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Abstract: The standard continuous time state space model with stochastic disturbances
contains the mathematical abstraction of continuous time white noise. To work with well defined,
discrete time observations, it is necessary to sample the model with care. The basic issues are
well known, and have been discussed in the literature. However, the consequences have not
quite penetrated the practise of estimation and identification. One example is that the standard
model of an observation being a snapshot of the current state plus noise independent of the
state cannot be reconciled with this picture. Another is that estimation and identification of
time continuous models require a more careful treatment of the sampling formulas. We discuss
and illustrate these issues in the current contribution. An application of particular practical
importance is the estimation of models based on irregularly sampled observations.

1. INTRODUCTION

A standard mathematical abstraction in control theory is
the continuous time linear model with stochastic distur-
bances:

ẋ(t) = Ax(t) +Bu(t) + ẇ(t) (1a)

ż(t) = Cx(t) + ė(t) (1b)

Here ẇ(t) and ė(t) are stochastic disturbances. For x(t)
to be a state in the sense that it condenses knowledge
of the past, and thus becomes a Markov process, it is
necessary that both ẇ(t) and ė(t) are unpredictable from
past data. This means that they have to be white noises.
It is well known that the mathematical description of this
is somewhat advanced: These processes will have to have
infinite variances, and a formal mathematical description
is via stochastic integrals of their integrated versions, that
are Wiener processes:

dx(t) = Ax(t)dt +Bu(t)dt+ dw(t) (2a)

dz(t) = Cx(t)dt + de(t) (2b)

The incremental covariances of the involved processes are

E

[

dw(t)
de(t)

] [

dw(t)
de(t)

]T

=

[

R1 RT

12
R12 R2

]

dt (2c)

See, e.g. Åström (1970) for an account of this.

Now, in real life the time continuous output ż(t) is of
course not observed, and neither are any instantaneous
snapshots since they would have infinite variance. Various
ways to formulate a realistic discrete time version of this
have been suggested, and this paper is about several
aspects and issues involved in such formulation.

Our original interest in this problem came from writing
code for identifying (1) from discrete time, sampled mea-
surements of the inputs and outputs. In the course of this
we ran into several issues, that have been considered in the
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past, but not dealt with in a comprehensive manner. They
concern details of how the sampling should be performed,
how to reconcile the infinite variance of the output mea-
surements in the theoretical continuous time model with
the real-life sampled observations, and related topics. It is
the purpose of this paper to sort out and illustrate some
of these issues.

2. SAMPLING

2.1 The state process

The state process x(t) is a well defined signal from (1a)
and its values at discrete time instances tk, k = 1, . . .
can readily be found. Assume that the input is piecewise
constant:

u(t) = u(tk) = uk tk ≤ t < tk+1 (3)

Then

x(tk+1) = Fkx(tk) +Gku(tk) + w̃(tk) (4a)

w̃k(t) =

∫ tk+1

tk

eA(tk+1−s)dw(s) (4b)

Ew̃(tk)w̃T (tk) = R̃1(δk) =

∫ δk

0

eAsR1e
A

T
sds (4c)

δk = tk+1 − tk (4d)

Fk = eAδk (4e)

Gk = P (δk)B (4f)

P (δk) = A−1(eAδk − I) (4g)

Here R1dt is the incremental variance of the Wiener
process w(t), see (2c). This expression is given in many
places, e.g. Sec 3.10 in Åström (1970).

Note that R̃1(δk) is the solution S to the Lyapunov
equation

AS + SAT +R1 − eAδkR1e
A

T
δk = 0 (5)
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Remark 1: It would be proper to let the time index of w̃
be tk+1, since in depends on w(s) up to time tk+1.

Remark 2: We have in (4g) used the inverse of A.
Actually, the computation of P (δk) does not involve such
inversion, and the matrix is also well defined for singular
A, but for convenience here and a few other places we use
this explicit expression.

2.2 Discrete time observations

One idea is simply to postulate that discrete time noisy
observations of the state are available, without detailing
on how they are obtained from (1b):

y(tk) = Hkx(tk) + v(tk) (6)
with a suitably defined natrix Hk. This is the approach
taken in Jazwinski (1970), Section 7.2, and from this a
continuous-discrete Kalman filter is developed, updating
estimates of the continuous state process (1a). Åström
takes the same approach for identifying continuous time
state space models in Åström (1980), eq (3.1)-(3.2). The
same philosophy is used for DAEs in Gerdin et al. (2007).
See also Johansson et al. (1999).

Remark 3: For the filtering calculations to work, it is
essential that v(tk) is independent of x(tk). It is important
to note that it is impossible to have such a finite-variance
observation at time tk based on (1b)!. The reason is that in
order to achieve finite variance, the signal ż must be low-
pass, pre-sample filtered before sampling. This filtering
must occur after time tk in order for the filtered noise-
component be independent of x(tk). So, a proper time
index of y in (6) must be larger than tk. Now, if our concern
is to predict future values of y (as in an identification
application), this is not so essential, since it is really just an
issue of labeling the time stamps. But for state estimation,
it may affect what is considered to be a predicted and a
filtered state estimate.

An approach to describe how (6) relates to (1b) is to
assume integrated sampling:

y(tk) =
1

∆k

∫ tk+∆k

tk

ż(s)ds (7)

Remark 4: The proper time index of y would indeed be
(tk + ∆k), since this measurement will not be available
until that time!

This is used e.g. in (10.17) in Åström (1970) (which does
not divide by the time interval) and in eq. (22.10.84)
in Goodwin et al. (2001). Integrated sampling is also
discussed in e.g. Goodwin et al. (1995) (which considers
duality with a control problem) and Feuer and Goodwin
(1996), Chapter 6 (which considers “delta-versions” of
integrated sampling). Another relevent reference is Shats
and Shaked (1991). All these authors describe the case
without input.

It is not difficult to apply (7) to (1) under the assumption
(3) and obtain (P (·) defined in (4g))
y(tk) = Hkx(tk) +Dku(tk) + v(tk) (8a)

Hk =
1

∆k

CP (∆k) = C + CA∆k/2 + CA∆2
k/3! + . . .

(8b)

Dk =
1

∆k

C[A−2(eA∆k − I) −A−1∆k]B =

C(∆k/2 +A∆2
k/3! + . . .)B (8c)

v(tk) = f(e(s), w(s), t ≤ s ≤ tk + ∆k) (8d)

Here, f is a function of the indicated signals, whose exact
expression is easy to derive. It is straightforward, but
somewhat laborious to compute the covariance of v and
its cross covariance with w̃(tk) in (4), see Åström (1970),
Section 3.10. The results are
Ev(tk)vT (tk) =R̃2(∆k)

=
1

∆2
k

[CA−1
(

R̃1(∆k) −A∆k
R1

− R1A
T

∆k
+R1∆k

)

A−TCT

+ Z + ZT +R2∆k] (9a)

Ew̃(tk)vT (tk) = R̃12(∆k)

=
1

∆k

[(R̃1(∆k) −A∆k
R1)A

−TCT +R12]

(9b)

where
A∆k

= A−1(eA∆k − I) (9c)

Z = CA−1(A∆k
R12 −R12∆k) (9d)

Remark 5: The proper time index of v(t) would be t+∆k.

Note that the integration in (7) over a time interval ∆k is
inherent in most A/D converters. Depending on the type
of converter (flash, sigma-delta, successive-approximation
etc, ADC) and possible presampling filters, the exact form
of the integration/smoothing can vary, and so can the
effective average time ∆k

For a suitably chosen sampling time of the system, and a
well tuned presampling filter it is natural to use the choice

∆k = tk+1 − tk (10)
to capture the typical noise reducing effect of presam-
pling+ADC.

Regardless of the time index issues, v(t) is independent of
x(t) and w̃(t) is independent of x(t).

2.3 Innovations Form

So, we end up with a discrete time equation
x(tk+1) = Fkx(tk) +Gku(tk) + w̃(tk) (11a)

y(tk) = Hkx(tk) +Dku(tk) + v(tk) (11b)

where the covariances of w̃ and v are given by (5) and (9).

From these equations, the Kalman gain K̃k can be com-
puted via the time-varying Riccati equation in the well
known manner
Pk+1 =FkPkF

T

k + R̃1(δk) − (FkPkH
T

k + R̃12(∆k))×

(HkPkH
T

k + R̃2(∆k))−1(FkPkH
T

k + R̃12(∆k))T

(12a)

K̃k =(FkPkH
T

k + R̃12(∆k))(HkPkH
T

k + R̃2(∆k))−1

(12b)

to yield the innovations form:

x̂(tk+1) = Fkx̂(tk) +Gku(tk) + K̃kǫ(tk) (13a)

y(tk) = Hkx̂(tk) +Dku(tk) + ǫ(tk) (13b)
This representation has the property that the second order
properties of the inputs and outputs are the same in (11)
and (13).

By replacing ǫ in (13a) by
y(tk) −Hkx̂(tk) −Dku(tk)

from (13b), equation (13a) becomes the Kalman filter for
estimating the state. The predicted output is

ŷ(tk+1) = Hk+1x̂(tk+1) +Dk+1u(tk+1) (14)
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2.4 Continuous Time Innovations Form

For the continuous time, time-invariant equation (1) the
innovations form is analogously

˙̂x(t) = Ax̂(t) +Bu(t) +Kν(t)

y(t) = Cx̂(t) + ν(t)
(15)

where K is the steady-state Kalman gain.

2.5 Equidistant Sampling

Suppose now that the output is sampled with a constant
sampling interval T : tk = kT . Suppose also that the
integration-time/time-constant of the sampling device (7)
is constant and equal to ∆. Then the sampled equation
(11) becomes time-invariant with matrices and covariances
that do not depend on k. The time varying Kalman
filter/innovations form (13) will then converge to a time-
invariant system

x̂(kT + T ) = F x̂(kT ) +Gu(kT ) + K̃ǫ(kT ) (16a)

y(t) = Hx̂(kT ) +Du(kT ) + ǫ(kT ) (16b)

where the limit Kalman gain K̃ is the solution to the
algebraic Riccati equation:

P =FPFT + R̃1(T ) − (FPHT + R̃12(∆))×

(HPHT + R̃2(∆))−1(FPHT + R̃12(∆))T (16c)

K̃ =(FPHT + R̃12(∆))(HPHT + R̃2(∆))−1 (16d)

2.6 Simplistic Sampling

The computation of K̃ according to (16cd) is rather
complicated. It is tempting to use a simplified formula,
that ignores the averaging over x in (7) and uses an
assumption that the noise is piecewise constant over the
sampling interval. This sounds reasonable if T is short
compared to the time constants of the system. In other
words it means that the continuous time innovations
description (15) is sampled as if ν(t), like u(t) is piecewise
constant, (3), yielding

x̂(kT + T ) = F x̂(kT ) +Gu(kt) + K̄ǫ(kT ) (17a)

y(t) = Cx̂(kT ) + ǫ(kT ) (17b)

F = eAT ; G = PB; K̄ = PK (17c)

P = A−1(F − I) (17d)

In case F − K̄C is not stable, the Riccati equation
corresponding to R1 = K̄K̄T , R12 = K̄, R2 = I is solved
to obtain a new stabilizing Kalman gain. We will call
this simplistic sampling of the continuous time innovations
form. This is the approach taken in the Matlab’s System
Identification Toolbox, Ljung (2007). Its manual states
that this is a reasonable approximation if the sampling
interval is reasonably chosen w.r.t. to the system and noise
dynamics.

2.7 System Identification

Estimation of system parameters is closely related to the
estimation/prediction problem. If A,B,C,K in (15) or
A,B,C,R1, R12, R2 in (1) contain unknown parameters θ,
then these can be consistently identified by minimizing the
prediction error criterion

N
∑

k=1

‖y(tk) − ŷ(tk, θ)‖
2 (18)

or via the closely related Maximum Likelihood criterion.
Here ŷ is the expression from (14), depending on θ via the

expressions (12, 5, 9, 8). See, e.g. Ljung (1999). The main
work in minimizing (18) concerns find the gradients of the
criterion, which is based on the derivative

ψ(tk) =
∂

∂θ
ŷ(tk, θ) (19)

For the time-invariant innovations representation expres-
sions for the gradient are quite straightforward (e.g. Sec-
tion 9.6 in Ljung and Glad (1994)). In the identification
toolbox Ljung (2007) the gradients of the matrices F ,G,
etc with respect to the parameters of the continuous time
model are found by numerical differentiation.

3. A COLLECTION OF WHY’S

3.1 Why Are Continuous Time Models of Interest?

The main reason why we deal with continuous time models
is that physical insight and intuition are typically best
represented in continuous time. Most physical modeling
work ends up with a continuous time model, and in order
to make use of that knowledge it is natural to parameterize
a model (1) accordingly. Even though the fit to data will
have to be done in discrete time as in (18), the dimension
of the vector θ reflecting continuous time dynamics will be
lower in that way.

For equidistantly sampled data one could build a black-box
discrete time model, that is converted to continuous time
afterwards, using the inverse sampling formulas. However
to comply with any physical structure of (1) this would
involve another round of optimization. If there is no
physical knowledge, so (1) is black-box, and the sampling
time is constant, a simple route is to first build a discrete
time model and than convert it to continuous time. This
route is essentially equivalent to estimating the continuous
model directly for this case.

In the case of unequally sampled data, the discrete time
system (13) is time varying, even if the underlying con-
tinuous system is time invariant. Then this continuous
time model is the natural basis to deal with the sampled
observations. This is the pragmatic reason for working
with the abstract time-continuous noise models: It allows
us to work with time invariant parameterization of the
noise properties.

3.2 Why Is It Essential with Correct Sampling Formulas?

Well, actually it is not that essential. You could have any
weird sampling formula from A,B,C,K to F,G,H,D, K̄
that is surjective. The model fit is done in the metric
of the sampled systems, so the resulting sampled system
would be the best discrete time model available. The
underlying parameterization of the continuous time model
may however be irrelevant. Then, on the other hand, you
could as well fit a discrete time model directly. So, only
if you have a genuine interest in the continuous time
model (see previous question), are the sampling formulas
essential.

3.3 Why Haven’t the Correct Sampling Formulas Been
Extensively Used?

The sampling formulas (4)–(13) are not new, and not
difficult to derive. Still the results for integrating sampling
are not widely used. They are for example typically not
given in textbooks and the Matlab Control System

Toolbox offers no implementation. (There is more at-
tention to the conceptually related, but different, issue
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of piecewise linear inputs – ’First order hold’ –, i.e. an
integrator between a piecewise constant input source and
the actual input.) Also, we are not aware of any explicit
inverse formulas (“d2c”) for the integrating sampling case.

In a way this is a case of “double standards:” On the
one hand the observations of the ideal continuous time
description (1) will need lowpass filtering to achieve real-
istic measurements. On the other hand one is not willing to
take the consequences of this when it comes to the effects of
the input. The instantaneous sampling, giving H = C and
D = 0 are simpler and more attractive. The engineering
rules of thumb say that a signal should be filtered by a
presampling filter with cutoff frequency below the Nyquist
frequency. This motivates the use of ∆ = T for tk = kT in
(7). For the double standards to be acceptable, one must
consequently sample fast enough (T small enough) so that
the effects on the dynamics of H 6= C and D 6= 0 in (8)
are negligable.

Another view on this, that is applicable to the equidis-
tantly sampled case, is to build a discrete time model that
describes the observed data as well as possible, and then
regard any sampling devices, including presampling filters
as part of the model. But, again, if a continuous time model
is essential, one must be careful in converting back to such
a model.

4. THE SAMPLING FORMULAS

For equidistant sampling, the simplistic sampling (17) is
considerably simpler than the correct sampling (16). It is
interesting to compare how they behave.

Example 1. Consider the system in innovations form

ẋ = Ax+Bu+Kν

=

[

−0.357 1
−0.243 0

]

x+

[

0.254
1.820

]

u+

[

1.287
0.786

]

ν

y = Cx+ e = [1 0]x+ ν

(20)

This system has a recommended sampling interval (by the
Control System Toolbox) of 0.31 s. We consider the
step responses from u and e for systems that are sampled
with 0.2 s and 2 s respectively. The results are shown
in Figures 1 and 2. The effects on the matrices for the
different sampling rules are not insignificant. For sampling
time T = 2 we have

H = [0.6057 0.7397] ; D = 1.1665; K̃ =

[

1.0279
0.2763

]

for (16) and

H = C = [1 0] ; D = 0; K̄ =

[

1.2815
0.2395

]

for (17). Still the difference in dynamic response in Figure
2(left) is not very big.

5. ESTIMATING CONTINUOUS SYSTEMS USING
EQUIDISTANT SAMPLES

Example 2. Consider the system (20) again. Produce a
“continuous time simulation” by sampling it at sampling
interval 1 ms. Let the input be piecewise constant over
time intervals of 2 s, and let the variance of e at this
sampling rate be 1000. (Corresponding to a noise inten-
sity of the continuous source of 1.) Generate 2560 sec-
onds of such a data record (2.56 million samples). Create
integrated sampled data using (7) for ∆ = T = 0.2
and ∆ = T = 2. The resulting data are shown in
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Fig. 1. Step response for DT system. Sampling interval 0.2.
Solid: correct sampling. Dotted: simplistic sampling.
Left: from input (the dotted and solid lines overlap in
the resolution of the figure), Right: from noise source
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Fig. 2. Step response for DT system. Sampling interval 2.
Solid: correct sampling. Dotted: simplistic sampling.
Left: from input, Right: from noise source

Figure 3. A continuous time model of the same struc-
ture as (20)with six unknown parameters, corresponding
to A(1, 1), A(2, 1), B(1, 1), B(2, 1),K(1, 1) and K(2, 1) was
estimated using (18) with the correct sampling formula
and the simplistic sampling formula for the two sampling
intervals. The estimation was carried out in the System
Identification Toolbox, Ljung (2007), using the idgrey
model object with the different sampling routines imple-
mented in the model-defining m-file.

Remark 6: In connection with (7) we commented upon
the time labeling of the outputs. While it is essentially
a label in the filtering context, it plays a role for the
alignment of inputs and outputs for the identification
application. Therefore we tested the simplistic sampling
both for the case of time labeling as in (7) and with a
shifted version, naming y(tk) = y((k+1)T ) The identified
continuous time models with simplistic sampling for the
two cases are shown in Figure 4. Clearly, such a time shift
(which corresponds to an “anti-causal” shift of the input
(InputDelay = -Ts)) is beneficial for the model, and we
adopt this practice for the simplistically sampled model.
For the correctly sampled model, there is no confusion
about the time labels, since the formulas correctly account
for the dependencies.

The resulting estimated parameters with their estimated
standard deviations are shown in Tables 1 and 2. We see
that the estimated parameters are fine when the correct
sampling has been used. The true values are well inside
reasonable confidence regions. The models obtained by the
simplistic sampling have worse accuracy, especially for the
larger sampling interval. The true values are in several
cases not within reasonable confidence intervals.

A few comments are in order:

• The main reason why the simplistically sampled sys-
tem gives bad estimates is that it does not provide a
direct D-matrix term. The sampled data has such a
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Par True Est. Correct samp Est. Simpl.samp
A(1,1) -0.3567 -0.3511 ± 0.0129 -0.3518 ± 0.0129
A(2,1) -0.2426 -0.2434 ± 0.0058 -0.2439 ± 0.0056
B(1,1) 0.2540 0.2169 ± 0.0572 0.0329 ± 0.0568
B(1,2) 1.8198 1.8575 ± 0.0584 1.8652 ± 0.0569
K(1,1) 1.2865 1.2556 ± 0.0415 1.1373 ± 0.0313
K(1,2) 0.7864 0.7398 ± 0.0421 0.6278 ± 0.0372

Table 1. Estimated parameter for sampling
interval Ts = 0.2. ± indicates the estimated

standard deviation

Par True Est. Correct samp Est. Simpl.samp
A(1,1) -0.3567 -0.3611 ± 0.0151 -0.3357 ± 0.0143
A(2,1) -0.2426 -0.2366± 0.0067 -0.2041± 0.0048
B(1,1) 0.2540 0.2623 ± 0.0897 -0.8392 ± 0.0440
B(2,1) 1.8198 1.7563 ± 0.0637 1.4489 ± 0.0505
K(1,1) 1.2865 1.1997 ± 0.2022 14.0573 ± 50.6497
K(2,1) 0.7864 0.6977 ± 0.0848 9.8242 ± 38.8295

Table 2. Estimated parameter for sampling
interval Ts = 2. ± indicates the estimated

standard deviation
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Fig. 3. The input output data. From top (1) “Continuous
time ouput data”. (Generated by sampling interval
0.001.), Sampled output data, (2) sampling interval
0.2, (3) sampling interval 2, and (4) input data.
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Fig. 4. Step response for identified continuous time sys-
tem. Sampling interval 2. Solid: True system. Dotted:
Estimate using simplistic sampling. Dashed: Estimate
using simplistic sampling on anticausally shifted data.
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Fig. 5. Step response for identified discrete time system.
Sampling interval 2. Solid: True system. Dotted: Esti-
mate using correct sampling. Dashed: Estimate using
simplistic sampling. Left: from input, Right: from
noise source. The dotted lines coincide with the solid
lines in this resolution.

term due to the integrated sampling (its value is 1.17
for the 2 s sampling interval). The model suffers from
not being able to explain this effect.

• The model fit is done in the metric of the sampled
data, even though the parameters relate to continuous
time. Comparing the discrete time responses of the
models (according to their own sampling rules) with
that of the correctly sampled system shows less dis-
crepancies compared to the parametric errors, as seen
in Figure 5. This is in accordance with the comments
in Section 3.2.

6. ESTIMATING CONTINUOUS SYSTEMS FROM
UNEQUALLY SAMPLED DATA

Example 3. Consider again the system in (20), simulated
as before with a sample interval of 1ms to emulate a
“continuous” system. The noise properties are the same as
those in Example 2. Again produce 2560 seconds worth of
such data, but this time sample at non-equidistant points
in time, so that tk+1−tk is not constant over k. The average
sample interval was roughly 2 seconds and the samples
were distributed uniformly between 1.34 and 2.68 seconds
(i.e. the ratio of largest to smallest sample interval is 2).

This “continuous” data was then sampled via (7), where
we chose a constant integrating time ∆k equal to the
minimum sample interval (1.34 seconds), i.e. ∆k = 1.34
for all k. This corresponds to an assumption that the
sampling device is not adaptive over time. This assumption
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Fig. 6. Data for non-uniformly sampled example. Top:
“continuous” output (0.001 second sample interval).
Middle: sampled output (non-uniform sampling). Bot-
tom: input.

can be easily removed. Figure 6 shows a snapshot of the
continuous and sampled data.

With the above scheme we obtained N = 1280 samples
and based on these samples we estimated the parameters
A(1, 1), A(2, 1), B(1, 1), B(2, 1), K(1, 1) and K(2, 1) of
(20) based on the correct and simplistic sampling formulas.
For the case of correct sampling, the Kalman filtering
equations (12), (13) and (14) were used to form the
predictor.

Figure 7 compares the step responses from correct and
simplistic sampling models to the true model. By way of
information Table 3 shows the parameter values and their
standard deviations for both sampling cases. Notice that
the correct sampling gives more accurate results than the
simplistic case, as expected.

Parameters True Correct Sampling Simplistic Sampling
A(1, 1) -0.3567 -0.3662 ± 0.0133 -0.3713 ± 0.0159
A(2, 1) -0.2426 -0.2436 ± 0.0055 -0.2487 ± 0.0076
B(1, 1) 0.2540 0.2687 ± 0.0822 0.9387 ± 0.0882
B(2, 1) 1.8198 1.8675 ± 0.0500 1.6867 ± 0.0621
K(1, 1) 1.2865 1.4170 ± 0.2072 0.7971 ± 0.1070
K(2, 1) 0.7864 0.7840 ± 0.1068 0.4946 ± 0.0570

Table 3. Estimated parameter values for non-
uniformly sampled example, ± indicates stan-

dard deviations.

7. CONCLUSIONS

The main conclusion is that estimating continuous time
systems requires some care and understanding of how the
sampling was done. There is always some kind of averaging
or low-pass filtering involved in the A/D conversion of
measured data. If the sampling is fast compared to the
system dynamics of interest this filtering/averaging effect
may be negligible compared to the dynamics. We have
shown in this contribution how to properly handle the
case of integrating sampling, which is one variant of real
sampling. The effect of the estimated models may be
significant for slow sampling. The use of continuous time
models may be tied to an interest in physical models,
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Fig. 7. Step response for identified continuous time system
with non-uniformly sampled data. Solid: True system.
Dotted: Estimate using correct sampling. Dashed:
Estimate using simplistic sampling. Left: from input,
Right from noise source.

i.e. “grey-box” identification. It could also be due to non-
equidistantly sampled data, for which the continuous time
model is the natural basis.

When dealing with a realistic sampling model, several
issues arise in the choice of sampling interval T . A short
interval gives higher variance of the output measurement,
but this is basically compensated for by obtaining more
measurements over a given time period. For any sampling
formula to be correct it is also essential that the true,
continuous time input can be correctly reconstructed from
the sampled measurements. This may also influence the
choice of T . Finally it is clear that the issues raised in this
paper are also relevant for possible down-sampling after
the experiment.
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