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Abstract: This paper considers the problem of reduction of self-localization errors in multi-
agent autonomous formations when only distance measurement is available to the agents in a
globally rigid formation. It is shown that there is a relationship between the singular values of a
matrix called reduced rigidity matrix and the error induced by measurement error on localization
solution. This fact is exploited to introduce an optimal selection of anchors, agents with exactly
known positions, which results in a small induced error by measurement errors on localization
solution. In the end, some simulation results are presented to demonstrate this optimal anchor
selection in globally rigid formations.
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1. INTRODUCTION

The topic of multiagent formations has gained much at-
tention in recent years. In order to be able to accomplish
most of the tasks associated with multigent autonomous
formations, such as reconnaissance and surveillance, the
formation should be able to determine its position in a
known global coordinate system. For example in surveying
an unknown territory, the formation should be able to
localize itself in a known global coordinate system in order
to successfully record the acquired data in the mission
(such as the location of emitters, sensed perhaps using an-
gle of arrival or time-difference-of arrival, see Applewhite
(2002),Oh et al. (2007) schemes) and make it possible for
the data to be used when the formation has returned to the
base. A trivial solution for this problem might be obtained
by installing a Global Positioning System (GPS) sensor on
each of the agents in the formation. But due to the fact
that a precise GPS sensor is expensive and/or constitutes
a weight burden, this solution may be impractical. In
order to solve the aforementioned problem of determining
position information of the agents within the formation,
the tools used in the field of multiagent systems localiza-
tion can be employed. Localization problems have been
well-studied in the context of wireless sensor networks. In
sensor network localization, it is typically assumed that
a small fraction of sensors, called anchors, have a priori
information about their global coordinates (Mao et al.
(2006)). Exploiting the fact that the position of these
anchor nodes are known in a global coordinate system
and that a number of inter-node distances are known, all
the other nodes in the network can be localized under a
condition which will be discussed later in this paper, i.e.
� This work is supported by NICTA, which is funded by the Aus-
tralian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program.

global rigidity of the underlying graph of the network. We
can carry over this idea to a formation of mobile agents.
We designate some agents as anchor agents, and use them
(together with square inter-agent range measurements,
typically obtained from timing information in inter-agent
communications) to localize other agents in the formation.
In this way one can perform localization with a smaller
number of accurate GPS sensors.

While in principle, any choice of three noncollinear agents
in a two-dimensional formation or four non-coplanar
agents in a three-dimensional formation can be made for
anchors (given also enough inter-agent distance measure-
ments), in fact there is a nontrivial choice to be made. This
is because, when agent distances are not exactly known
but rather measured with some error, the localization
algorithm for the non-anchor agents will inevitably give
erroneous positions, with the error depending on the inter-
agent distance errors and also the choice of agents to serve
as anchors.

The main contributions of this paper are, firstly, to intro-
duce a criterion to measure the effect of distance measure-
ment error on the localization of agents , and, second, to
introduce a methodology for selection of anchors among a
formation of agents with a view to minimizing that error.
For the time being only planar formations are taken into
consideration. In addition, the current study only deals
with errors originating from inter-agent distance measure-
ments.

The paper is organized as follows. In the next section graph
theoretic preliminaries relevant to the localization problem
are described. In the third section calculation of error
statistics given a set of anchors and a criterion for selection
of anchors are presented. The fourth section contains a
method for choosing of three anchors to minimize the
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errors. Simulation results are presented in the fifth section.
In the last section some concluding remarks are presented.

2. RIGIDITY, GLOBAL RIGIDITY AND SENSOR
NETWORK LOCALIZATION

In order to have a clear idea about the terms that are used
in this paper, in the following some of the key tools used
in establishing the results and the related graph theory
concepts are briefly explained. For the sake of simplicity,
we use sensor network terminology throughout this paper.
Of course, this mild abuse of language will not affect the
results produced for formations of autonomous agents. A
network N is represented by a graph-coordinates set pair
(G, Π) where the graph G = (V, E) represents the inter-
agent sensing topology of N , V � {vi}|V |

i=1 is the set of
vertices and E is the set of edges in G, each vertex vi

representing a sensor node in N and eij ∈ E denoting
the edge connecting the vertices vi and vj , an edge being
incident on vertices representing two nodes (agents) just
when they can measure the Euclidean distance between
each other or the distance between these two nodes is
precisely known, Π � {πi}|V |

i=1 is the set of coordinates
for the agents (nodes) in the network, each πi being a 2-
vector. The graph G is called the underlying graph of N .

Two networks (G, Π) and (G,Π′), where G = (V, E),
are equivalent if ‖πi − πj‖ = ‖π′

i − π′
j‖ for any vertex

pair vi, vj ∈ V , for which eij ∈ E. The two networks
(G, Π) and (G,Π′), where G = (V, E), are congruent if
‖πi − πj‖ = ‖π′

i − π′
j‖ for any vertex pair vi, vj ∈ V ,

whether or not eij ∈ E. This means that if (G, π′) and
(G, Π) are congruent then (G, Π′) can be obtained from
(G, Π) applying a combination of translations, rotations
and reflections only. A network (G, Π) is called rigid if
there exists a sufficiently small positive constant ε such
that if (G, Π′) is equivalent to (G, Π) and ‖πi−π′

i‖ < ε for
all vi ∈ V then (G,Π′) is congruent to (G, Π). A network
(G, Π) is globally rigid if every network which is equivalent
to (G, Π) is congruent to (G, Π). It is easy to see if G is
a complete graph then the network (G, Π) is necessarily
globally rigid.

There are combinatorial tests for rigidity and generic
global rigidity in R

2. Rigidity can be tested using Laman’s
Theorem which says;
Theorem 1. (Laman (1970)). A graph G = (V, E) mod-
eling a framework in R

2 of |V | vertices and |E| edges is
generically rigid if and only if there exists a subgraph
G′ = (V, E′) with 2|V | − 3 edges such that for any subset
V ′′ of V , the induced subgraph G′′ = (V ′′, E′′) of G′ obeys
|E′′| ≤ 2|V ′′| − 3.

To state a test for generic global rigidity in R
2, we need two

concepts, 3-connected graph and redundantly rigid graph.
The notion of 3-connected graph is standard, see Diestel
(2005). A graph is termed generically redundantly rigid if
with the removal of any edge, it remains generically rigid,
see Jackson and Jordan (2005) and Aspnes et al. (2006).
In R

2, there exists a test for checking generic redundant
rigidity which is a variant of Theorem 1. The explanation
in detail is beyond the scope of this paper; the reader may
refer to Mao et al. (2006) and references within for more
details.

Based on these concepts, the following theorem states an
elegant necessary and sufficient condition for generic global
rigidity of a network in R

2.
Theorem 2. (Jackson and Jordan (2005)). A graph G with
n ≥ 4 vertices is generically globally rigid in R

2 if and only
if it is 3-connected and redundantly rigid in R

2.

Using the notions above, the network localization problem
can be defined as follows,
Problem 1. (Network Localization Problem). Let N be a
network in R

2, consisting of m ≥ 3 anchor nodes (beacon
nodes) located at known positions π1, π2, · · · , πm and n−
m > 0 ordinary nodes located at unknown positions
πm+1, · · · , πn, and let G = (V, E) be the underlying graph
of N . For each eij ∈ E, let the distance between nodes
i and j be given as ‖πi − πj‖ = dij Find locations
p1, · · · , pm+n ∈ R

2 satisfying ‖pi − pj‖ = dij , ∀eij ∈ E
with respect to the fact that pk = πk for k ∈ {1, · · · ,m}.
For unique localization of a sensor network we have the
following theorem,
Theorem 3. (Eren et al. (2004)). Problem 1 is uniquely
solvable if and only if G is globally rigid.

An alternative approach to characterizing the rigidity and
global rigidity of a formation uses the concept of the
rigidity matrix. We will use this concept also to establish
some of the main results of this paper. Consider a network
(G,Π) in R

2 with the underlying graph G = (V, E). Let
the coordinates of vertex vj be πj = (xj , yj)�. The rigidity
matrix is defined with an arbitrary ordering of the vertices
and edges, and has 2|V | columns and |E| rows. Each edge
gives rise to a row, and if the edge links vertices vj and vk,
the nonzero entries of the row of the matrix are in columns
2j − 1, 2j, 2k − 1 and 2k, and are respectively xj − xk,
yj −yk, xk −xj , yk −yj . For example, for the graph of Fig.
1, the rigidity matrix is
R =⎡
⎣

x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0

0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0

0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3
x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1
x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0

⎤
⎦

The rank of the matrix R contains information about the
rigidity of the framework, or the generic rigidity of the
underlying graph G. The key result is:
Theorem 4. (Tay and Whiteley (1985)). A graph G = (V,
E) modeling a network in R

2 of |V | vertices and |E| edges
is rigid if and only if for generic 1 vertex positions, the
rigidity matrix has rank 2|V | − 3.

It is easy to verify the claim of Theorem 4 for the rigid
network presented in Fig. 1. The rank for the rigidity
matrix R of Fig. 1 is 5 in almost all vertex coordinates. In
more detail, suppose that eij ∈ E, so that the coordinates
of vertices i, j in the network obey for all time

||πi(t) − πj(t)||2 = d2
ij (1)

where dij is the actual (constant) distance between vertices
i and j and ‖.‖ denotes the 2-norm of a vector. Assuming
motion is smooth, it follows that

[πi(t) − πj(t)]�[π̇i(t) − π̇j(t)] = 0 (2)
1 Here, “generic” positions correspond to “almost all” arbitrary
selections of positions. Some discussions on the need for using the
qualifiers “generic” and “almost all” can be found in (Tay and
Whiteley (1985))
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Fig. 1. An example of a rigid network.

and by stacking together |E| such equations there results

R
d

dt
π(t) = 0 (3)

where π(t) denotes the 2|V |-vector obtained by stacking
the πi(t). There is a second useful consequence of (1).
Suppose that vertex positions are initially fixed and satisfy
distance constraints, but then a small displacement δπ is
made to the vector of vertex positions, in a way allowing
edge lengths to change. There will of course be a corre-
sponding change in the lengths corresponding to the edges
of the graph. To first order, this change is described by

Rδπ = δd/2 (4)
where δd is the vector of changes in the squares of
the lengths, ordered in the same way as the edges are
ordered in defining R. In general R is not square, let
alone invertible. Therefore, it does not immediately make
sense to contemplate the change in vertex positions that
would flow from a change in lengths, at least without
some kind of constraint. One can however contemplate
constraining some of the vertices not to move, and some
of the lengths not to change. Then a submatrix of R
will map small changes in some of the vertex positions
to small changes in some of the lengths, and the inverse
of this matrix (assuming of course that it is square and
nonsingular) will map small changes in some of the lengths
to small changes in some of the vertex positions. In the
next section however, we shall consider a situation where
this submatrix is not square, and the resulting effect on
the posing and solution of a localization problem.

3. ANCHOR AGENTS AND LOCALIZATION
ACCURACY IN AUTONOMOUS FORMATIONS

Consider a formation, F(G,Π), with the underlying sens-
ing graph G = (V, E). Suppose a subset of the agents are
anchor agents, i.e. we know their global position. Denote
the corresponding subset of V by V ′. Adopt the standard
convention that two anchor agents know their inter-agent
distance, and let E′ ⊂ E denote the set of edges in G join-
ing vertices in V ′. The formation localization problem can
be defined exactly as stated in Problem 1, with the only
different that “N”, “network”, and “node” are replaced
with F , “formation”, and “agent” respectively. 2

We remark that the full determination of G requires
nomination of anchors; before choice of anchors, not all
agents which end up being nominated as anchors may be
able to sense one another.

2 In the sequel we will use the notion of “formation localization
problem” as defined here.

In addition to above, suppose that the graph G is generi-
cally globally rigid. We would like to characterize errors in
localization (δpi = pi − πi, i = 1, · · · , |V |) which occur
when noise perturbs inter-agent distance measurements
(dij), apart from distances between anchor agent pairs.

For a noiseless situation the equations which apply to
the formation after using anchor node information include
distance information and coordinate information, and are
of the form

‖pi − pj‖ = dij ∀eij ∈ E \ E′

pi = πi ∀vi ∈ V ′ (5)

Let us identify the number of equations associated with
the edge constraints in (5). Since the framework is globally
rigid, we can drop any edge and it remains rigid. Suppose
we choose the edge to be one of those in the edge constraint
set E \ E′, call the edge e. Since the associated graph
(V,E \ {e}) is now rigid, there exists by Laman’s theorem
a minimally rigid subgraph G1 = (V, E1), and thus one
with 2|V | − 3 edges, such that any induced subgraph of
G1 defined using a subset V2 of V has at most 2|V2| − 3
edges. Identify V2 with |V ′|. Then in G1, there are at
most 2|V ′| − 3 edges joining vertices both in V ′ and so
at least 2|V \ V ′| other edges. Hence, apart from the
distance constraint for the edge e that was dropped from
the edge constraint set before constructing G1, there are
necessarily at least 2|V \V ′| distance constraint equations
in (5), i.e. at least 2|V \V ′|+1 equations in all. There are
also precisely 2|V \ V ′| unknowns to be determined from
(5) and (6), taking the coordinates of the anchor nodes
as known. Therefore, the unknown coordinates are the
solutions of an overdetermined set of equations. Typically,
if an overdetermined equation set has a solution, it will
be unique; that is so here because of the global rigidity,
the true coordinate positions, πi can be found by solving
(5). Now in the presence of the typically small noise, δdij ,
perturbing the squares of the true distances (presumably
due to measurement error), equation (5) would formally
become,

‖pi − pj‖2 = d2
ij + δdij ∀eij ∈ E \ E′

pi = πi ∀vi ∈ V ′ (6)

which still results in an overdetermined system of simul-
taneous equations, though now there will generally be no
solution. Nevertheless, the notion of approximate local-
ization makes sense. Instead of solving (6), we seek those
position values for pi, call them π∗

i , for vi ∈ V \ V ′ which
solve the following minimization problem:

min
{pi,vi∈V \V ′}

∑
eij∈E\E′

[‖pi − pj‖2 − (d2
ij + δdij)]2

subject to
pi = πi ∀vi ∈ V ′

(7)

It is intuitively reasonable, but proven elsewhere (Ander-
son et al. (2007)), that if the noises are bounded by a
suitably small constant, the solution of the minimization
problem stated in (7), π∗

i , for vi ∈ V \ V ′, will be close
to the solution of (5), and in fact the error in the posi-
tion value will depend continuously on the error in the
squared distances. We can use this fact and rewrite the
minimisation problem in (7) in terms of rigidity matrix.
The following theorem deals with this issue.
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Theorem 5. Consider a formation F(G,Π) with the under-
lying graph G = G(V, E) generically globally rigid. Sup-
pose that a subset V ′ of V corresponds to vertices whose
coordinates are precisely known. Let E′ ⊂ E correspond
to edges joining vertices in V ′, so that the corresponding
edge lengths in the formation are precisely known. Suppose
that edge lengths dij corresponding to edges in E \E′ are
known only to within an error satisfying a bound, Δ say,
and let δd denote the vector of errors in the squares of
the inter-agent lengths, ordered in the same way as the
edges are ordered in defining R, the rigidity matrix of G
evaluated at Π, where πi is the correct position of the
i-th agent. Let π∗

i for vi ∈ V \ V ′ solve the approximate
localization problem (7), and suppose that Δ is sufficiently
small that there is a unique solution to (7) whose distance
from π for vi ∈ V \ V ′ depends continuously on the δdij .
Define δπ∗ = π∗ − π. Then the vector δπ∗ is the solution
to the following minimization problem neglecting higher
order terms in δd.

min ‖Rδp − δd/2‖2.
subject to

δpi = 0 ∀vi ∈ V ′
(8)

Proof. We only need to show that (7) and (8) are the same
for the particular summand in (7) and the corresponding
summand in the above minimization problem. (Obviously
the result then holds after summation of all of these
summands as well.) Replacing pi and pj by πi + δpi and
πj + δpj , where δpi is the perturbation of the position of
i-th node from its real positions, in (7) respectively, for the
summand associated with the edge eij , sij , we obtain,

sij = ‖πi − πj + δpi − δpj‖2 − (d2
ij + δdij) (9)

Replacing πi, πj , δpi, and δpj with (xi, yi)�, (xj , yj)�,
(δxi, δyi)� and (δxj , δyj)� in (9) respectively, we obtain,

sij = (xi − xj)2 + (yi − yj)2 − d2
ij+

(δxi − δxj)2 + (δyi − δyj)2 − δdij+
2(xi − xj)(δxi − δxj) + 2(yi − yj)(δyi − δyj)

(10)

using (xi−xj)2+(yi−yj)2 = d2
ij and neglecting the higher

order terms of (δxi − δxj)2 + (δyi − δyj)2 and dividing by
2 we obtain
sij = (xi−xj)(δxi−δxj)+(yi−yj)(δyi−δyj)−δdij/2 (11)

On the other hand, one can rewrite (8) as

min
δpi,vi∈V \V ′

|E|∑
k=1

(Rkδp − δdk/2)2.

subject to
δpi = 0 ∀vi ∈ V ′

(12)

where Rk and δdk are the k-th rows of R and δd, respec-
tively. Cosidering the summand associated with the edge
eij , s′ij we obtain,

s′ij = (xi−xj)(δxi−δxj)+(yi−yj)(δyi−δyj)−δdij/2 (13)
It is immediate that the two summands ((11) and (13))
are the same for a particular i and j (neglecting the factor
of 2 and (δxi − δxj)2 + (δyi − δyj)2). �
For considering the norm in (8), viz. ‖Rδp − δd/2‖2,
one can delete those columns from R relating to anchors
to study the effect of perturbation, since these columns
corresponds to positions of anchors that are already known
so no perturbation may happen. We can also delete any

row corresponding to an edge between two anchors (such
an edge may or may not be present before designation of
certain nodes as anchors ,but in any case the corresponding
entry of Rδp−δd/2 will be zero.). After doing this deletion
process, the norm presented in (8) will transform to

min ‖Rr,(|E\E′|)×(2|V \V ′|)δpr − δdr/2‖2 (14)
Here Rr, the reduced rigidity matrix, is constructed by
deletion of columns of R corresponding to anchor positions
and rows of R corresponding to edges between two anchors,
respectively. Furthermore, δpr is the perturbation in non-
anchor positions and δdr is the error vector in the square
of the length of edges connecting those edges with at least
one non-anchor end.

The minimisation problem stated in (14) can be solved for
deterministic values of δd. For deterministic values of δd,
δπ∗ is computed by,

δπ∗ = R†
rδdr/2 (15)

where R†
r = (R�

r Rr)−1R�
r is the Penrose pseudoinverse

of Rr, see Horn and Johnson (1991). However, in general
the error in the square of the length measurement, δdr,
is not known and it is not possible to accurately compute
the error in the localization. The measurement error can
be more realistically modeled by random variables, with
specific covariance and mean value. One much more likely
to be interested in translating statistics of δdr to statistics
of the agents position error,δpr, when δdr is a random
variable. This can be done by the following equation, which
holds between δdr and δpr,

cov(δπ∗) = R†
rcov(δdr)(R†

r)
�/4. (16)

where δπ∗ is the solution to the minimization problem in
(14). If δdr is a normal random variable with zero mean
and I as its covariance we have

cov(δπ∗) = R†
r(R

†
r)

�/4. (17)
One might also reasonably postulate that each distance
measurement, rather than its square, is subject to additive
zero mean Gaussian noise, of variance σ2, say. Then δdr

will be zero mean, with covariance matrix diag(d2
ij)σ

2, and
(17) will be replaced by;

cov(δπ∗) = R†
r(diag(d2

ij)σ
2)(R†

r)
�. (18)

Equations (17) and (18) address the task of characterizing
localization errors posed in the beginning of section 3. Note
that, as is common in characterizing mean square errors
arising out of algorithms, the characterization involves the
solution of the corresponding noiseless problem–in this
case Rr involves the true agent positions. We comment
on this further in Section 6.

The following theorem guarantees that Rr is of full column
rank and the minimization problem stated in (14) has a
unique solution.
Theorem 6. Assume that R is the rigidity matrix of a
graph such that there is at least one selection of three
anchors with the property that the graph obtained by
adding inter-anchors edges is globally rigid. Then the
reduced rigidity matrix obtained by deletion of columns
of R corresponding to anchor positions and rows of R
corresponding to edges between two anchors, is of full
column rank.

Proof. The matrix Rr has dimensions of (|E \E′|×2|V |−
2|V ′|) (Note that |V ′| is theset of vertices selected as
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anchors.). We assume that R has an ordering such that,
the last 2|V ′| columns correspond to the anchors and last
E′ rows correspond to edges connecting the anchors in the
original graph.
Suppose to obtain a contradiction to the assertion of
the Theorem that, ∃α 	= 0 such that Rrα = 0.

Define β =
[

α
02|V ′|

]
; then Rβ = 0. Now it is

known from Tay and Whiteley (1985) that the 2|V |-
vectors, λ1 = [1, 0, 1, 0, · · · ]�, λ2 = [0, 1, 0, 1, · · · ]�, and
λ3 = [y1,−x1, y2,−x2, · · · ]�, are a basis of the three-
dimensional null-space of R. Hence β must be a linear
combination of λ1, λ2, and λ3, for some scalar a, b, and c,
not all zero,

β = aλ1 + bλ2 + cλ3

The last 2|V ′| rows give the equation
aλ̄1 + bλ̄2 + cλ̄3 = 0

where λ̄1, λ̄2, and λ̄3 are the last 6 rows of λ1, λ2, and
λ3, respectively. However, inspection of these vectors show
they are independent. Hence nonzero a,b, and c cannot
exist, i.e. there is no nonzero α that satisfies,

Rrα = 0.

It results that Rr is of full column rank. �
In the next section we discuss which nodes are the best
candidates for being selected as anchors.

4. SELECTION OF ANCHORS IN THE FORMATION

To start we formally define the following problem,
Problem 2. Consider a formation of the type described in
the beginning of section 3, such that the reduced rigidity
matrix, Rr,|E\E′|×2(|V |−|V ′|), is obtained by discarding the
rows and columns associated to the position of the anchor
nodes and their interconnecting edges. What is the best
selection of |V ′| nodes to be selected as anchors?

4.1 Selection of Three Anchors in the Formation

In this section we present an answer (in principle) Problem
2 for |V ′| = 3. Note that the statement of Problem 2 fails
to specify what is meant by best. We shall adopt the view
that we need to mitigate the effect of random errors, and
this is best done by seeking to minimize a scalar measure
associated with cov(δπ∗). When (17) applies, one such
scalar measure is λmax(R†

r(R
†
r)

�) 3 .
Remark 1. Since, λmax(R†

r(R
†
r)

�) = σmin(Rr)−2, the
problem of minimizing λmax(R†

r(R
†
r)

�) is equivalent to the
problem of maximizing σmin(Rr).

Here we formally define optimal anchor selection.
Definition 1. 4 [Optimal Anchor Selection] The selection
of triple (vi, vj , vk) (|V ′| = 3) is termed σ-optimal, if
the minimum singular value of Rr associated with this
selection is the largest among other minimum singular
values associated with other possible selections.
3 Another measure that can be used for reducing the measurement
error is the trace of R†

r(R†
r)�. Since, one would be interested not just

in keeping down the maximum eigenvalue, but in keeping down all
the eigenvalues.
4 Optimal anchor selection definition should be modified when one
wants to use (18).

Selection Nodes Selected Selection Nodes Selected

1 (1, 2, 3) 19 (2, 3, 7)

2 (1, 2, 4) 20 (2, 4, 5)

3 (1, 2, 5) 21 (2, 4, 6)

4 (1, 2, 6) 22 (2, 4, 7)

5 (1, 2, 7) 23 (2, 5, 6)

6 (1, 3, 4) 24 (2, 5, 7)

7 (1, 3, 5) 25 (2, 6, 7)

8 (1, 3, 6) 26 (3, 4, 5)

9 (1, 3, 7) 27 (3, 4, 6)

10 (1, 4, 5) 28 (3, 4, 7)

11 (1, 4, 6) 29 (3, 5, 6)

12 (1, 4, 7) 30 (3, 5, 7)

13 (1, 5, 6) 31 (3, 6, 7)

14 (1, 5, 7) 32 (4, 5, 6)

15 (1, 6, 7) 33 (4, 5, 7)

16 (2, 3, 4) 34 (4, 6, 7)

17 (2, 3, 5) 35 (5, 6, 7)

18 (2, 3, 6)

Table 1. Selection cases and the nodes selected
in each case.

Using Definition 4, we are able to answer, at least in
principle, the question mentioned in Problem 2, when
|V ′| = 3. To do so, we can use an exhaustive search through
all possible selections of anchors to find the largest possible
minimum singular value, or use another combinatorial
search algorithm, such as a genetic algorithm. Simulation
results appear in the next section.

5. SIMULATION RESULTS

In this section, we have studied three formation localiza-
tion scenarios and found the best selection of nodes to
choose as anchors. In the first scenario, a formation of 7
agents with a globally rigid underlying graph of the forma-
tion is studied. Figure 2 shows the formation. In Figure 3
the minimum singular value of the reduced rigidity matrix
associated with each of the possible 35 anchor selections
is presented, In Table 1 the possible anchor selections are
presented. It is evident that selection of nodes (1, 4, 7) and
(2, 3, 7) results in having the largest minimum singular
value. Selections (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (2, 6, 7)
yield the 5 lowest singular values.

In the second simulation we used the same graph that was
used in the first simulation but with different geometric
positions for the agents; the formation is depicted in Figure
4. The best choice of anchors in this case is (1, 4, 7). The
minimum singular value associated with each selection is
presented in Figure 5.

As a rule of thumb one can say that a triple of agents
that already form a triangle in the formation prior to
anchor selection are not good candidates for being selected
as anchors. As can be seen from the simulation results,
such selections are never among those selections that yields
a larger minimum singular value for the reduced rigidity
matrix. In many cases (that cannot be presented here due
to the lack of space) the σ-optimal anchor selection for
|V ′| = 3 is the selection of those anchors such that the
triangle formed by these three points has the largest area
among all other possible triangles defined by any other
three nodes in the graph. Furthermore, in some other cases
σ-optimal anchor selection for |V ′| = 3 happens when the
smallest loop connecting the three anchors is the longest.
Most of the time in real-life scenarios we can not evaluate
the rigidity matrix with real values (nominal) of positions
of agents, so we have to use the values obtained from

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6582



Fig. 2. The globally rigid formation used in the first
simulation.

Fig. 3. σmin value of reduced rigidity matrix for all possible
35 anchor selections for the formation depicted in
Figure 2.

Fig. 4. The globally rigid formation used in the second
simulation.

Fig. 5. σmin value of reduced rigidity matrix for all possible
35 anchor selections for the formation depicted in
Figure 4.

a minimization problem like the one presented in (6). If
we use non-nominal postion values for the agents in the
formation, i.e. using π∗ instead of π, in evaluating rigidity
matrix the best anchor selection may differ from the case
where the nominal position values, π are used in evaluating
R.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have studied the noises arising in self-
localization of mobile formations. The paper has postu-
lated a statistical measure for the effect of these noises,
and derived an intuitively pleasing result that the degree
to which the noises will be a problem when a certain
rigidity matrix associated with the formation (but not
the usual one, rather a ‘reduced one’) corresponds to the
closeness of a singular value of that rigidity matrix to zero.
Since the rigidity matrix in question depends on which
particular nodes are nominated as anchors, we also studied
the question of what anchor choices were likely to be
good, and obtained some loose guidelines. Different anchor
selection problems can actually be formulated, when more
than three anchors are permitted.

In future work, we intend to study the problem of an-
chor selection in large sensor networks, and proposing a
methodology for selecting the anchors when checking all
the possible selections is not feasible.
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