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Abstract: For a class of unified chaotic systems with parameter uncertainty, a robust impulsive
synchronization scheme is proposed. Based on the theory of impulsive differential equations,
some new and less conservative sufficient conditions are established in order to guarantee
the robust synchronization of the chaotic systems. In particular, some simple and practical
conditions are derived in synchronizing the chaotic systems by equal impulsive distances and
control gains. Simulation results finally demonstrate the effectiveness of the method.

1. INTRODUCTION

During the last two decades, synchronization of the chaotic
systems has attracted considerable attention due to its
great potential applications in secure communication,
chemical reactions and biological systems, see Boccaletti
et al. (2002). The first idea of synchronization of two
chaotic systems with different initial conditions was in-
troduced by Pecora et al. (1990) and Carroll et al. (1991).
Many different methods are applied theoretically and ex-
perimentally to synchronize chaotic systems, such as linear
and nonlinear feedback control in Huang et al. (2006) and
Chen et al. (2003), backstepping control in Park (2006)
and Yassen (2007), variable structure control in Wang
et al. (2004), adaptive control in Gao et al. (2007) and
Zhang et al. (2006), impulsive control in Chen et al. (2004),
Chen et al. (2006), Li et al. (2006) and Ma et al. (2007),
active control in Lei et al. (2007) and Zhang et al. (2004),
etc. Among these methods, impulsive control may give an
efficient method to deal with the dynamical systems which
cannot be controlled by continuous control. Additionally,
in synchronization process, the response system receives
the information from the drive system only at the dis-
crete time instants. This drastically reduces the amount
of synchronization information transmitted from the drive
system to the response system which makes this method
more efficient and thus useful in a great number of real-life
applications. Ma et al. (2007) investigates the impulsive
synchronization for uncertain unified chaotic systems in
the sense of practical stability. Chen et al. (2004) and Chen
et al. (2006) discuss the global asymptotic stability of im-
pulsive control and synchronization of the unified chaotic
systems. Based on the nonlinear feedback approach, an
impulsive synchronization scheme is proposed in Li et al.
(2006).
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As is well known, for some special applications, the param-
eter uncertainties of some systems are inevitable, and the
effect of these uncertainties will destroy the synchroniza-
tion and even break it. In the past few years, the analysis
of synchronization for chaotic systems with parameter un-
certainties has gained much research attention, e.g., Huang
et al. (2006), Ma et al. (2007), and Zhang et al. (2004).
Most of the researches mentioned above just assume that
the parameter uncertainties of two chaotic systems are the
same. However, in practice, the parameter uncertainties of
the drive and response systems are always different and
time-varying. Therefore, it is essential to investigate the
synchronization of two chaotic systems in the presence of
different time-varying parameter uncertainties.

Inspired by the above discussion, this paper addresses
a practical issue of using impulsive control method to
synchronize a class of unified chaotic systems with different
time-varying parameter uncertainties. Some new and less
conservative conditions are derived for the robust impul-
sive synchronization criteria, and the synchronization error
magnitude can be reduced arbitrarily as long as some spe-
cific conditions hold. Finally, some numerical simulations
for unified chaotic systems are given to demonstrate the
effectiveness and feasibility of the proposed method.

Throughout the paper, the notations R and Rn denote
the real number and n-dimensional Euclidean space, re-
spectively. Rn×m is the set of all n × m real matrices. I
denotes the identity matrix with appropriate dimensions.
‖·‖ refers to Euclidean vector norm or the induced matrix
2-norm.

2. SYSTEM DESCRIPTION AND
SYNCHRONIZATION PROBLEM

We consider the drive system as follows:
ẋ(t) = (A + ∆A(t))x(t) + h(x(t)), (1)

where x ∈ Rn is the state variable, A ∈ Rn×n is a constant
matrix, and h(x(t)) is a continuous nonlinear function.
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Assume that

h(x(t))− h(x̃(t)) = N(x(t), x̃(t))(x(t)− x̃(t)), (2)

where x̃ ∈ Rn is the state variable of the response system.
N(x, x̃) ∈ Rn×n is a bounded matrix with elements
depending on x(t) and x̃(t). The parameter uncertainty
∆A(t) satisfies the following assumptions.

Assumption 1. The parameter uncertainty ∆A(t) is of the
form:

∆A(t) = EF (t)H, (3)
where E, H are known real constant matrices with appro-
priate dimensions, and the uncertain matrix F (t) satisfies

‖F (t)‖ ≤ 1. (4)

Assumption 2. The parameter uncertainty ∆A(t) is
bounded and does not change the chaotic attractor of the
chaotic system (1).

Suppose that a discrete instant set {tk, k = 1, 2, . . .}
satisfies 0 < t1 < t2 < · · · < tk < tk+1 < · · · , lim

k→∞
tk =

∞, 0 ≤ t0 < t1.

At discrete time tk, the state variables of the drive system
are transmitted to the response system and the states
of the response system are subjected to sudden changes
at these instants. Therefore, the response system can be
written in the following form

˙̃x(t) = (A + ∆Ã(t))x̃(t) + h(x̃(t)), t 6= tk

∆x̃(t) = x̃(t+k )− x̃(t−k ) = x̃(t+k )− x̃(tk) (5)
=−Bke(t), t = tk, k = 1, 2, . . . ,

x̃(t+0 ) = x̃0,

where e(t) = x(t) − x̃(t) = [x1(t) − x̃1(t), x2(t) −
x̃2(t), . . . , xn(t) − x̃n(t)]T is the synchronization error.
Let x̃(t+k ) = lim

t→t+
k

x̃(t), x̃(t−k ) = lim
t→t−

k

x̃(t), i.e., t+k and

t−k denote the time after and before tk, respectively.
x̃(t−k ) = x̃(tk), which implies that x̃(t) is left-continuous
at t = tk. Bk ∈ Rn×n are the impulsive control gains.
∆Ã(t) = ẼF̃ (t)H̃ has the same assumptions as ∆A(t).
Then from (1) and (5), the following error system equation
is obtained:

ė(t) = (A + ∆A(t) + N(x(t), x̃(t)))e(t)

+ (∆A(t)−∆Ã(t))x̃(t), t 6= tk

∆e|t=tk
= e(t+k )− e(tk) (6)
= Bke(tk), t = tk, k = 1, 2, . . . ,

e(t+0 ) = e0.

Definition 1. The synchronization of (1) and (5) is said
to have been achieved if, for arbitrary initial conditions
x0 and x̃0, the trivial solution of the error system (6)
converges to a predetermined neighborhood of the origin
for any admissible parameter uncertainty that satisfies
Assumptions 1 and 2.

Here the objective is to find the conditions on the control
gains Bk and the impulsive distances δk = tk+1 − tk
(k = 1, 2, . . .) such that the error magnitude, i.e., ‖e‖,
reduces to below some constant ξ, which implies that the
impulsive controlled response system (5) is synchronized
with the drive system (1) for arbitrary initial conditions.

For simplicity, in the following sections, x̃(t), x(t),
N(x(t), x̃(t)), ∆A(t), ∆Ã(t) are denoted by x̃, x, N , ∆A,
∆Ã, respectively.

Remark 1. Due to the boundedness of the chaotic signals,
there exist constants χ > 0, M > 0 such that ‖x‖ ≤ χ,
‖x̃‖ ≤ χ, |xi| ≤ M, |x̃i| ≤ M, i = 1, 2, . . ..

3. MAIN RESULTS

A specific chaotic system is taken as an example to
describe our methodology. This specific chaotic system,
referred to as unified chaotic system by Lü et al. (2002),
is described by

ẋ1 = (25a + 10)(x2 − x1),
ẋ2 = (28− 35a)x1 − x1x3 + (29a− 1)x2, (7)

ẋ3 = x1x2 − 1
3
(a + 8)x3.

The system (7) is chaotic for a ∈ [0, 1], and from (1) and
(2), we can get

A =



−(25a + 10) 25a + 10 0

28− 35a 29a− 1 0

0 0 −a + 8
3


 ,

h(x) =

( 0
−x1x3

x1x2

)
, N =

( 0 0 0
−x3 0 −x̃1

x2 x̃1 0

)
.

The following theorem will give sufficient conditions for
robust stability of the error system (6), which implies the
impulsive controlled response system (5) is synchronized
with the drive system (1).

Theorem 1. Let βk and λA be the largest eigenvalue of
(I +Bk)T (I +Bk) and A+AT , respectively. If there exists
a constant ρ > 1 such that

ln(ρβ2k−1β2k) + (λA +
√

2M + 2‖E‖‖H‖
+

2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖))(t2k+1 − t2k−1) ≤ 0, (8)

k = 1, 2, . . . ,

and
sup

k
{βk exp(λA +

√
2M + 2‖E‖‖H‖

+
2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖)(tk+1 − tk))} = Γ < ∞,

(9)
then the response system (5) is synchronized with the
drive system (1), where ξ > 0 is the bound of the error
magnitude ‖e‖ and can be chosen small enough.

Proof. Let the Lyapunov function be in the form of
V (e) = eT e. (10)

For t ∈ (tk−1, tk], k = 1, 2, . . . , the time derivative of V (e)
along the solution of (6) is

V̇ (e(t)) = ėT e + eT ė

= ((A + ∆A + N)e + (∆A−∆Ã)x̃)T e

+ eT ((A + ∆A + N)e + (∆A−∆Ã)x̃) (11)
= eT (A + AT )e + eT (N + NT )e

+ eT (∆A + ∆AT )e + 2eT (∆A−∆Ã)x̃.
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Since

A + AT =



−(50a + 20) 38− 10a 0

38− 10a 58a− 2 0

0 0 −2a + 16
3


 ,

it is easy to see that λA > 0 for a ∈ [0, 1].

Let λN is the largest eigenvalue of the matrix N + NT ,

from N + NT =

( 0 −x3 x2

−x3 0 0
x2 0 0

)
, we can get 0 ≤ λN =

√
x2

2 + x2
3 ≤

√
M2 + M2 =

√
2M .

For ‖e‖ ≥ ξ, one can conclude that ‖e‖ ≤ ‖e‖2
ξ

and

therefore

V̇ (e(t)) ≤ (λA + λN + 2‖E‖‖H‖)eT e

+ 2(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖)‖e‖‖x̃‖
≤ (λA + λN + 2‖E‖‖H‖)V (e(t))

+ 2χ(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖)‖e‖
≤ (λA +

√
2M + 2‖E‖‖H‖)V (e(t)) (12)

+
2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖)‖e‖2

=
(
λA +

√
2M + 2‖E‖‖H‖

+
2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖)

)
V (e(t))

= QV (e(t)),

where Q = λA +
√

2M + 2‖E‖‖H‖ +
2χ

ξ
(‖E‖‖H‖ +

‖Ẽ‖‖H̃‖) > 0, and (12) implies that

V (e(t)) ≤ V (e(t+k−1)) exp(Q(t− tk−1)),
t ∈ (tk−1, tk], k = 1, 2, . . . . (13)

On the other hand, from the second equation of (6), we
obtain

V (e(t+k )) = [(I + Bk)e(tk)]T (I + Bk)e(tk)
= eT (tk)(I + Bk)T (I + Bk)e(tk) (14)
≤ βkV (e(tk)).

Thus, letting k = 1 in the inequality (13), we have

V (e(t)) ≤ V (e(t+0 )) exp(Q(t− t0)), t ∈ (t0, t1],

which leads to

V (e(t1)) ≤ V (e(t+0 )) exp(Q(t1 − t0)),

and

V (e(t+1 )) ≤ β1V (e(t1)) ≤ V (e(t+0 ))β1 exp(Q(t1 − t0)).

Similarly, for t ∈ (t1, t2],

V (e(t)) ≤ V (e(t+1 )) exp(Q(t− t1))
≤ V (e(t+0 ))β1 exp(Q(t− t0)).

In general, for t ∈ (tk, tk+1],

V (e(t)) ≤ V (e(t+0 ))β1β2 · · ·βk exp(Q(t− t0)). (15)

It follows from (8), (9), and (15) that,

1) t ∈ (t2k−1, t2k], we have

V (e(t)) ≤ V (e(t+0 ))
2k−1∏

i=1

βi exp(Q(t− t0))

≤ V (e0)
2k−1∏

i=1

βi exp(Q(t2k − t0))

= V (e0)β1β2 exp(Q(t3 − t1)) · · · (16)
× β2k−3β2k−2 exp(Q(t2k−1 − t2k−3))
× β2k−1 exp(Q(t2k − t2k−1)) exp(Q(t1 − t0))

≤ Γ
V (e0)
ρk−1

exp(Q(t1 − t0)),

2) t ∈ (t2k, t2k+1], we have

V (e(t)) ≤ V (e(t+0 ))
2k∏

i=1

βi exp(Q(t− t0))

≤ V (e0)
2k∏

i=1

βi exp(Q(t2k+1 − t0))

= V (e0)β1β2 exp(Q(t3 − t1)) · · · (17)
× β2k−1β2k exp(Q(t2k+1 − t2k−1))
× exp(Q(t1 − t0))

≤ V (e0)
ρk

exp(Q(t1 − t0)).

From (16) and (17), it follows that the error magnitude ‖e‖
will converge to below the constant ξ if the error started
with ‖e‖ > ξ. This concludes the proof of Theorem 1. 2

Remark 2. When ∆A = ∆Ã = 0, we can get “
√

2M” in (8)
instead of “2M” in Chen et al. (2006), which will obtain
larger stable region in estimating the impulsive distances
∆k = t2k+1 − t2k−1 (k = 1, 2, . . .). Thus, the condition in
Theorem 1 is less conservative than that in Chen et al.
(2006).

Remark 3. From Theorem 1, it can be seen that we
need only to choose the odd switching sequence {t2k−1}
instead of choosing the whole switching sequence {tk} as
in Theorem 1 in Chen et al. (2004).

Remark 4. Equation (8) can be generalized to the following
condition.

There exist a finite integer n0 > 0 and a constant ρ > 1
such that

ln(ρβn0(k−1)+1 · · ·βn0k) + (λA +
√

2M + 2‖E‖‖H‖
+

2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖))(tn0k+1 − tn0(k−1)+1) ≤ 0,

k = 1, 2, . . . . (18)

The choice of n0 in (18) depends on the actual system
considered. Especially, n0 = 1 corresponds to the case of
the whole switching sequence {tk} and n0 = 2 corresponds
to the case of the odd switching sequence {t2k−1}.
Based on the matrix theory, we obtain λA ≤ ‖A + AT ‖.
Then we can have the following corollary.

Corollary 1. Let βk be the largest eigenvalue of (I +
Bk)T (I + Bk). If there exists a constant ρ > 1 such that
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ln(ρβ2k−1β2k) + (‖A + AT ‖+
√

2M + 2‖E‖‖H‖
+

2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖))(t2k+1 − t2k−1) ≤ 0, (19)

k = 1, 2, . . .

and
sup

k
{βk exp(‖A + AT ‖+

√
2M + 2‖E‖‖H‖

+
2χ

ξ
(‖E‖‖H‖+ ‖Ẽ‖‖H̃‖)(tk+1 − tk))} = Γ < ∞,

(20)

then the response system (5) is synchronized with the
drive system (1), where ξ > 0 is the bound of the error
magnitude ‖e‖ and can be chosen small enough.

Remark 5. Though Corollary 1 will be more conservative
than Theorem 1, considering that the computation of
‖A + AT ‖ will be easier than that of λA, in practice, the
result in Corollary 1 will be more convenient.

Remark 6. From the boundedness of the chaotic systems,
λA and ‖A + AT ‖ are bounded, and the inequalities (8)
and (19) can be satisfied by choosing appropriate βk and
∆k = t2k+1 − t2k−1 (k = 1, 2, . . .).

In practice, for the purpose of convenience, the gains Bk

are always selected as a constant matrix and the impulsive
distances ∆k are set to be a positive constant. Then we
have the following corollaries.

Corollary 2. Assume that t2k+1 − t2k−1 = ∆ > 0 and
Bk = B (k = 1, 2, . . .). If there exists a constant ρ > 1
such that

ln(ρβ2) + ∆(λA +
√

2M + 2 ‖E‖ ‖H‖
+

2χ

ξ
(‖E‖ ‖H‖+ ‖Ẽ‖‖H̃‖)) ≤ 0

(21)

and
β exp(∆(λA +

√
2M + 2 ‖E‖ ‖H‖

+
2χ

ξ
(‖E‖ ‖H‖+ ‖Ẽ‖‖H̃‖))) = Γ < ∞,

(22)

then the response system (5) is synchronized with the
drive system (1), where ξ > 0 is the bound of the error
magnitude ‖e‖ and can be chosen small enough, β and λA

are the largest eigenvalue of (I +B)T (I +B) and A+AT ,
respectively.

Corollary 3. Assume that t2k+1 − t2k−1 = ∆ > 0 and
Bk = B (k = 1, 2, . . .). If there exists a constant ρ > 1
such that

ln(ρβ2) + ∆(‖A + AT ‖+
√

2M + 2 ‖E‖ ‖H‖
+

2χ

ξ
(‖E‖ ‖H‖+ ‖Ẽ‖‖H̃‖)) ≤ 0

(23)

and
β exp(∆(‖A + AT ‖+

√
2M + 2 ‖E‖ ‖H‖

+
2χ

ξ
(‖E‖ ‖H‖+ ‖Ẽ‖‖H̃‖))) = Γ < ∞,

(24)

then the response system (5) is synchronized with the
drive system (1), where ξ > 0 is the bound of the error
magnitude ‖e‖ and can be chosen small enough, β is the
largest eigenvalue of (I + B)T (I + B).

4. SIMULATION RESULTS

In simulation, the impulsive distances ∆k are set to be a
positive constant ∆, and the gains Bk are selected as a

Fig. 1. The boundaries of stable region with different ρ

Fig. 2. The boundaries of stable region with different ξ

constant matrix, i.e., Bk = B = diag{d, d, d}. Then, we
have β = (d + 1)2.

Let a = 1. Then

A =

(−35 35 0
−7 28 0
0 0 −3

)
, A + AT =

(−70 28 0
28 56 0
0 0 −6

)
.

Let ∆A(t) = −∆Ã(t) = 0.04

( sin t 0 0
0 cos t 0
0 0 sin t

)
, where

E = H = Ẽ = H̃ = 0.2I, F (t) = −F̃ (t) =( sin t 0 0
0 cos t 0
0 0 sin t

)
. Fig. 1 shows the stable region for dif-

ferent ρ, where M = 55, χ = 60. The whole region under
the curve of ρ = 1 is the stable region. When ρ →∞, the
stable region approaches a vertical line d = −1. Similarly,
Fig. 2 shows the stable region for different ξ.

We choose ρ = 1.1, ξ = 0.2, d = −0.9, the initial conditions
of the drive and response systems are taken as [4, 1, 5]T and
[3.6, 0.8, 5.4]T , respectively. Hence, considering ‖E‖‖H‖ =
‖Ẽ‖‖H̃‖ = 0.04, ‖A + AT ‖ = 75.942, from Corollary 3,
the estimates of bounds of stable regions are given by

0 < ∆ ≤ − ln ρ + lnβ2

201.8037
= 0.0452.

Using these parameters, conditions in Corollary 3 is sat-
isfied for ∆ ≤ 0.0452. Synchronization errors and syn-
chronization error magnitude with different impulsive dis-
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tances are given in Figs. 3 and 4. As we can see that the
synchronization has been achieved practically and ‖e‖ is
smaller than ξ = 0.2.

Fig. 3. Synchronization errors and synchronization error
magnitude with ∆ = 0.02

Fig. 4. Synchronization errors and synchronization error
magnitude with ∆ = 0.04

5. CONCLUSIONS

In this paper, we have investigated problems of synchroniz-
ing a class of unified chaotic systems using the impulsive
synchronization method. Robust stability of the method
in the presence of parameter uncertainties is discussed.
Based on the theory of impulsive differential equations,
some new and less conservative sufficient conditions are
established. Finally, some numerical simulations are given
to demonstrate the effectiveness of the method. It should
be pointed out that the methods mentioned above can
also be applied to most of typical chaotic systems that
can be described by (1) and (2), such as Lorenz system,
Rössler system, Chen system, Lü system, several variants
of Chua’s circuits, etc. Due to the similarity and analogy,
the details are not further discussed here.
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