yl
k is the l-th channel.
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[
δuk+1(t)

δxk(t + 1)

]
=
[

I −Kk(t)ΣCB −Kk(t)ΣCA
B A

] [
δuk(t)
δxk(t)

]
+
[

Kk(t)ΣC Kk(t)
−I 0

] [
wk(t)

vk(t + 1)

]
(6)

[
δuk+1(t)

δxk(t + 1)

]
=
[

I −Kk(t)ΣCB −Kk(t)ΣCA
B A

] [
δuk(t)
δxk(t)

]
+
[

Kk(t)ΣC Kk(t)
−I 0

] [
wk(t)

vk(t + 1)

]
+
[
−Kk(t)Σ̃CB −Kk(t)Σ̃CA

0 0

] [
δuk(t)
δxk(t)

]
+
[

Kk(t)Σ̃C 0
0 0

] [
wk(t)

vk(t + 1)

]
. (7)

E

[[
−Kk(t)Σ̃CB −Kk(t)Σ̃CA

0 0

]
XXT

[
−Kk(t)Σ̃CB −Kk(t)Σ̃CA

0 0

]T
]

= E

[(
Θ1 0
0 0

)]
(8)

E[KkΣ̃CBδukδuT
k (CB)T Σ̃T KT

k ] = KkΣ̃σ2DiagE
[
CBδukδuT

k (CB)T
]
KT

k = KkΣ̃σ2Diag[CBP11(CB)T ]KT
k (10)

Since elements of Σ̃ are independent each other, the
equation given in (10) is true (shown on the next page).
In (10), Diag[·] is an operator that selects diagonal terms
of matrix [·] and P11 = E[δukδuT

k ]. Therefore, we obtain

E [Θ1] = KkΣ̃σ2Diag[CBP11(CB)T ]KT
k

+KkΣ̃σ2Diag[CBP12(CA)T ]KT
k

+KkΣ̃σ2Diag[CAP21(CB)T ]KT
k

+KkΣ̃σ2Diag[CAP22(CA)T ]KT
k

= KkΣ̃σ2Diag[CBP11(CB)T + CBP12(CA)T

+CAP21(CB)T + CAP22(CA)T ]KT
k (11)

where P12 = E[δukδxT
k ], P21 = E[δxkδuT

k ], and P22 =
E[δxkδxT

k ]. Similarly we calculate the variance of the
fourth term of the right-hand side of (7) such as:

E

[[
Kk(t)Σ̃C 0

0 0

]
WWT

[
Kk(t)Σ̃C 0

0 0

]T
]

=
(

KkΣ̃σ2Diag[CQ11C
T ]KT

k 0
0 0

)
(12)

where Q11 = E[wkwT
k ]. Next using (11) and (12), we

calculate P+ such as

P+ = ΦPΦT + ΨQΨT

+
(

E[Θ1] + KkΣ̃σ2Diag[CQ11C
T ]KT

k 0
0 0

)
(13)

where

Φ :=
[

I −Kk(t)ΣCB −Kk(t)ΣCA
B A

]
Ψ :=

[
Kk(t)ΣC Kk(t)

−I 0

]
P+ := E[X+X+T ]; P := E[XXT ]; Q := E[WWT ].

Now, in order to find an optimal learning gain matrix
Kk(t), we use the trace of P+. In what follows, for
simplicity, we omit subscripts the k and η̃, and the time
index t. Now, we are able to compute the traces of both
sides of (13) as (14) (shown on the next page). In (14), we
partitioned P and Q according to:

P =
[

P11 P12

P21 P22

]
; Q =

[
Q11 Q12

Q21 Q22

]

Next, to simplify the expression, we use the following
substitutions

V1 := (CB, CA), V2 := (B, A), V3 = (I, 0)
Then, (14) is expressed as:

trace(P+) = trace[KΣ̃σ2Diag[V1PV T
1 ]KT

+KΣ̃σ2Diag[CQ11C
T ]KT

+KΣV1PV T
1 Σ

T
KT + V2PV T

2

−V3PV T
1 Σ

T
KT −KΣV1PV T

3

+K(ΣCQ11 + Q21)(ΣC)T KT

+K(ΣCQ12 + Q22)KT + Q11] (15)
Therefore, we have

∂trace(P+)
∂K

= 2KΣ̃σ2Diag[V1PV T
1 ]

+2KΣ̃σ2Diag[CQ11C
T ]

+2KΣV1PV T
1 Σ

T − 2V3PV T
1 Σ

T

+2K(ΣCQ11 + Q21)(ΣC)T

+2K(ΣCQ12 + Q22) (16)
Here, assuming no correlation between wk(t) and vk(t), we
consider Q12 = Q21 = 0. Now, defining

Π : = Σ̃σ2Diag[V1PV T
1 + CQ11C

T ]

+ΣV1PV T
1 Σ

T
+ ΣCQ11ΣCT + Q22, (17)

when ∂trace(P+)
∂K is set equal to zero, we finally calculate

the optimal learning gain as follows:

Kk(t) = V3PV T
1 Σ

T
Π−1. (18)

3.2 Analysis of convergence

In this subsection, we analyze the convergence of the
intermittent ILC system updated by the learning gain
given by (18). For this purpose, we need to find a recursive
update formula for the covariance matrix P = E[XXT ].
Using the same method given in Saab (2001), it can be
shown that P12,k(t) = P21,k(t) = 0. For the convergence
analysis of the diagonal term P11,k(t), we derive the
following formula which is similar to Eq. (16) of Ahn et al.
(2006):
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trace(P+) = trace
[
KkΣ̃σ2Diag[CBP11(CB)T + CBP12(CA)T + CAP21(CB)T + CAP22(CA)T ]KT

k

+KkΣ̃σ2Diag[CQ11C
T ]KT

k + [(I −KΣCB)P11 −KΣCAP21][I −KΣCB]T

+[(I −KΣCB)P12 −KΣCAP22][−KΣCA]T + (BP11 + AP21)BT + (BP12 + AP22)AT

+(KΣCQ11 + KQ21)(KΣC)T + (KΣCQ12 + KQ22)KT + Q
]

(14)

E[δuk+1(t)δuk+1(t)T ]

= KΣ̃σ2Diag[V1PV T
1 ]KT + KΣ̃σ2Diag[CQ11C

T ]KT

+KΣV1PV T
1 Σ

T
KT + V3PV T

3 − V3PV T
1 Σ

T
KT

−KΣV1PV T
3 + KΣCQ11C

T Σ
T
KT + KQ22K

T . (19)

We can now change (19) as follows:

E[δuk+1(t)δuk+1(t)T ]

= KΠKT + V3PV T
3 − V3PV T

1 Σ
T
KT −KΣV1PV T

3

= V3PV T
1 Σ

T
Π−1Π[V3PV T

1 Σ
T
Π−1]T + V3PV T

3

− V3PV T
1 Σ

T
[V3PV T

1 Σ
T
Π−1]T

− [V3PV T
1 Σ

T
Π−1]ΣV1PV T

3

= V3PV T
3 − [V3PV T

1 Σ
T
Π−1]ΣV1PV T

3 (20)

Then, inserting V1 = (CB,CA) and V3 = (I, 0) into the
above equation yields

P11,k+1 := E[δuk+1(t)δuk+1(t)T ]

= (I −Kk(t)ΣCB)P11,k. (21)

In the sequel, we will show that the spectral radius of
I −Kk(t)ΣCB is less than 1 (i.e., ρ(I −Kk(t)ΣCB) < 1).
The result is summarized in the following theorem.
Theorem 1. If ΣCB is full rank and P11 is positive definite,
then ρ(I −Kk(t)ΣCB) < 1.

Proof. Due to page limitations, we omit a detailed proof.

Theorem 1 shows that P11,k → 0 as k → ∞. Next we
consider the convergence of P22,k(t). For this we have the
following theorem.
Theorem 2. If there is no initial resetting error at every
iteration, then

P22,k →
t−1∑
i=0

At−1−iQ11

t−1∑
i=0

(AT )t−1−i. (22)

Proof. The proof is direct by following the proof of
Theorem 3.2 of Ahn et al. (2006).
Remark 3. In Theorem 2, it is shown that P22,k converges
to a fixed value as the number of iterations increases. It is
observed that the final converged value of P22 depends on
A and Q11. If there is no noise, then P22 → 0.
Remark 4. Similar to Saab (2001) and Ahn et al. (2006),
we can develop an algorithm for updating Kk(t) and for
propagating the ILC system on the iteration domain. For
this purpose, we use the following propagation, which is
derived from (13):

P22,k(t + 1) = BP11,k(t)BT + AP22,k(t)AT + Q11. (23)

Assuming that P11,k(t), when k = 0, is available and
P22,k(t), when t = 0, is also available, we generate the
following process:

• Use (18) for updating Kk(t).
• From (23), when k = 0, we calculate P22,k(t + 1).
• Calculate uk+1(t) using (4).
• Use (21) to update P11,k(t).
• Repeat whole process (i.e., k = k + 1).

4. SIMULATION ILLUSTRATIONS

For illustration and verification, we use the following two
input, two output linear time invariant discrete system:

xk(t + 1) =

( 0.5 −0.025 0.015
0.03 −0.5 −0.5
−0.75 0.025 −0.025

)
xk(t)

+

( 0.1 0.5
−0.1 0.5
0.0 1.0

)
uk(t) + wk(t) (24)

yk(t) =
(

1.0 0.0 0.0
0.0 1.0 0.1

)
xk(t) + vk(t) (25)

where E[wkwT
k ] = diag[10−4] and E[vkvT

k ] = diag[10−4].
The number of samples in each iteration is fixed at 50 (i.e.,
t = 0, 1, 2, . . . , 49) and the desired output trajectories are
given as yd1(t) = sin(2πt/50) and yd2(t) = 1.5 sin(πt/50).
For simulation purposes, we choose P11,k=0 = diag[104]
and P22,k(t = 0) = diag[10−2]. To see various intermittent
rates, we tested five different cases; Case-1: η1 = 0.9 and
η2 = 0.9; Case-2: η1 = 0.7 and η2 = 0.7; Case-3: η1 = 0.5
and η2 = 0.5; Case-4: η1 = 0.3 and η2 = 0.3; Case-5:
η1 = 0.1 and η2 = 0.1. Note that the intermittent random
variables η1 and η2 are independent.

For comparison of the proposed intermittent stochastic
learning controller with a fixed learning gain strategy,
we selected a simple Arimoto-type gain matrix given by

Kk =
(

2.1818 −1.8182
0.3636 0.3636

)
which makes ‖I − KkCB‖ =

0.6. The selected Kk was made from α(CB)−1 where α
was tuned to be 0.4. Fig. 1 is the transient response of the
ILC system with the fixed Arimoto-type gain matrix. The
top plot is the norm of the error Ek(1) = Yd(1) − Yk(1)
vs. iteration number and the bottom plot is the norm of
error Ek(2) = Yd(2)− Yk(2) 2 vs. iteration number. Fig. 1
shows that the desired trajectories have been achieved
perfectly as iterations increase by the fixed learning gain
matrix without stochastic noises and intermittent signal
dropouts. Fig. 2 to Fig. 6 illustrate the transient responses
with stochastic noises and intermittent signal dropouts.
2 Ek(1), Yd(1), Yk(1), Ek(2), Yd(2), and Yk(2) are length N column
vectors defined based on [Yd(1), Yd(2)] = [yd(1), yd(2), . . . , yd(N)]T

where N is the length of discrete time points at every iteration.
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Fig. 1. The error of achieved trajectories when the fixed
gain Kk was used for the nominal system which has
no stochastic noises and intermittent signal dropouts.
Top: Norm of error Ek(1) = Yd(1)−Yk(1) vs. iteration
number. Bottom: Norm of error Ek(2) = Yd(2)−Yk(2)
vs. iteration number.

Fig. 2 is for Case-1; Fig. 3 is for Case-2; Fig. 4 is for
Case-3; Fig. 5 is for Case-4; and Fig. 6 is for Case-5.
In the individual figures, the left plots are results from
the proposed learning controller and the right plots are
results from the Arimoto-type learning gain matrix. From
the comparison between the left plots and the right plots,
we observe that the desired trajectories are satisfactorily
achieved in the left plots even though there exist steady-
state errors as iterations increase, whereas the desired
trajectories are not achieved in the right plots. Also as
shown from the comparison between Case-1, Case-2, Case-
3, Case-4, and Case-5, there tend to be more and higher
overshoots during the transient response and convergence
speed gets slower as intermittent rate increases. It remains
a topic of future research to explore the steady-state error
shown in the simulations. This is related to the base-line
error of ILC discussed by the authors in previous work.
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Fig. 2. Case-1: η1 = 0.9 and η2 = 0.9. Left-top: Norm
of error Ek(1) = Yd(1) − Yk(1) vs. iteration number.
Left-bottom: Norm of error Ek(2) = Yd(2)−Yk(2) vs.
iteration number. Right-top: Error of Yk(1) from the
fixed gain matrix. Right-bottom: Error of Yk(2) from
the fixed gain matrix.

5. CONCLUDING REMARKS

This paper presented a stochastic iterative learning con-
troller for the compensation of data dropouts in networked
control systems. Specifically, we presented a design method
to find an iteration-varying learning gain matrix, which
was developed considering independent, intermittent data
dropouts. The main theoretical result is that if Kalman
filtering is enhanced by the learning control scheme, the
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Fig. 3. Case-2: η1 = 0.7 and η2 = 0.7. Left-top: Norm
of error Ek(1) = Yd(1) − Yk(1) vs. iteration number.
Left-bottom: Norm of error Ek(2) = Yd(2)−Yk(2) vs.
iteration number. Right-top: Error of Yk(1) from the
fixed gain matrix. Right-bottom: Error of Yk(2) from
the fixed gain matrix.
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Fig. 4. Case-3: η1 = 0.5 and η2 = 0.5. Left-top: Norm
of error Ek(1) = Yd(1) − Yk(1) vs. iteration number.
Left-bottom: Norm of error Ek(2) = Yd(2)−Yk(2) vs.
iteration number. Right-top: Error of Yk(1) from the
fixed gain matrix. Right-bottom: Error of Yk(2) from
the fixed gain matrix.
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Fig. 5. Case-4: η1 = 0.3 and η2 = 0.3. Left-top: Norm
of error Ek(1) = Yd(1) − Yk(1) vs. iteration number.
Left-bottom: Norm of error Ek(2) = Yd(2)−Yk(2) vs.
iteration number. Right-top: Error of Yk(1) from the
fixed gain matrix. Right-bottom: Error of Yk(2) from
the fixed gain matrix.

system with repetitive desired trajectories is robustly sta-
ble as long as there is not complete data dropout. Thus
the major contribution of this paper over the existing
intermittent estimation theories, thus relaxing the classical
result for non-repetitive systems that there is a critical
data dropout rate above which the system is not stable can
In our future efforts, we will consider model uncertainty as
well as data dropouts. It will be also important to consider
data delay in addition to the data dropouts during the
network transfer of data between the remote plant and
the remote server.
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Fig. 6. Case-5: η1 = 0.1 and η2 = 0.1. Left-top: Norm
of error Ek(1) = Yd(1) − Yk(1) vs. iteration number.
Left-bottom: Norm of error Ek(2) = Yd(2)−Yk(2) vs.
iteration number. Right-top: Error of Yk(1) from the
fixed gain matrix. Right-bottom: Error of Yk(2) from
the fixed gain matrix.
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