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Abstract: A method to design a boundary controller for global stabilization of three-
dimensional nonlinear dynamics of flexible marine risers is presented. Equations of motion
of the risers are first developed in a vector form. The boundary controller at the top end of
the risers is then designed based on Lyapunov’s direct method. It is shown that when there
are no environmental disturbances, the proposed boundary controller is able to force the riser
to be globally exponentially stable at its equilibrium position. When there are environmental
disturbances, the riser is stabilized in the neighborhood of its equilibrium position by the
proposed boundary controller.

1. INTRODUCTION

A typical configuration of an offshore platform is depicted
in Figure 1. The riser is considered in this paper as a slen-
der thin walled circular beam because of its large length to
diameter ratio. In general, the riser is subject to nonlinear
deformation dependent hydrodynamic loads induced by
waves, ocean currents, tension exerted at the top, dis-
tributed/concentrated buoyancy from attached modules,
its own weight, inertia forces and distributed/concentrated
torsional couples. Since the riser dynamics is essentially a
distributed system and its motion is governed by a set of
partial differential equations (PDE) in both time and space
variables, modal control and boundary control approaches
are often used to control the riser in the literature.

In the modal control approach, see Meirovitch [1997],
distributed systems are controlled by controlling their
modes. As a result, many concepts developed for lumped-
parameter systems in Khalil [2002] can be used for con-
trolling the distributed ones, since both types can be
described in terms of modal coordinates. The main diffi-
culty is computation of infinite dimensional gain matrices.
This difficulty can be avoided by using the independent
modal-space control method, but this method requires
a distributed control force, which can be problematic to
implement.

The boundary control approach is more practical and
efficient than the modal control approach since it ex-
cludes the effect of both observation and control spill-
over phenomenon, and the use of distributed actuators
and sensors. Design of boundary controllers for distributed
systems has been usually based on functional analysis and
semi-group theory, see Chen et al. [2001] and Curtain
and Zwart [1995], and the Lyapunov’s direct method, see
Queiroz et al. [2000] and Junkins and Kim [1993]. Using
Lyapunov’s direct method, various boundary controllers
⋆ This work was supported in part by the the ARC Discovery grant

No. DP0774645.

Thruster system

Riser

Hydroacoustic position

              sensor

wind

waves

curre
nts

ball joint

ball joint

seabed

vessel offset

Global positioning

          system

water surface

X

Seabed frame Y

O

Vessel/rig

O

Heave compensator

Z

buoyancy module

slip joint

blowout preventer

well head

Fig. 1. A typical riser system.

have been proposed for flexible beam-like systems. In Fung
et al. [1999] and Fung and Tseng [1999], asymptotic and
exponential stability of an axially moving string is proven
by using a linear and nonlinear state feedback boundary
control, respectively.

In this paper, we consider a problem of global stabilization
of three-dimensional nonlinear flexible marine risers. A set
of partial differential equations and boundary conditions
describing motion of the risers is presented. Using the
Lyapunov’s direct method, a boundary controller at the
top end of the risers is designed. The environmental
disturbances induced by waves, wind and ocean currents
are also considered. This paper is a short version of Do
and Pan [2007].

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6050 10.3182/20080706-5-KR-1001.0294



Z

X

Y

O
x

y

z

r

w

0
r

0P
s

Initial riser

D
ef

or
m

ed
ris

er

t̂

b̂

n̂

P

( )zU t

( )xU t

( )
y

U t

Boundary control forces at the top

t̂

n̂

P
b̂

o ttq m w

ds

F

F F
M M

M

r tm J

Fig. 2. Riser coordinates.

2. MATHEMATICAL MODEL AND CONTROL
OBJECTIVES

2.1 Mathematical Model

In developing the equations of motion of the riser, we make
the following assumption:

Assumption 1:
1) The riser can be modeled as a beam rather than a shell
since the diameter-to-length of the riser is small, i.e. we
consider the riser as a slender structure.
2) Plane sections remain plane after deformation, i.e. warp-
ing is neglected.
3) The riser is locally stiff, i.e. cross sections do not deform
and Poisson effect is neglected.
4) The riser material is homogeneous, isotropic and lin-
early elastic, i.e. it obeys Hookes’s law.
5) The riser is initially straight and vertical.
6) Torsional and distributed moments induced by environ-
mental disturbances are neglected.

Remark 1. Items 1) - 4) mean that the riser will be mod-
eled as a Bernoulli-type of beam and not a Timoshenko-
type, and that the extension of the riser axis small.
Bernoulli-Euler models are satisfactory for modeling low
frequency vibrations of beams. Item 5) generally holds in
practice, and is made to simplify the development of the
mathematical model and boundary controller. This item
can be readily removed. Item 6) implies that we consider
fluid/gas transportation risers rather than drilling risers,
and that moment induced by the asymmetry of the relative
flow due to vortex shedding is ignored.

Preliminaries The riser coordinates are presented in
Figure 2. In this figure, we have two coordinate systems.
The earth-fixed system is (OXY Z), where O is the bottom
ball-joint of the riser, and the OZ axis is along the initial
riser. Let r0(s0, t0) = [x0, y0, z0] be the position vector of
the point P0 of the initial riser centerline at the time t0
and the arc length s0 from the point O. Hence at the time
t > t0, the point P0 moves to the point P of the deformed
riser centerline, whose position is denoted by r(s, t) =
[x(s, t), y(s, t), z(s, t)] at the arc length s from the point
O. Moreover, let w(s, t) = [wx(s, t), wy(s, t), wz(s, t))]

T be
the vector from the point P0 to the point P . Then we have

r = r0 + w (1)

where from now onward whenever it is not confusing,
we drop the arguments (t, s) and (t0, s0) of r, w and r0,

respectively for clarity. The body-fixed system is (t̂, n̂, b̂) ,
whose axes are the tangent, principal normal and binormal
and unit vectors. These vectors can be expressed in terms
of the fixed system as

t̂ = rs, n̂ = t̂s/κ, b̂ = t̂ × n̂ (2)

where the subscript s denotes the partial derivative with
respect to the arc-length s, and κ is curvature of the
riser center line at s depicting the rate of change of the

orientation of the normal plane (n̂, b̂) defined by κ = ‖rss‖.
The above definition of the body-fixed coordinate system

means that (t̂, n̂, b̂) form a right handed orthonormal triad.
The derivatives of the unit body-fixed vectors are given by
the well-known Frenet-Serret relations:

n̂s = τ b̂ − κt̂, b̂s = −τ n̂, t̂s = κn̂ (3)

where τ is the geometric torsion of the riser centerline
depicting the rate of change of the orientation of the
osculating plane (n̂, t̂) defined by τ = rs.(rss × rsss)/κ2.
Now from the right hand side sub-figure of Figure 2,
balancing the forces and moments on a component ds of
the deformed riser results in

mowtt = Fs + q

Jωt = Ms + t̂ × F + m (4)

where from now onward, we use the subscript t to denote
the partial derivative with respect to the time t, mo = ρA
is the oscillating mass of the riser per unit length with A
being the riser cross section area, and ρ being the density
of the riser, J = ρI with I being the second moment

of the riser cross section area about the b̂ axis, F and
M are internal force and moment vectors, q and m are
the external distributed force and moment vectors, and

ωt = n̂ × n̂tt + b̂ × b̂tt is the angular acceleration of a
point on the centerline. The distributed moment vector m
is induced by the asymmetry of the relative flow due to
vortex shedding. Let (Ft̂, Fn̂, F

b̂
) and (Mt̂, Mn̂, M

b̂
) be

the components of F and M along the t̂, n̂, b̂ axes of the
body-fixed system, respectively. We then can write F and
M as

F = Ft̂t̂ + Fn̂n̂ + F
b̂
b̂,

M = Mt̂t̂ + Mn̂n̂ + M
b̂
b̂. (5)

Since the riser is assumed to be straight at the initial time
t0, we have the following constitutive relations, see Love
[1920] and Bernitsas [1982]:

Ft̂ = EAǫ + T0 + ρwg
πD2

o

4
(Hw − z) − ρmg

πD2
i

4
(Hm

−z), M
b̂

= Bκ, Mn̂ = 0, Mt̂ = Gτ + H (6)

where E is Young’s modulus, T0 is the initial tension in the
riser; Hw and Hm are the vertical coordinates of the free
surface of the water and mud, respectively; ρw and ρm are
the density of the water and mud, respectively; Do and Di

are the external and internal diameters of the riser; z is the
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vertical coordinate of the point P ; B = EI is the bending
rigidity of the riser; H is the initial torsional moment
around the t̂ axis; G = 2µI is the torsional rigidity of the
riser with µ being the shear modulus, ǫ is the extension of
the riser centerline given by Dill [1992]

ǫ =
ds

ds0
− 1 =

√

dr

ds0
.
dr

ds0
− 1. (7)

It is noted that since we assumed that extension of the
riser centerline is small and the riser centerline is stretched,
hence 0 ≤ ǫ ≤ 1. The case where ǫ = 0 corresponds to an
inextensible riser. Moreover, Ft̂ in (6) is referred to as the
effective tension, while the actual tension is EAǫ.

Remark 2. In Bernitsas [1982], the constitutive equation
for the moment in the normal direction, Mn̂, is misgiven,
since Mn̂ is always zero for the riser under consideration.

Equations of motion From (5) and the second equation
of (6), we have

Ms = (Bκb̂)s + (H̄t̂ )s = t̂ ×
(

(Bκn̂)s − H̄κb̂
)

+ H̄st̂ (8)

where H̄ = H + Gτ . Now substituting (8) into the second
equation of (4) results in

Jωt = t̂ ×
(

(Bκn̂)s − H̄κb̂ + F
)

+ H̄st̂ + m. (9)

Now producting vector both sides of (9) with t̂ gives

t̂.(Jωt) = t̂.
(

t̂ ×
(

(Bκn̂)s − H̄κb̂ + F
))

+ H̄st̂.t̂ + m.t̂

⇒ rs.(Jωt) = H̄s + m.rs (10)

where we have used the definition of t̂ in (2). On the other
hand, vectoring both sides of (9) with t̂ gives

t̂ × (Jωt) = t̂ × (t̂ × (Bκn̂)s) − t̂ × (t̂ × H̄κb̂)) +

t̂ × (t̂ × F ) + t̂ × (H̄st̂ ) + t̂ × m. (11)

Let us calculate the first three terms of the right hand side

of (11) using the definitions of t̂, n̂ and b̂ in (2) as follows:

t̂ × (t̂ × (Bκn̂)s) = −(Brss)s − Bκ2rs,

t̂ × (t̂ × H̄κb̂)) = −H̄rs × rss

t̂ × (t̂ × F ) = −F + (F.rs)rs. (12)

Substituting (12) into (11) gives

rs × (Jωt) = −(Brss)s − Bκ2rs + H̄rs × rss − F

+(F.rs)rs + rs × m. (13)

Now substituting F from (13) into the first equation of
(6) and combining the second equation of (10) result in
the equations of motion of the riser as follows:

mowtt = −(Brss)ss + (Ft̂ − Bκ2)rs)s

+(H̄rs × rss)s + (rs × m)s − (rs × (Jωt))s + q,

rs.(Jωt) = H̄s + m.rs. (14)

It is noted that we have assumed the torsional moment H̄
and the distributed moment m are negligible, and that the
riser has a constant cross section. Furthermore, since the
riser is initially straight, we have rss = wss, rssss = wssss

and ws = rs − r0
s where we take s ≃ s0 due to the small

extension assumption, see Dill [1992]. With these in mind,
we now have the equations of motion of the riser from (14)
for the boundary control design in the next section:

mowtt = −Bwssss + (Ft̂ − Bκ2)s(ws + r0
s) +

(Ft̂ − Bκ2)wss + q, κ = ‖wss‖. (15)

Initial and boundary conditions The initial conditions
of the riser consist of the initial position and velocity
functions. They are

w(s, t0) = g1(s), wt(s, t0) = g2(s), ∀s ∈ (0, L) (16)

where g1(s) and g2(s) are sufficiently smooth and bounded
function vectors of s, and compatible with the boundary
conditions. Next, we will apply Hamilton’s principle to
derive the boundary conditions for the riser under consid-
eration. We first provide the kinetic and potential energies,
then use the first variation of the Lagrangian of the system
to derive the boundary conditions. As such, the kinetic
energy KE and the potential energy PE of the riser with
a length of L are

KE =
1

2

∫ L

0

mort.rtds,

PE =
1

2

∫ L

0

Brss.rssds −

∫ L

0

qrds + F (0)r(0)

−F (L)r(L) + M(0)rs(0) − M(L)rs(L) (17)

where we have used rt = wt and rss = wss. The
Lagrangian LA of the riser is

LA =

∫ t2

t1

(KE − PE)dt (18)

where t1 and t2 denote time. Moreover, the riser response
must satisfy the kinetic constraint of the unit tangent
vector t̂. In terms of deformation, this constraint is

rs.rs = 1. (19)

The above constraint is applied along the riser by mod-
ifying the Lagrangian of the riser and by embedding a
continuous multiplies (Ft̂ −Bκ2)/2. As such, the modified
Lagrangian LMA is

LMA =

∫ t2

t1

[

KE − PE +
(Ft̂ − Bκ2)

2

∫ L

0

(rs.rs − 1)ds

]

dt.

(20)

Including the term
∫ t2

t1

[ (F
t̂
−Bκ2)
2

∫ L

0
(rs.rs − 1)ds

]

dt in the

modified Lagrangian physically means that the modified
Lagrangian takes the contribution of the axial deformation
into account in the potential energy. From (20), the first
variation of LMA is given by

δLMA =

∫ t2

t1

∫ L

0

[−(Brss)ss + ((Ft̂ − Bκ2)rs)s + q

−mortt]δr ds dt +

∫ t2

t1

(rs × M − Brss)δrs

∣

∣

∣

∣

L

0

dt

+

∫ t2

t1

(−(Brss)s + (Ft̂ − Bκ2)rs − F )δr

∣

∣

∣

∣

L

0

dt. (21)

Since δr is arbitrary over the domain 0 < s < L, letting
δLMA = 0 results in
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−(Brss)ss + ((Ft̂ − Bκ2)rs)s + q − mortt = 0,

∀s ∈ [0, L], t ∈ R
+ (22)

and

rs × M − Brss = 0

or rs = 0 at s = 0 and s = L ∀t ∈ R
+ (23)

and

−(Brss)s + (Ft̂ − Bκ2)rs − F = 0

or r = 0 at s = 0 and s = L ∀t ∈ R
+. (24)

The equation (22) is exactly the same as (15). The equa-
tions (23) and (24) specify the boundary conditions of the
riser at top and bottom ends. Choosing proper conditions
from (23) and (24) depends on the riser configuration.
For the riser considered in this paper, ball joints at both
ends imply that the moments acting at both ends are zero,
i.e. M(L, t) = M(0, t) = 0, and the force vector U(t) as
the boundary control inputs at the top end. With this
observation in mind, the boundary conditions (23) and
(24) for the riser considered in this paper become:

wss(0, t) = 0, wss(L, t) = 0, w(0, t) = 0

−Bwsss(L, t) + Ft̂(L, t)[ws(L, t) + r0
s(L)] = F (L, t)

:= U(t) (25)

where Ft̂(L, t) is calculated from (6) as follows:

Ft̂(L, t) = EAǫ(L, t) + T0 + ρwg
πD2

o

4
(Hw − z(L, t))

−ρmg
πD2

i

4
(Hm − z(L, t)). (26)

Environmental disturbance vector q The external distur-
bance vector q per unit length consists of fluid drag force,
any concentrated forces exerted on the riser by attached
cables and/or buoys modeled by dirac distributions, and
effective riser weight defined as the weight of the riser plus
contents in water. It is noted that the effective rather than
the actual riser weight is used because the effective tension
is used instead of the actual tension. In this paper, we do
not consider cables or buoys attached to the riser. The
fluid drag force is found by the use of a generalization
of Morison’s formula to account for cylinders, which are
not oriented normal to the relative flow Borgman [1958].
Taking the effective riser weight into account, we have

q(s, t) = t̂×(Wre×t̂)+
ρwCLDDHVn

2
+

ρwCNDDH‖Vn‖Vn

2
(27)

where CLD and CND are the linear and nonlinear drag co-
efficients, respectively; DH is the local riser hydrodynamic
diameter; Wre = −[0 0 wre]

T with wre is the effective
riser weight per unit length; Vn is the component of the
relative flow velocity normal to the riser centerline. Letting
V be the (bounded) liquid flow velocity due to waves and
currents. Then taking the riser motion into account, the
relative flow velocity normal to the riser centerline, Vn, is
given by

Vn = t̂ × ((V − wt) × t̂) = (I3×3 − rsr
T
s )(V − wt) (28)

where I3×3 is the three dimensional identity matrix. Sub-
stituting (28) into (27) results in the equation for external
disturbance vector q as follows:

q(s, t) = (I3×3 − rsr
T
s )Wre +

1

2
ρwCLDDH(I3×3

−rsr
T
s )(V − wt) +

1

2
ρwCNDDH‖(I3×3

−rsr
T
s )(V − wt)‖(I3×3 − rsr

T
s )(V − wt).(29)

2.2 Control objectives

Under Assumption 1, design the boundary control U(t) for
the riser dynamics given by (15) subject to the boundary
conditions given by (25) to globally stabilize the riser at
its vertical position, i.e. finding the boundary control U(t)
of the form U(t) = Ω(ws(L, t), wt(L, t)) such that:

(1) when the external disturbance vector q is ignored, all

the terms ‖w(s, t)‖,
∫ L

0
ws(s, t).ws(s, t)ds,

∫ L

0
wt(s, t).wt(s, t)ds and

∫ L

0
wss(s, t).wss(s, t)ds ex-

ponentially converge to zero for all s ∈ [0, L] and
t ≥ t0,

(2) when the external disturbance vector q is present, all

the terms ‖w(s, t)‖,
∫ L

0
ws(s, t).ws(s, t)ds,

∫ L

0
wt(s, t).wt(s, t)ds and

∫ L

0
wss(s, t).wss(s, t)ds ex-

ponentially converge to some small positive constants
for all s ∈ [0, L] and t ≥ t0.

3. BOUNDARY CONTROL DESIGN

Consider the following Lyapunov function candidate

W =
mo

2

∫ L

0

wt.wtds +
B

2

∫ L

0

wss.wssds +

λ

2

∫ L

0

ws.wsds + α

∫ L

0

swt.wsds (30)

where λ and α are positive constants to be specified later.
Since for all t ≥ t0

−Lρ0

∫ L

0

wt.wtds −
L

4ρ0

∫ L

0

ws.wsds ≤

∫ L

0

swt.wsds

≤ Lρ0

∫ L

0

wt.wtds +
L

4ρ0

∫ L

0

ws.wsds (31)

where ρ0 is a positive constant, the function W satisfies

W ≥

(

mo

2
− αLρ0

)
∫ L

0

wt.wtds +
B

2

∫ L

0

wss.wssds

+

(

λ

2
−

αL

4ρ0

)
∫ L

0

ws.wsds,

W ≤

(

mo

2
+ αLρ0

)
∫ L

0

wt.wtds +
B

2

∫ L

0

wss.wssds

+

(

λ

2
+

αL

4ρ0

)
∫ L

0

ws.wsds. (32)

Hence if we choose λ, α and ρ0 such that

mo

2
− αLρ0 = c1,

λ

2
−

αL

4ρ0
= c2 (33)

where c1 and c2 are strictly positive constants, then
the function W defined in (30) is a proper function of
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∫ L

0
wt.wtds,

∫ L

0
wss.wssds, and

∫ L

0
ws.wsds. We do not

detail the conditions (33) at the moment, but deal with
them after the boundary control U(t) is designed since the
constants λ, α and ρ0 need to satisfy some more conditions
later. Differentiating both sides of (30) with respect to the
time t, along the solutions of the riser dynamics (15) results
in

Ẇ = ∆1 + ∆2 (34)

where

∆1 =

∫ L

0

wt.
(

− Bwssss + (Ft̂ − Bκ2)s(ws + r0
s)

+(Ft̂ − Bκ2)wss + q
)

ds + B

∫ L

0

wss.wsstds

+λ

∫ L

0

ws.wstds + α

∫ L

0

swt.wtsds,

∆2 =
α

mo

∫ L

0

sws.
(

− Bwssss + (Ft̂ − Bκ2)s(ws + r0
s)

+(Ft̂ − Bκ2)wss + q
)

ds. (35)

Using integration by part rules, we have

∆1 = −B
(

wsss.wt

∣

∣

L

0
− wss.wst

∣

∣

L

0

)

+(Ft̂ − Bκ2)(ws + r0
s).wt

∣

∣

L

0
−

∫ L

0

(Ft̂ − Bκ2)(wss.wt + (ws + r0
s).wst)

+

∫ L

0

(Ft̂ − Bκ2)wss.wtds +

∫ L

0

wt.qds + λws.wt

∣

∣

L

0

−λ

∫ L

0

wss.wtds +
α

2
swt.wt

∣

∣

L

0
−

α

2

∫ L

0

wt.wtds. (36)

Since rs.rs = 1, we have (ws + r0
s).wst = 0, which is

substituted into (36) to yield

∆1 = −B
(

wsss.wt

∣

∣

L

0
− wss.wst

∣

∣

L

0

)

+ (Ft̂ − Bκ2)(ws

+r0
s).wt

∣

∣

L

0
+ λws.wt

∣

∣

L

0
+

α

2
swt.wt

∣

∣

L

0
+

∫ L

0

wt.qds − λ

∫ L

0

wss.wtds −
α

2

∫ L

0

wt.wtds. (37)

We now focus on the term ∆2. Expanding this term gives

∆2 = ∆21 + ∆22 +
α

mo

∫ L

0

sws.qds (38)

with

∆21 = −
αB

mo

∫ L

0

sws.wssssds,

∆22 =
α

mo

∫ L

0

(Ft̂ − Bκ2)s(ws + r0
s)ds

+
α

mo

∫ L

0

(Ft̂ − Bκ2)wssds.

Using integration by part rules, we can calculate the term
∆21 as

∆21 = −
αB

mo

sws.wsss

∣

∣

L

0
+

αB

2mo

swss.wss

∣

∣

L

0

+
αB

mo

ws.wss

∣

∣

L

0
−

3αB

2mo

∫ L

0

wss.wssds. (39)

Similarly, the term ∆22 is calculated as

∆22 =
α

mo

(Ft̂ − Bκ2)sws.(ws + r0
s)

∣

∣

L

0

−
α

2mo

∫ L

0

Ft̂ ws.wsds −
α

2mo

∫ L

0

Ft̂(1 − r0
s .r0

s)ds

+
αB

mo

∫ L

0

wss.wss ws.(ws + r0
s)ds (40)

where we have used (ws+r0
s).wss = 0 and ws.ws+2r0

s .ws+
r0
s .r0

s = 1 since rs.rs = 1 and r0
ss = 0 due to the riser is

initially straight. Now substituting (40) and (39) into (38),
then substituting (38) and (37) into (34) results in

Ẇ = −B
(

wsss.wt

∣

∣

L

0
− wss.wst

∣

∣

L

0

)

+ (Ft̂ − Bκ2)(ws

+r0
s).wt

∣

∣

L

0
+ λws.wt

∣

∣

L

0
+

α

2
swt.wt

∣

∣

L

0

−
αB

mo

sws.wsss

∣

∣

L

0
+

αB

2mo

swss.wss

∣

∣

L

0

+
αB

mo

ws.wss

∣

∣

L

0
+

α

mo

(Ft̂ − Bκ2)sws.(ws + r0
s)

∣

∣

L

0

−λ

∫ L

0

wss.wtds −
α

2

∫ L

0

wt.wtds

−
3αB

2mo

∫ L

0

wss.wssds −
α

2mo

∫ L

0

Ft̂ ws.wsds (41)

−
α

2mo

∫ L

0

Ft̂(1 − r0
s .r0

s)ds +
αB

mo

∫ L

0

wss.wss

×ws.(ws + r0
s)ds +

∫ L

0

wt.qds +
α

mo

∫ L

0

sws.qds.

Before going further, we find maximum and minimum
values of Ft̂, and maximum value of ws.(ws+r0

s) and r0
s .r0

s .
From (6), we have

Ft̂ ≤ Fmax
t̂

, Ft̂ ≥ Fmin
t̂

(42)

where we have used 0 ≤ ǫ(s, t) ≤ 1 and 0 ≤ z(s, t) ≤ L for
all s ∈ [0, L] and t ≥ t0 ≥ 0. On the other hand, from (7)
we have

ws.(r
0
s + ws) =≤ 1, r0

s .r0
s =≤ 1 (43)

where we have used the fact that the angle θ between the
vectors r and r0 is in the range [−π/2,+π/2] due to the
initial straight and vertical position of the riser. Using (42)
and (43), and Fmin

t̂
> 0, which holds when T0 is sufficiently

large, i.e.

T0 ≥ −ρwg
πD2

o

4
(Hw − L) + ρmg

πD2
i

4
Hm + T̄0 (44)

where T̄0 is a strictly positive constant. Now using the
boundary conditions (25), we can write Ẇ as
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Ẇ ≤ U(t).wt(L, t) + λws(L, t).wt(L, t)

+
αL

2
wt(L, t).wt(L, t) −

αLB

mo

ws(L, t).wsss(L, t)

+
αL

mo

Ft̂(L, t)ws(L, t).[ws(L, t) + r0
s(L)]

+

∫ L

0

wt.qds +
α

mo

∫ L

0

sws.qds −
(α

2
− λρ1

)

×

∫ L

0

wt.wtds −
( αB

2mo

−
λ

4ρ1

)

∫ L

0

wss.wssds

−
αFmin

t̂

2mo

∫ L

0

ws.wsds (45)

where ρ1 is a positive constant to be specify later. From
(45), we choose the boundary control U(t) as follows

U(t) = −k1wt(L, t) − k2ws(L, t) (46)

where k1 and k2 are positive constants to be specified
later. It is recalled from (25) that U(t) = −Bwsss(L, t) +
Ft̂(L, t)[ws(L, t) + r0

s(L)]. Hence from (46), we have

−Bwsss(L, t) = −k1wt(L, t) − k2ws(L, t)

−Ft̂(L, t)[ws(L, t) + r0
s(L)]. (47)

Now substituting (46) and (47) into (45) gives

Ẇ ≤ −
(

k1 −
αL

2

)

wt(L, t).wt(L, t)

−
αLk2

mo

ws(L, t).ws(L, t) +
(

λ − k2 −
αLk1

mo

)

×ws(L, t).wt(L, t) −
(α

2
− λρ1

)

∫ L

0

wt.wtds

−
( αB

2mo

−
λ

4ρ1

)

∫ L

0

wss.wssds −
αFmin

t̂

2mo

(48)

×

∫ L

0

ws.wsds +

∫ L

0

wt.qds +
α

mo

∫ L

0

sws.qds.

From (48), we specify the positive constants ρ1, λ, α, k1

and k2 such that

k1 −
αL

2
= c3, λ − k2 −

αLk1

mo

= 0,
α

2
− λρ1 = c4,

αB

2mo

−
λ

4ρ1
= c5 (49)

where c3, c4 and c5 are strictly positive constants. Using
the conditions given in (49) and the upper bound of W
given in (32), we can write (48) as follows:

Ẇ ≤ −c3wt(L, t).wt(L, t) −
αLk2

mo

ws(L, t).ws(L, t)

−cW +

∫ L

0

wt.qds +
α

mo

∫ L

0

sws.qds (50)

where

c =
min

(

c4, c5,
αT̄0

2mo

)

max
(

(

mo

2 + αLρ0

)

, B
2 ,

(

λ
2 + αL

4ρ0

)

) (51)

where T̄0 is the strictly positive constant in (44). Before
going further, we show that there always exist constants
ρ0, ρ1, λ, α, k1 and k2 such that the conditions specified

in (33) and (49) hold with ci, i = 1, ..., 5 strictly positive
constants. For simplicity, we choose ρ0 = L

√

mo

B
and

ρ1 =
√

mo

4B
. A calculation shows that as long as the positive

constants λ, α, k1 and k2 are chosen such that the following
inequalities strictly hold:

α <
1

2L2

√

B

mo

,
α

2

√

B

mo

<
αLk1

mo

+ k2 < α

√

B

mo

,

k1 >
αL

2
, λ =

αLk1

mo

+ k2 (52)

then there exist strictly positive constants ci, i = 1, ..., 5
satisfying the conditions specified in (33) and (49). We are
ready to state the main result of our paper in the following
theorem whose proof is omitted due to space limitation.

Theorem 1. Under Assumption 1, the boundary control
U(t) given in (46) solves the control objective provided
that the initial tension T0 is sufficiently large, i.e. the
condition (44) holds, and the design constants k1 and k2

are chosen such that the conditions given in (52) hold.
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