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Abstract: In this work, the stability of constrained continuous-time piecewise linear (PWL) systems in 
closed-loop is investigated based on model predictive control (MPC) and bounded control (BC). Firstly, 
bounded control framework is developed to stabilize the class of systems. Then, to reconcile the stability 
and optimality properties, a control strategy mixing model predictive control with bounded control is 
proposed further. For each subsystem, the switching idea is employed between model predictive controller 
and bounded controller for a set of all initial conditions within the stability region of the bounded 
controller. Switching laws of controllers in each subsystem are derived to safeguard against any possible 
instability and infeasibility under MPC. The switching constraints of regions between different subsystems 
are considered to ensure that the Lyapunov function for each subsystem is non-increasing wherever the 
mode is reactivated, thereby guaranteeing global closed-loop stability. The proposed method avoids 
computing terminal invariant set for guaranteeing stability and reduces on-line complexity of computing 
stabilizing controller for constrained continuous-time PWL systems. Finally, the implementation of the 
proposed method is illustrated with an example.  

 

1. INTRODUCTION 

Technological innovation pushes towards the consideration 
of systems of a mixed continuous and discrete nature, which 
are called hybrid systems. A general model of hybrid systems 
usually leads to a high level of complexity with respect to 
analysis and controller design techniques. However, 
piecewise affine (PWA) systems have become popular due to 
their accessible mathematical description and their ability to 
model a broad class of (hybrid) systems. The modelling 
power of PWA systems has already been shown in several 
applications, such as switched power converters (Leenaerts, 
1996) and optimal control of DC-DC converters.  

The control of PWA systems has attracted a great deal of 
attention in recent years, motivated by the fundamentally 
hybrid nature. Several control strategies have been proposed 
for PWA systems (Bemporad et al., 1999; Kerrigan and 
Mayne, 2002; Lazar et al., 2004). Optimal control of PWA 
systems was developed by solving mixed-integer 
optimization problems on-line or a number of multi-
parametric programs off-line. But this control approach does 
not deal with constrained PWA systems well. Therefore, it is 
necessary to design a control algorithm that can incorporate 
constraints of PWA systems in the control design. As a result, 
MPC has been extended to PWA systems (Lazar et al., 2004).  

Piecewise linear (PWL) systems are a particular class of 
PWA systems. How to guarantee closed-loop stability of 
MPC for PWL systems is a difficult problem. A common 
idea of existing works for guaranteeing stability of discrete-
time PWL systems based on MPC is an extension of the 
terminal cost and constraint set approach in linear or 

nonlinear MPC (Lazar et al., 2004). In this work, the 
discrete-time PWL system is considered as a whole, where 
predicted state at different instant may correspond to different 
subsystem and region. In order to guarantee stability, the 
terminal state has to be constrained to an invariant set 
containing the origin. However, there are some problems 
existed: 1) the terminal invariant sets for discrete-time PWL 
systems are difficult to develop; 2) the difficulty of 
identifying the set of initial conditions starting from where 
feasibility and closed-loop stability are guaranteed is 
pronounced; 3) the computation burden of optimization 
problem and terminal stability constraints is heavy. Moreover, 
the existing methods are not suitable for continuous-time 
PWL systems. Due to continuity, the evolution of predictive 
state can not be estimated which region it belongs to in some 
prediction horizon, and it is difficult to design controller of 
continuous-time PWL systems as a whole. Therefore the 
development of novel stable control scheme for constrained 
continuous-tine of PWL systems is necessary as well as 
natural.  

In this paper, instead of considering the whole PWL systems, 
we propose a mixed control strategy with switching 
constraints to guarantee closed-loop stability for each 
subsystem when it is activated. The switching laws of 
controllers between MPC and bounded control are designed 
to guarantee the Lyapunov function of the subsystem non-
increasing. The switching constraints laws of regions 
between the various PWL subsystems are presented to track 
the evolution of the state corresponding to different region 
and guarantee asymptotic stability of the global closed-loop 
PWL systems. In this method, a set of initial conditions that 
is explicitly characterized by the bounded controller in 
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individual subsystem is computed, which can avoid 
computing the terminal invariant set. In each set, we merge 
MPC with the bounded control in a way that allows both 
approaches to complement the stability and optimality 
properties of each other. Therefore, we only compute 
quadratic programming problems for each subsystem instead 
of solving MIQP problems for the whole PWL systems as in 
(Lazar et al., 2004). The rest of the paper is organized as 
follows. In Section 2, we present preliminaries and pose the 
problem we consider. In Section 3, the bounded controller of 
PWL systems is addressed. We then proceed in Section 4 to 
formulate a novel mixed controller scheme with a theorem to 
guarantee asymptotical stability. Finally, in Section 5, the 
implementation of the algorithm is demonstrated using a 
chemical process example. 

2. PRELIMINARIES 

2.1 Problem Formulation  

Consider the class of continuous-time PWL systems 
described by the following form:  

( ) ( ) ( )i ix t A x t B u t= + ,       ( ) ix t ∈ �X ,                     (1)       

where, ( ) R nx t X∈ ⊆  is the continuous-time state vector, 
( ) Rmu t U∈ ⊆  is the manipulated inputs, U  is in the input 

constraints defined as� { }maxRmU := u u u∈ ≤ . R n n
iA ×∈ , 

R n m
iB ×∈ , Rn

if ∈ , i S∈  with S� { }: 1, 2, s=  and s  
denoting the number of modes. A partition of { }∈iX i S  is 
assumed to be a closed convex polyhedron, and ijH  is the 
boundary between iX  and jX . Here we consider 

Xi S i X∈∪ = , and i j0 = X XijH∈ ∩ .  

For continuous-time PWL systems, it is difficult to describe 
evolution of the predictive state corresponding to different 
region in some prediction horizon and solve the optimization 
problem, which leads to inefficiency in the approaches used 
in discrete-time case (Lazar et al., 2004). Therefore, how to 
develop novel control framework to stabilize continuous-time 
PWL systems is a valuable problem. Dissimilarly to existing 
methods in discrete-time case, a mixed control scheme for 
each subsystem of continuous-time PWL systems is designed 
to regulate the state of system (1) to the origin, which can be 
described as: 

Problem 2.1 For any given 0(0)x x= , determine each 
controller iu , i S∈  for each subsystem of continuous-time 
PWL systems such that the whole system (1) in closed-loop 
is global asymptotically stable, i.e. lim ( ) 0

t
x t

→∞
= . 

For problem 2.1, the controller iu , i S∈  is designed for each 
subsystem with switching different subsystems to guarantee 
closed-loop stability. In order to develop the controllers that 
guarantee stability for continuous-time PWL systems, the 
tool of stability analysis for the class systems should be 
introduced first. 

2.2 Multiple Lyapunov Functions Approach  

Lyapunov techniques are useful tools for stability analysis. 
The basic conceptual idea behind any Lyapunov design is 
that of “energy shaping”, where an appropriate “energy” 
function is chosen for the systems, and the controller is 
designed in a way that enforces the monotonic decay of this 
function along the trajectories of the closed-loop systems. 
Therefore, it is quite intuitive to exploit Lyapunov tools to 
analyze stability of continuous-time PWL systems as a finite 
collection of continuous-time processes with discrete events 
that govern the transition between them. One of the main 
tools is multiple Lyapunov functions (MLFs) (Branicky, 
1998). The idea is that even if we have Lyapunov functions 
for each subsystem individually, we need to impose 
restrictions on switching to guarantee stability. In this 
subsection, we briefly review the main idea. For the class of 
continuous-time PWL systems (1), a family of Lyapunov-like 
functions { }:iV i S∈  can be found such that the value of iV  
decreases on each interval when the i -th subsystem is active, 
i.e.,   

( ( )) ( ( ))
k ki i i iV x t V x t′ < ,                              (2) 

for all i S∈ , +k Z∈ . However, such a Lyapunov function 
for each subsystem can not guarantee the stability of the 
whole continuous-time PWL systems. The reason is that 
during the time interval when a particular model is inactive, 
its energy might be adversely affected by the evolution of the 
active mode such that at the next time instant when the 
inactive model is activated, its energy has already exceeded 
the level of its last interval of activity. A sufficient condition 
to guarantee Lyapunov stability of the whole PWL systems is 
that for every subsystem i , the value of  iV  at the beginning 
of each interval on which the i  th subsystem is active not 
exceed the value at the beginning of the previous such 
interval (El-Farra et al., 2004), i.e.,  

1
( ( )) ( ( ))

k ki i i iV x t V x t
−

≤  .                           (3) 

The Lyapunov stability of the PWL systems can be 
guaranteed using (2) and (3).  

3. BOUNDED CONTROL OF CONTINUOUS-TIME PWL 
SYSTEMS 

The bounded controller (Lin and Sontag, 1991) was proposed 
for continuous-time linear systems with the following 
characteristic: 1) satisfy the constraints of the systems; 2) 
enforce asymptotic stability of the systems; 3) provide an 
explicit characterization of the set of admissible initial stable 
conditions. In this section, we extend the bounded control to 
PWL systems (1) to guarantee closed-loop asymptotically 
stability. For i th subsystem, assume a control Lyapunov 
function of T

i iV x Px=  exists that satisfies the Riccati 
equation 

T T
i i i i i i i i iA P P A PB B P Q+ − = −  ,                              (4) 
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for some positive-definite matrix iQ . The following 
continuous bounded control law for i th subsystem can be 
constructed: 

      ( ) 2 ( ) : ( )T
i i i i iu x k x B Px b x= − = ,   1, 2,i s= ,                (5) 

where  

            
2 4

max

2 2
max

( ) ( ) )
( )

( ) [1 1 ( ( ) ) ]

T
fi i fi i gi i

i T T
gi i gi i

L V L V u L V
k x

L V u L V

+ +
=

+ +
.       (6) 

( )T T
fi i i i i iL V x A P P A x= + , ( ) 2T T

gi i i iL V B Px= . For the above 
controller, a set is described as:  

{ }max max( ) ( ) 2T T T
i i i i i i iiu x x A P P A x u B PxΦ = ∈ + <X .     (7) 

whenever the closed-loop state x  evolves within max( )i uΦ , 
the controller satisfies the state and input constraints and the 
time-derivate of the Lyapunov function is negative-definite. 
So as long as the initial state and the state trajectory of the 
closed-loop system remain within max( )i uΦ , the asymptotic 
stability of the constrained closed-loop system can be 
guaranteed. To ensure this, an subset (preferably the largest) 
of max( )i uΦ  should be constructed by using the level sets of 

iV : 

          { }max max max( ) ( )n T
i i i iu x x P x c uΩ = ∈ ≤ ⊆ Φ ,         (8) 

where max 0ic >  is the largest number for which all nonzero 
elements of iΩ are contained within iΦ .  

In order to design the controllers for continuous-time PWL 
systems to guarantee the global stability, we need to consider 
the switching conditions between the constituent subsystems. 
The theorem 1 below provides a formula for the bounded 
state feedback controllers for continuous-time PWL system 
(1) and state switching conditions to guarantee the desired 
properties. 

Theorem 1. For system (1), a family of control Lyapunov 
functions iV , i S∈ exist. The family of bounded state 
feedback controllers are described as (5) and (6), with the set 
of x containing the origin (7) and (8). Given max(0) ( )ix u∈ Ω  
for some i S∈ , if at time 

r

out
it  the following conditions hold: 

                           max( ) ( )
r

out
i jx t u∈ Ω ,                                   (9) 

                         
1

( ( )) ( ( ))
m m

in in
j j j jV x t V x t

−
< ,                            (10) 

where 
r m

out in
i jt t= , 

r

out
it  is the time at which for the r th time, 

the i th subsystem is switched out , 
m

in
jt  is the time at which 

for the m th time, the j th subsystem is switched in and 
1m

in
jt

−
 

is the time at which for the 1m − th time, the j th subsystem 
is switched in, then the state is switched into subsystem j  

and the origin of the continuous-time PWL closed-loop 
systems is asymptotically stable by repeated the procedure.  

Proof: Consider the system (1) for i th subsystem, under the 
bounded control law (5) and (6), the time-derivative of the 
Lypunov function along the closed-loop trajectories is  

2 2 4
max max

2
max

( ) ) ( ) ( ( ) )

[1 1 ( ( ) ) ]

T T
fi i gi i fi i gi i

i T
gi i

L V u L V L V u L V
V

u L V

− +
=

+ +
(11)  

From (11), when the inequality 0fi iL V <  holds, we get 0V < . 

When the inequality max0 ( )T
fi i gi iL V u L V≤ <  holds, we can 

get the following inequality: 

2 4 2
max max( ) ( ) 1 ( ( ) )T

fi i gi i fi i gi iL V u L V L V u L V− + < + .  (12) 

From (11) and (12), 0V < is obtained. Therefore, the 
conclusion can be drawn that whenever the following 
inequality holds: 

max ( )T
fi i gi iL V u L V< ,                              (13) 

the time-derivative of the Lyapunov function is negative-
definite. Furthermore, we find that (13) is consistent with the 
definition of iΦ . And iΩ  is the largest subset contained 
within iΦ , that is to say any initial state max(0) ( )ix u∈ Ω , the 
inequality (7) and 0V <  hold for all times until the state is 
out of iΩ and subsystem i switches to subsystem j . Then 
the i th subsystem of continuous-time PWL under the control 
law of (5) and (6) is asymptotically stable. 

The switching of individual subsystem of PWL system (1) is 
dependent on which region the current state belongs to. Here, 
we assume max(0) ( )ix u∈ Ω . From the above proof, we have 

0V <  as long as subsystem i  is to remain active. If at time 

r

out
it  such that max( ) ( )

r

out
i jx t u∈ Ω  for some j S∈ , j i≠ , the 

subsystem j  is activated, then using the same argument, the 
corresponding Lyapunov function jV  will decay 
monotonically. So the constraint (2) of MLF stability is 
satisfied. Together with (10), we can conclude that the origin 
of the PWL closed-loop systems under the switching laws of 
theorem 1 is Lyapunov stable. In order to prove the global 
asymptotic stability of system (1), we note that the sequence 

1 2
( ( )), ( ( ))i i i iV x t V x t is decreasing and positive, and 

assume the limit of Lyapunov function corresponding to each 
time switching to i th subsystem is 0L ≥ , i.e. 
lim ( ( ))

ri ir
V x t L

→∞
= . Therefore,  

1
lim ( ( )) lim ( ( )) 0

r ri i i ir r
V x t V x t

+→∞ →∞
− = .                 (14) 

In (14), the part of 
1

( ( )) ( ( ))
r ri i i iV x t V x t
+

−  is strictly negative 
for all nonzero x  and zero only when 0x = . Furthermore, 
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there exists a K -function α (i.e., continuous, increasing, and 
zero at zero) such that: 

                 
1

( ( )) ( ( )) ( ( ) ) 0
r r ri i i i iV x t V x t x tα
+

− ≤ − ≤ .           (15) 

Together with (15), we have: 

                                    lim[ ( ( ) )] 0
rir

x tα
→∞

− = .                     (16) 

Therefore, the origin of the PWL closed-loop systems is 
asymptotically stable. 

The bounded controller for continuous-time PWL described 
in Theorem 1 can guarantee closed-loop stability. However, 
the performance of the bounded controller is not guaranteed 
to be optimal. Therefore, we will propose an advanced 
control algorithm to improve the optimality in the following 
section. 

4. MIXED CONTROL OF CONTINUOUS-TIME PWL 
SYSTEMS 

Currently, MPC is one of the few control methods for 
handling state and input constraints within an optimal control 
setting and has been the subject of numerous research studies. 
Numerous research investigations into the stability properties 
of MPC have been presented (Mayne et al., 2000). The 
present work for the stability of MPC for discrete-time PWL 
systems is to use terminal cost and constraint set approach, 
which considers the discrete-time PWL systems as the whole 
one instead of each subsystem. However, it is difficult to 
extend the method from discrete-time case to continuous-
time case. According to above analysis, together with the fact 
that the performance of the bounded controller is absence of 
optimality, for continuous-time PWL systems, we propose a 
mixed control strategy for each subsystem integrating MPC 
with the bounded control to reconcile the stability and 
optimality properties of each other. With the switching 
scheme of different control strategies in each subsystem of 
PWL systems, the desirable properties are realized, and with 
the switching scheme of different initial stable regions, the 
global asymptotical stability is guaranteed. 

4.1 MPC for Each Subsystem of PWL  Systems 

In this subsection, model predictive controller for each 
subsystem of system (1) is presented. For i th subsystem, 
MPC at state x  and time t  can be obtained by solving the 
following finite horizon optimal control problem on-line:  

                           { }( , ) : min ( , , )iP x t J x t u ,                         (17) 

                             s.t. i ix A x B u= + ,                                  (18) 

where 

                
2 2( , , ) [ ( ; , ) ( ) ]it T u

i Rt Q
J x t u x x t u dω ω ω

+
= +∫ ,    (19) 

( ; , )ux x tω  denotes the solution of (18), due to control u  with 
initial state x  at time t , Q   and R  are strictly positive 
definite symmetric matrices. The minimizing control 0 ( )iu ⋅  is 
then applied to the plant and an implicit MPC law 

                                  ( ) : ( ; , )o
i iM x u t x t=  .                          (20) 

4.2 Mixed Control Scheme with Stability Guarantee 

For the continuous-time PWL systems (1), we formulate a 
control strategy merging MPC with bounded control in 
Theorem 2, which can not only guarantee asymptotic stability 
of the origin of the closed-loop system starting from any 
initial condition in iΩ  but also guarantee recovery the 
optimality when the stability criteria is met by MPC. 

Theorem 2. Consider the PWL systems (1), with the initial 
condition max(0) ( )o ix x u= ∈ Ω , where the stability region 

max( )i uΩ  was defined under continuous implementation of 
the bounded controller (5), under the model predictive 
controller. Let t  be such that 

r r

in out
i it t t≤ <  and 

m r

in out
j it t= . Also 

let 0
r

s
iT >  be the earliest time for which the closed-loop state 

of r th time switching into i th subsystem under MPC 
satisfies: 

         
2 2

( ) ( ) 2 ( ) ( ) 0
r r r r

s T s T s s
i i i i i i i i iQ

x T B P x T x T PB u T− + + ≥ . (21) 

if at time 
m r

in out
j it t= ,  (10) and the following conditions hold: 

                                        max( ) ( )
r

out
i jx t u∈ Ω ,                      (22) 

then the mixed controller in i th subsystem is  

                           
( ( )) 0

( )
( ( ))

r

r r

s
i i

i s out
i i i

M x t t T
u t

b x t T t t

⎧ ≤ <⎪= ⎨
≤ <⎪⎩

 .            (23) 

The mixed control is applied to the PWL system and the 
procedure is repeated, then the origin of the PWL closed-loop 
system is guaranteed asymptotically stable. 

Proof. The theorem 2 contains three cases:  

(1) 
r

s
iT  existed and max( ) ( )

r

s
i jx T u∉ Ω , we implement MPC 

(20) at 0
r

s
it T≤ <  and bounded control (5) until 

max( ) ( )
r

out
i jx t u∈ Ω ; 

(2) no such 
r

s
iT  existed, we implement MPC (20) until 

max( ) ( )
r

out
i jx t u∈ Ω ; 

(3) 0
r

s
iT = , we implement bounded control (5) until 

max( ) ( )
r

out
i jx t u∈ Ω . 
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For case 1, from the definition of 
r

s
iT , it is clear that if 

r

s
iT existed, then ( ( )) 0, 0

r

M s
iV x t t T< ∀ ≤ < , where ( )Mx t  

denotes the closed-loop state under MPC at time t , which 
implies that max( ) ( )ix t u∈ Ω . This fact together with the 
continuity of the subsystem implies max( ) ( )

r

s
i ix T u∈ Ω  and 

( ) ( ( ))i iu t b x t=  after 
r

s
iT . If max( ) ( )

r

out
i jx t u∈ Ω  at time 

r

out
it , 

the states switch to subsystem  j . From above analysis, there 
is the conclusion that 0iV < ,

r r

s out
i iT t t∀ ≤ ≤ , under bounded 

control by the proof of theorem 1. In summary, starting from 
any max(0) ( )ix u∈ Ω , we have 0iV < , 0

r

out
it t∀ ≤ ≤ . When the 

subsystem j  is activated at 
r m

out in
i jt t t≥ = , we can get the same 

analysis as subsystem i .  With the constraint (10) and the 
proof of theorem 1, therefore, the closed-loop PWL system is 
asymptotically stable. 

For case 2, because no such 
r

s
iT  existed, MPC is implemented 

for subsystem i until max( ) ( )
r

out
i jx t u∈ Ω , which implies 

( ( )) 0, 0
r

M out
i iV x t t t< ∀ ≤ ≤ . Just as the case Ⅰ, the closed-

loop PWL system is also asymptotically stable. 

For case 3, using the proof theorem 1, the conclusion of 
theorem 2 can be proved again. Then the proof of the 
theorem 2 is completed. 

Remark 1 In Theorem 2, the classical MPC formulation is 
used to implement mixed control strategy. In fact, it is not 
restricted to classical MPC formulation. The structure can be 
extended to more advanced version of MPC by appropriate 
design of the switching algorithm. 

Remark 2. In the control strategy of Theorem 2, we need 
only compute quadratic programming problem for each 
subsystem instead of MIQP problem for the whole PWL 
systems. In order to guarantee stability, we need only design 
initial stable region for each subsystem instead of terminal 
invariant set for the whole PWL system. The underlying idea 
of this method realizes the decoupling the stability 
requirement from optimality. When bounded control is active, 
the well-defined stability region can safeguard against 
potential closed-loop instability arising from MPC; when 
MPC is active, the desired optimal performance under 
constraint can be satisfied. 

The mixed control strategy of Theorem 2 is shown in Fig. 1, 
where for each subsystem i , controller i , i S∈  denotes the 
mixed controller (23) in Theorem 2. 

The following algorithm explains the implementation of the 
control algorithm of Theorem 2. 

Step 1: Given the systems (1) and the constraints on inputs, 
design the bounded controller for each subsystem and 
compute the stability region max( )i uΩ . Given the 
performance objective and a choice of the horizon length, 
design the MPC controller. 

Step 2: Initialize the systems (1), using the MPC controller at 
any initial condition max(0) ( )o ix x u= ∈ Ω . 

Step 3: Monitor the evolution of the closed-loop trajectory by 
checking the condition (21), until the earliest time 

r

s
iT  is met. 

If max( ) ( )
r

s
i jx T u∉ Ω , switch to bounded control (5) until 

max( ) ( )
r

out
i jx t u∈ Ω ; 

If no such 
r

s
iT  existed, only MPC (20) is implemented for the 

r th time of the i th subsystem, until max( ) ( )
r

out
i jx t u∈ Ω ; 

If 0
r

s
iT = , implement the bounded control (5) instead. 

Step 4: Consider the switching constraint (10), which requires 
that when the closed-loop system enters the subsystem j , the 
value of jV  is less than that the system last entered 
subsystem j . If the system has never entered subsystem j , 
set 

1 max( ( ))
m

in
j j jV x t c

−
= . 

Step 5: Check, off-line whether the constrained optimization 
in switching constraint (10) yields a feasible solution. If it 
does not yield an initial feasible solution in subsystem j , go 
to next step; else go back to step 3. 

Step 6: Implement the bounded controller in the closed-loop, 
continue to check, off-line, and as frequently as desired, the 
feasibility the MPC optimization. At the earliest time that a 
feasible solution is found, switch to MPC, else the bounded 
controller remains active.  

Controller 
Switching 

Controller 2 

Controller s 

Subsystem 2 

Subsystem s 

 

Subsystem 
Switching 

Controller 1 subsystem 1 

)(tx

Fig. 1. Structure of control strategy of Theorem 2 

 

5. SIMULATIONS 

A 2-tank system (Imura and van der Schaft, 1999) can be 
described as the following continuous-time PWL systems, 
where ix , 1, 2i =  is the deviation of the water level from the 
equilibrium state, iu  is the volume of water discharged from 
the tap i . The logic rule is determined by whether the valve 
is open or closed. In this section, the presented control 
strategy of theorem 2 is illustrated by means of this example 
whose concrete form and parameters are: 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4861



 
 

     

 

[ ]
[ ]

1

2

0 1 0
0 1 0

A x Bu x
x

A x Bu x
⎧ + ≤⎪= ⎨ + ≥⎪⎩

,                               (24) 

where 1

1 0.2
0.2 1

A
− −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 2

1 0.2
0.2 1

A
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 

0
1

B ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

4 4u− ≤ ≤ . 

For both two subsystems, we consider quadratic Lyapunov 

functions of the form T
ix P x , with 1

1.5973 0.0930
0.0930 0.4243

P
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 

2

1.7186 0.6230
0.6230 2.3869

P ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, which can be computed by solving 

Riccatic equality. The initial stable regions for two 
subsystems are 1Ω  and 2Ω , shown in Fig. 2. The parameters 
in the objective function of MPC are chosen as: 

1 0
0 1

Q ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,

2 0
0 2

R ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. The resulting quadratic program is 

solved using the MATLABA subroutine QudaProg, and the 
set of ODE is integrated using the MATLAB solver ODE45. 
As shown by the dotted curve in Fig. 2, applying the MPC 
controller from the initial condition [ ]0 12 1x = − ∈ Ω , the 
region switching happens until 0.74rt = s. After this instant 
MPC is implemented in 2Ω , however, we find that an 
increase in 2V  at 1.25ct = s and therefore control switching 
happens from the MPC controller to the bounded controller 
in order to preserve closed-loop stability. If only the MPC 
controller is implemented when the system switches to 
subsystem 2, the state trajectory can not yield asymptotically 
stability (dashed line as in Fig. 2). This happens because the 
Lyapunov function 2V  is not non-increasing in 2Ω .  

1Ω

2Ω

 

Fig. 2. The closed-loop state trajectory when control strategy 
of theorem 2 is implemented (dotted line), when only MPC 
formulation is implemented in 2Ω  (dashed line). 
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